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Abstract. The Equilibrium Gap Method (EGM) is a direct model parameter identification method, i.e., that
does not require any resolution of the model. It has been extensively studied in the context of small strains
but not thoroughly investigated for large strains. In this article, we propose a novel formulation of the
EGM, valid in large strains, and applicable to both boundary and body forces, when full-field measurements
are available. Our formulation is based on a recently proposed continuous formulation and consistent
discretization of the equilibrium gap principle. Additionally, we developed an estimation pipeline to quantify
the robustness of our new EGM formulation to noise, and we compared its performance to other classical
estimation methods, namely the Finite Element Model Updating (FEMU) method and the Virtual Fields
Method (VFM). Our robustness quantification pipeline involves generating synthetic data from a reference
model through two methods: by adding noise to the reference displacement, or by generating noisy images
and performing motion tracking with the Equilibrium Gap principle used as mechanical regularization.
While the quality of estimation using our new EGM formulation is poor with the first data generation method,
it improves drastically with the second method. Since the second method of synthetic data generation
closely mimics experimental processes, the EGM, when combined with motion tracking with Equilibrium
Gap regularization, demonstrates reasonable noise robustness. Thus, it is a promising option for direct
parameter estimation from full-field measurements.

Résumé. La méthode de l’écart d’équilibre (EGM) est une méthode directe d’identification de paramètres de
modèles, c’est-à-dire qu’elle ne nécessite aucune résolution du modèle. Elle a été largement étudiée dans le
contexte des petites déformations, mais n’a pas fait l’objet d’un examen approfondi pour les grandes défor-
mations. Dans cet article, nous proposons une nouvelle formulation de l’EGM, valable pour les grandes dé-
formations et applicable à la fois aux forces surfaciques et aux forces volumiques, lorsque des mesures plein
champ sont disponibles. Notre approche est basée sur une formulation continue et une discrétisation consis-
tante du principe de l’écart d’équilibre récemment proposées. En outre, nous avons développé un pipeline
pour quantifier la robustesse de notre nouvelle formulation EGM au bruit, et nous avons comparé ses perfor-
mances à d’autres méthodes d’estimation classiques, à savoir la méthode « Finite Element Method Updating »
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(FEMU) et la méthode des champs virtuels (VFM). Notre pipeline de quantification de la robustesse implique
la génération de données synthétiques à partir d’un modèle de référence via deux méthodes potentielles : soit
en ajoutant du bruit au déplacement de référence, soit en générant des images bruitées et en effectuant un
suivi de mouvement avec le principe de l’écart d’équilibre utilisé comme régularisation mécanique. Alors
que la qualité de l’estimation utilisant notre nouvelle formulation EGM est faible avec la première méthode
de génération de données, elle s’améliore considérablement avec la seconde méthode. Étant donné que la
deuxième méthode de génération de données synthétiques reproduit fidèlement les processus expérimen-
taux, l’EGM, lorsqu’elle est associée au suivi des mouvements avec régularisation de l’écart d’équilibre, fait
preuve d’une robustesse raisonnable face au bruit. Il s’agit donc d’une option prometteuse pour l’estimation
directe de paramètres à partir de mesures plein champ.

Keywords. Equilibrium Gap Method, Inverse problems, Large strains, Parameter identification, Uncertainty
quantification.

Mots-clés. Méthode de l’écart à l’équilibre, Problèmes inverses, Grandes transformations, Identification,
Quantification d’incertitude.
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1. Introduction

Inverse problems represent a critical issue in many mechanical problems. This is especially
true in biomechanics for example, where in-vivo testing is rarely feasible [1]. As a result,
measurements derived from clinical imaging techniques, such as CT-scans or MRI, can be used to
identify parameters such as tissue stiffness [2]. Thus, inverse problems are a valuable alternative
to experimental methods for parameters identification.

Different estimation methods have been developed for inverse problems, which all present
advantages and drawbacks in terms of accuracy, robustness to noise and model errors, and com-
putation time. In the scope of this study, we will assume to have access to full-field measure-
ments as input for the different estimation techniques. A review of the most common identifi-
cation methods using full-field measurements can be found in [3] and [4]. Note however that
methods such as the Finite Element Model Updating (FEMU) method, do not require full-field
measurements to perform well, and can be applied to more limited data [5].

In this article we propose a new formulation of the Equilibrium Gap Method (EGM), a direct
method—i.e., which does not require direct model resolution—, valid in large strains, with a
consistent FE discretization. We then quantify the estimation quality of the EGM applied to large
motion measurements, for data presenting high noise levels, and for boundary force and body
force tests. If some estimation methods, such as the Virtual Fields Method (VFM) or FEMU, have
been extensively studied in small strains [6], as well as in large strains [7, 8], the EGM has only
been thoroughly studied in small strains [9, 10], but not in large strains.

If [11] already proposed a generalization of the VFM in large strains including all discrete
virtual fields, which then represents an EGM formulation, we propose in this article an alternative
formulation of the method, based on the novel Equilibrium Gap formulation of [12]. Our new
formulation presents the advantage to be fully consistent: it converges when the FE mesh is
refined.

Additionally, the EGM has mostly been studied for boundary forces, while considering that no
body force was applied [9, 13]. Our new formulation allows to take into account full body fields.
In order to develop a general formulation of the EGM, we therefore choose to take into account
both boundary forces and body forces.

To quantify the performance of our new formulation, we study its noise robustness, and
compare it to two other classical methods: the FEMU method [14, 15], which is a very robust



Alice Peyraut and Martin Genet 261

but indirect method, i.e., a method requiring a model computation at each iteration, and the
Virtual Fields Method (VFM) [16], which displays a lower noise robustness [17], but is potentially
a direct, and hence less expensive method. Two families of virtual fields will be investigated for
the VFM. The first family of virtual fields is generated with plane waves, which are not optimal
for the simple problem considered here, but allow to study the impact of virtual field frequency
on estimation performance. In this case the VFM is a direct method. The second family of virtual
fields is generated based on the method proposed by [8], which was designed to apply the VFM to
complex geometries. In this case, model computations are required, and the VFM is not a direct
method anymore.

In this article, we therefore propose a performance quantification method, based on synthetic
data generation. Two methods of data generation, based on generating noisy displacement fields
and noisy images, are studied. We then apply the pipeline to our new formulation of the EGM,
to the FEMU method and to the VFM, and study the impact of noise on the accuracy of the
estimation.

2. Methods

2.1. Estimation framework

The focus of this article is the introduction of a new formulation of the Equilibrium Gap Method
(EGM) for model parameter identification, and to compare quantitatively its performances to
other usual estimation method. In order to formally introduce the formulation of the different
methods, we start by introducing classical variables and operators.

Kinematics. The mapping from a material point at a position X in the reference configuration
Ω (with |Ω| representing the reference volume) to a position x in a deformed configuration ω is
represented by the function χ, such that

χ : X 7→ x. (1)

The displacement field from the reference to the deformed configuration U is then expressed by

U := x −X . (2)

In order to define the deformation gradient tensor, we classically derive it from the mapping:

F :=∇χ= 1+∇U . (3)

The volume change J is in turn defined through its relationship to the deformation gradient
tensor:

J := det(F ). (4)

We can define two additional quantities also related to the deformation tensor: the right Cauchy-
Green tensor, expressed as

C := F T ·F , (5)

and the Green–Lagrange strain tensor, expressed as

E := 1
2 (C −1). (6)

We can also define the linearized strain tensor ϵ as

ϵ := 1
2 (∇U +∇U T). (7)

Throughout this article, we distinguish quantities defined in the deformed or the reference
configuration. In particular, Γ and γt refer to the reference and deformed boundary where a
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load is applied. Similarly, we call Γ0 and γt0 the reference and deformed boundaries where a
displacement is prescribed.

Additionally, the outer normal in the reference configuration is denoted N , while the outer
normal in the deformed configuration is denoted n, which can be pulled back to the reference
configuration:

n =
F−T N

∥F−T N∥ . (8)

Stresses. Let us also introduce various stress tensors. Both first and second Piola–Kirchhoff
stress tensors, denoted as P and Σ, can be related to the Cauchy stress tensor σ using the
operators previously introduced, omitting the mapping between the reference and the deformed
configuration to simplify notations:

Σ := JF−1σF−T , (9)

and

P := J σF−T . (10)

Loading. Lastly, let us introduce two vector fields, which both represent forces applied to the
studied system. These two vector fields will be investigated in this article, and represent a
particular case, which can however straightforwardly be generalized. The first vector field
represents a boundary force applied to a given boundary of the system, and is denoted as T in
the reference configuration and as t in the deformed configuration. Note that T = J ||F−T N ||t .
The second vector field, denoted as B in the reference configuration and as b in the deformed
configuration, represents a body force applied to the system. Note that B = Jb. We can also define
the vector field U i , which represent imposed displacements in the reference configuration.

Equilibrium. The equilibrium, which derives from the principle of conservation of momentum,
can be expressed in terms of any stress measurement through the balance of internal and external
virtual works:

σ/Σ/P | Wint

(
σ/Σ/P ;U∗

)
=Wext

(
U∗) ∀U∗, (11)

where U∗ represents any kinematically admissible to zero virtual field. Let us recall that when
mentioning in this article that a virtual field U∗ is kinematically admissible to zero, it implies
that it is smooth enough on Ω, and that is satisfies homogeneous Dirichlet conditions on the
boundaries where a displacement is prescribed, i.e., U∗ = 0 on Γ0.

Classically, Wint is expressed as:

Wint

(
σ/Σ/P ;U∗

)
:=

∫
ω
σ : ϵ(U∗)dω

=
∫
Ω
Σ : dU E ·U∗ dΩ

=
∫
Ω

P : ∇U∗ dΩ, (12)

where dU E ·U∗ = (F T ·∇U∗)sym is the first differential of the Green–Lagrange strain tensor.
Additionally, Wext can be expressed as:

Wext
(
U∗)

:=
∫
γt

t ·U∗ dγ+
∫
ω

b ·U∗ dω

=
∫
Γ

T ·U∗ dΓ+
∫
Ω

B ·U∗ dΩ. (13)
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Behavior. According to the second principle of thermodynamics, the second Piola–Kirchhoff
stress tensor Σ, which depends on the state variable E , derives from the material free energy
potentialΨ:

Σ= ∂Ψ

∂E
. (14)

Problem formulation. Based on the equilibrium and behavior defined previously, the problem
consists in solving the following equation:

U | Wint

(
Σ(U );U∗

)
=Wext

(
U ;U∗) ∀U∗. (15)

Linearization. In this study, we will also perform analyses in the small strains setting, aiming
to simplify the discussion. When considering linearized quantities, the internal virtual work is
expressed as

Wint(U ,U∗) ≈
∫
Ω
σ(U ) : ϵ(U∗)dΩ, (16)

with σ(U ) = K : ϵ(U ), where K is the material stiffness tensor, i.e., such that

Ψ= 1
2ϵ : K : ϵ. (17)

Similarly, the external virtual work can be expressed as:

Wext(U
∗) ≈

∫
Ω

b ·U∗ dΩ+
∫
Γ

t ·U∗ dΓ. (18)

Finite elements resolution. Using finite elements discretization, the linearized direct problem
reduces to

U | K ·U= F, (19)

whereK is the system stiffness matrix, defined as

K :=
∫
Ω
Q : K :QT, (20)

with Q the array of shape functions symmetric gradients. F represents the system force vector,

which can include both body and boundary forces, and is expressed as

F :=
∫
Ω
N ·b dΩ+

∫
Γ
N · t dΓ, (21)

withN the array of the shape functions. Additionally,U is the nodal displacement vector, defined
through the approximation of the displacement field U , such that

U = tN ·U. (22)

We can also introduce a diagonal matrix D, which selects the degrees of freedom where the
force is imposed. It is particularly useful for distinguishing cases where only boundary forces or
only body forces are applied. For example, if only boundary forces are applied, D is equal to 1 on
the boundary degrees of freedom and 0 everywhere else.
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Estimation problem formulation. In general, not all model parameters can necessarily be iden-
tified based on the available data. As a result, for inverse problems, some parameters, which are
called θ, are identified, while other parameters, called η, are chosen at reference values during
the estimation process. Note that estimated parameters can be material or loading parameters.

The estimation process consists in finding the optimized parameters θsol, which minimize a
cost function L. The expression of the cost function depends on the chosen estimation method.
In general, the estimation problem can therefore be written as:

θsol := argmin
θ

{L(θ,η)}. (23)

This cost function implicitly includes a displacement field U meas, extracted from experimental
measurements. Its finite element discretization is denoted as Umeas.

2.2. Recall of existing identification methods

This section recalls the principle and formulation of three classical identification methods, whose
robustness to noise and model errors is investigated in this article.

2.2.1. The Finite Element Model Updating (FEMU) method

Principle. The “displacement” identification method, a.k.a. FEMU (Finite Element Model Up-
dating), first introduced in [14], has been widely used in estimation problems, and is the most
robust identification method [4, 18]. The FEMU method estimation relies on a very intuitive pro-
cess, which consists in finding the parameters minimizing the distance between the displace-
ment computed with the model, which depends on the different parameters, and the measured
displacement, which is typically extracted from experimental images [3]. This method therefore
requires a finite element computation at each iteration; as such, FEMU is also one of the most
expensive identification methods. Note that FEMU is the only method presented in this article,
which does not require full-field measurements for the estimation. It can also perform well when
only partial data is available.

Cost function. The identification problem can be formalized as follows [4]:

LFEMU(θ,η) := 1
2∥U (θ,η)−U meas∥2

L2(Ω)

≈ 1
2∥U(θ,η)−Umeas∥2

l2
. (24)

2.2.2. The Virtual Fields Method (VFM)

Principle. The FEMU method, requiring the resolution of many direct problems, is computation-
ally expensive. Direct methods, which do not require any resolution of the considered model, are
theoretically cheaper [4]. The Virtual Fields Method (VFM) is a potentially direct identification
method, which has been widely used in various problems [19]. It has notably allowed to success-
fully identify parameters in small strains for anisotropic elasticity [20], plasticity [21] or elasto-
plastic behavior [22]. The VFM has also been used for inverse problems in large strains [23]. Ad-
ditionally, most identification problems use experimental data, which are frequently noisy. Being
theoretically a direct method, VFM should be less expensive but also more sensitive to noise than
FEMU. The sensitivity of the VFM to noise has been extensively studied in [16, 17, 21].

The VFM is based on the principle of virtual work, presented in Equation (11). This method
relies on defining at least as many kinematically admissible to zero virtual displacement fields as
parameters to identify. Each virtual displacement field is then plugged into Equation (11) as the
virtual field U∗, which leads to a system of equations to solve. Note that when as many virtual
fields as parameters to identify are defined, the resolution may be explicit for simple material
laws, e.g., when the stress tensor depends linearly on the parameters.
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Cost function. The VFM relies on the principle of virtual work:

LVFM(θ,η) :=
m∑

i=1

(
Wint(U meas;U∗

i ;θ,η)−Wext(U meas;U∗
i ;θ,η)

)2
, (25)

where U∗
i=1,...,m represents the chosen kinematically admissible to zero virtual fields.

Note that at least as many kinematically admissible to zero virtual fields as parameters should
be chosen to define our equation system (i.e., m ≥ dim(θ)). If it is possible to take into account
more virtual fields than parameters (m > dim(θ)), this however leads to an over determined
system, and we will limit our study to the standard setting m = dim(θ).

2.2.3. The Equilibrium Gap Method (EGM)

Principle. The Equilibrium Gap Method (EGM) is another potentially direct identification
method that has been widely used for inverse problems in small strains [9]. As a direct method,
EGM should be computationally more efficient, although less robust to noise and to model er-
rors than methods such as FEMU [4]. The EGM can be seen as a generalization of the VFM, where
all—in the discrete sense—virtual fields are considered [11]. The accuracy of the VFM depends
on the choice of the virtual field. If the virtual field is well-adapted, the estimation is hence much
more accurate than for less judicious choices of virtual fields. The EGM takes into account all
possible virtual fields, the best suited as the worst ones; in average, the estimation is therefore
poorer than for a “good” virtual field, but better than for a “bad” choice of virtual field. Note that
the EGM has been mainly used for problems that do not include body forces.

Cost function. The EGM consists in finding the parameters that generate stresses that best
respect the equilibrium. In the context of the small perturbation hypothesis, at the discrete level,
the estimation has therefore been written as [4]:

LEGM,I (θ,η) := 1
2∥DK(θ,η)Umeas −DF(θ,η)∥2

l2
, (26)

“I ” denoting here the cost function for infinitesimal strains.

2.2.4. Brief review of other existing methods

For the sake of simplicity, only the methods described previously will be used for comparison
with our new formulation of the EGM. There are however many other methods, which are
used for inverse problems. In particular, [24] proposed the Constitutive Relation Error (CRE)
method, from which other methods, such as the modified Constitutive Relation Error (mCRE)
method [25, 26] or the Constitutive Equation Gap Method [3] derive. Additionally, since the
EGM usually displays a very high noise sensitivity [4], other formulations, based on the EGM,
were developed to address this problem and decrease the noise sensitivity of the method. In
particular, the Reconditioned Gap Method was developed in [4, 10], and [27] proposed the
Reciprocity Gap Method (RGM) as estimation method. However, these methods require finite
element computations, and are hence not direct. In the scope of this article, we will hence only
take into account a model updating method (FEMU), and a potentially direct method (VFM)
for comparison with our new EGM formulation, which is detailed hereafter. Note that other
methods, such as the Reconditioned Gap Method are also very interesting, as they are faster than
FEMU for example, and more robust than raw EGM. For the sake of simplicity, however, we only
focus on the three specific methods previously mentionned.

2.3. General formulation of the Equilibrium Gap Method

Principle. If the EGM has been widely studied for small strains, there has not been yet to our
knowledge a formulation in large strains, for hyperelastic problems, including both surface and
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body forces. Boddapati et al. [11] has proposed a generalization of VFM in large strains, by
including all discrete virtual fields, which then represents an EGM formulation. We propose in
this article an alternative formulation of the EGM in large strains, based on a novel Equilibrium
Gap formulation introduced in [12] for motion tracking regularization. Our formulation is fully
consistent, in the sense that it generalizes to any number of degrees of freedom, as it derives
from a proper discretization of a continuous term. Note also that our formulation linearizes into
Equation (26), with an additional mass matrix that makes the term consistent.

As for the classical formulation of the EGM, our proposed new expression in large strains con-
sists in finding the parameters θ, which generate stresses that best verify the equilibrium. No-
tably, in the general case, the parameters θ should verify the equilibrium of body and boundary
forces.

Formulation. In the scope of our problem, we will only consider body and boundary forces. Note
that imposed displacements are not considered; it would however be trivial to take them into
account [4]. As a reminder, the strong form of the equilibrium, when applied to the measured
displacement field Umeas, is: {∇·P (U meas)+B = 0 inΩ

P (U meas) ·N = T on Γ.
(27)

First, we want to quantify the non-verification of the first Equation of (27) by integrating the
norm of its residual over the mesh. However, the divergence of P is not defined for usual finite
element discretizations on edges in 2D and on faces in 3D. Hence, [12] proposed an approach to
consider the divergence of a tensor in the finite element formulation. Following this approach,
let us introduce a new vector Π, which corresponds to the projection of ∇·P +B onto a space of
square integrable functions V . As a result, we can writeΠ as:

Π |
∫
Ω
Π ·Π∗ dΩ=−

∫
Ω

(
∇·P +B

)
·Π∗ dΩ ∀Π∗ ∈V , (28)

where Π∗ is any kinematically admissible field to zero belonging to V . Integrating by parts this
expression yields:

Π |
∫
Ω
Π ·Π∗ dΩ=

∫
Ω

P : ∇Π∗−
∫
Ω

B ·Π∗ dΩ ∀Π∗ ∈V. (29)

Once discretized, this equation simply leads to the following linear system:

M ·Π=R, (30)

whereM= ∫
ΩN ·NT,Π is such thatΠ=NT ·Π, and R is defined as:

Ri :=


∫
Ω

P : ∇N i dΩ−
∫
Ω

B ·N i dΩ if i is a body d.o.f

0 if i is a boundary d.o.f,
(31)

with N i the shape function associated to the i th degree of freedom.
We can therefore define the contribution of the volume force to the cost function LEGM,F

Ω
—“F ”

denoting the cost function for finite strains—as

LEGM,F
Ω

: = 1
2Π

T ·M ·Π
= 1

2R
T ·M−1 ·R. (32)

Secondly, let us now consider the boundary force. In this case, we simply need to quantify the
non-verification of the second Equation of (27):

LEGM,F
Γ

:= 1
2

∫
Γ

(P ·N −T )2 dΓ. (33)

This term corresponds to the contribution of the boundary force to the cost function.
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Cost function. Based on the developments previously presented, the cost function can be written
as:

LEGM,F (θ,η) := LEGM,F
Ω

(Umeas,θ,η)+LEGM,F
Γ

(Umeas,θ,η). (34)

As a reminder, “F ” denotes the cost function for finite strains. Note that the cost function LEGM,F

depends on θ and on η through the material law—included in P—and through the loading
constants. As mentioned previously, note also that our formulation linearizes into Equation (26),
with an additional mass matrix that makes the term consistent.

In the following sections of this article, any reference to our EGM will pertain to the new
formulation. The FEMU method and the VFM will be employed as benchmarks to compare
estimation performances of our new formulation.

2.4. Performance quantification method

All estimation methods presented previously, excepted FEMU, are only applicable for problems
for which full-field displacement measurements are available. The estimation relies on finding
the parameters θ minimizing the cost functions defined in the previous section, which all
take in argument (directly, e.g., in FEMU, or indirectly, e.g., in EGM) the displacement field
measured from experimental images and θ. Note that for the VFM, when as many virtual fields
as parameters are used, and for particular cases (e.g., elastic or simple hyperelastic law), the
expression of the identified parameters can be explicit, and the method hence does not require
any optimization process.

In general, all parameters cannot be identified. As reminded in Section 2.1, some parameters,
θ, are hence estimated, while all other parameters, η, are fixed at reference values η

0
. The

optimized cost function then allows to access the estimated parameters θsol. The estimation
process is described Figure 1. However, when using experimental data, this process does not
give any information on the error committed during the estimation, since the ground-truth
parameters are unknown.

In order to quantify the reliability of the estimated parameters, we would like to investigate
the impact of noise on the estimation. To do so, since the ground-truth values of the estimated
parameters are unknown for real experimental images, we generated synthetic—and potentially
noisy and biased data. Two different methods of data generation are studied here. The first ap-
proach involves computing a displacement field with our finite element model, using parameters
set to benchmark values, to which noise is possibly added. The second approach consists in gen-
erating images with the model, and adding noise to these images, following the approach of [12].
Both approaches are detailed hereafter.

Estimation with noise added to the displacement fields. In order to create our synthetic data,
a first—very classical [13]—option consists in using a displacement field computed with our
model. Noise is then added to the displacement field in order to be closer to experimental
data, which always contains noise. To do so, we first choose the parameters to identify θ at
reference values θ0. We also fix the parameters that are not identified η at reference values η

0
. The

associated displacement field U 0 =U (θ0,η
0

) is then computed with our finite element model.
The noise added to the displacement field corresponds to a random Gaussian field G, defined

at the discrete level. We can also define a continuous random Gaussian field g . For each
degree of freedom, a random value is generated. This random value is drawn from a Gaussian
distribution with a null mean and a standard deviation depending on the desired noise level,
defined through the Signal-to-Noise-Ratio (SNR). The noisy displacement field corresponds to
our synthetic measurement Usynth =U0 +G.
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Figure 1. Method for identifying the parameters θ. “tol” is the tolerance for the minimiza-
tion. Note that for the VFM, if there are as many virtual fields chosen as parameters to iden-
tify, and if Wint and Wext are linear in θ, identifying θ is equivalent to solving a linear system.

Additionally, when using real experimental data, the parameters η are fixed at reference
values during the estimation process, but these reference values are very likely different from the
ground-truth values η

0
. This is especially true in biomechanics, for example, where the material

parameters are strongly patient-dependent [28]. Fixing η at a reference value will therefore very
likely introduce errors into our model.

To study the impact of such model errors on the estimation, we can use biased values of η
instead of the ground-truth values η

0
in the estimation. We propose here to alter η

0
with a bias

w . To do so, the synthetic measurement is generated with η= η
0

. We then define a new parameter
η

w
, by adding a bias w to η

0
. η

0
—the parameter used for building the synthetic measure—is then

replaced by the parameter η
w
= η

0
+w during the estimation. This method allows to investigate

the impact of model errors on the estimation, and is illustrated in Figure 2.

Estimation with noise added to the images. Generating a noisy synthetic measurement by
adding a random Gaussian field directly to the displacement field is classical, although not very
realistic. This method indeed leads to a completely unstructured noise, which might be non-
physical. As a result, we subsequently chose to investigate a second method of synthetic data
generation closer to experimental processes. As such, let us first describe classical methods used
to retrieve experimental displacement fields from experimental data.

The first step of this method consists in, similarly to the first method, creating a synthetic
displacement field U 0 = U (θ0,η

0
), computed with the model. Images of the reference, I0, and

of the deformed, It , configurations are then created. To create images, different textures can be
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Figure 2. Pipeline for generating a synthetic measure, by adding random Gaussian noise to
a reference displacement field (left) and to a reference image (right). When adding noise
to a displacement field, a displacement field is computed with the model for reference
parameter values. A random Gaussian field is then added to the displacement field. When
adding noise to images, a reference displacement field is computed with the model by fixing
the parameters at reference values. Associated reference and deformed images—I0 and
It —are then computed. A random Gaussian field is then generated to alter the pixel of both
images, leading to noisy images Ĩ0 and Ĩt . The synthetic displacement field is then retrieved
with tracking.

used, such as no texture, MR-tagging-like texture, or sinusoidal patterns [29]. I0 will be defined
later. The deformed image is defined as

It (x) = I0(χ−1(x)), (35)

where χ corresponds to the mapping associated to the synthetic displacement U 0.
The next step consists in adding noise to the images: the pixels values of the images are altered

with a random Gaussian noise, with null mean and a standard deviation chosen depending on the
desired noise level. This leads to noisy images, denoted as Ĩ0 and Ĩt . The synthetic “measured”
displacement field U synth is then retrieved by applying a tracking process, described hereafter.

In general, displacement fields are extracted from images, which contain noise, through
motion tracking. The tracking process applied between two images can be formulated as
finding the smooth mapping χ, or the smooth displacement U —which is equivalent—, between
the material points of the deformed image to the reference image, through the minimization
problem [30, 31]:

U meas = argmin
U

{
(1−β)Ξima(U )+βΞreg(U )

}
, (36)

with Ξima the image correlation energy, Ξreg the regularization energy, and β the regularization
strength. The regularization is added to implement physical constraints in the resolution,
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and hence provide structure to the measurements errors. [32] and [33] indeed showed that
implementing regularization allowed to decrease the displacement resolution space, and to find
a solution that follows a mechanical law. This method hence allows to filter high frequencies,
as thoroughly explained in Section 2.2 (correlation procedure) of [34], which explains that the
Equilibrium Gap Regularization acts as a fourth-order low-pass filter.

Even though more complex correlation energy terms, designed to decrease the impact of
artifacts during tracking, have been proposed in [35, 36], we will consider here the following
correlation energy:

Ξima(U ) := 1
2

∫
Ω

(Ĩt (X +U (X ))− Ĩ0(X ))2 dΩ. (37)

This approach is commonly used in image intensity-based approaches [10, 35], and presents the
advantage of being easily differentiable. Additionally, it is particularly adapted to our problem, as
this expression represents the maximal likelihood (in the sense of the least squares) for Gaussian
noise [4]. This tracking process is therefore applied, with different regularization levels. Note that
in the scope of this article, we will only use the equilibrium gap regularization, introduced in large
deformation by [30, 37], and later on improved in [12]. The formulation is thoroughly described
in the latter article.

This regularization states that the displacement field obtained should be as close as possible
to a problem with arbitrary boundary traction values. Creating a synthetic measurement with
our second method relies on this tracking process. This synthetic measurement can then be used
to study the impact of noise, but also the impact of model errors—by fixing the parameter η at
an arbitrary value, which is different from the ground truth value η

0
—on the estimation. Note

that if the regularization term for the body force introduced in [12] might seem similar to the
term implemented in the cost function of our new formulation of the EGM, the two are in fact
very different, as they serve different purposes (tracking and estimation respectively) and take
different variables as argument.

For all methods, the noise added to the displacement field and to the images is a random
Gaussian field. For a given noise level, the estimation might strongly depend on the random
field generated. This is especially true for high noise levels, which can potentially lead to either
overestimate or underestimate the identified parameter for some estimation methods. The
estimation is therefore performed for many realizations of a given noise level, until convergence
of the estimated parameters distributions.

2.5. Illustrative framework

This article aims at comparing the performance of our new formulation of the EGM with those of
two other classical estimation methods—FEMU and VFM. We choose to perform the estimation
on a specific problem, fairly simple for illustration purposes, described hereafter.

2.5.1. Geometry

The estimation is performed in plane strains on a square of characteristic length of 0.6 mm,
meshed with triangular elements. The estimation is performed on a coarse mesh of 144 elements,
as well as on a finer mesh of 556 elements. This simple geometry was chosen to perform a proof
of concept of our method and validate its performances; it is indeed not straightforward that
the method will work in large strains, for high noise levels and fine meshes. To illustrate that
the approach can be extended to more complex geometries, we also propose in Appendix C the
application of the method on a 3D problem.
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2.5.2. Constitutive law

Since we would like to study inverse problems in large hyperelastic deformations, we choose a
Neohookean law to describe the behavior of our square. In this case, the second Piola–Kirchhoff
stress tensor Σ can be written as

Σ= 1

2

Eν

(1+ν)(1−2ν)
(J 2 −1)C−1 + E

2(1+ν)
(1−C−1), (38)

where E corresponds to the Young modulus, and ν corresponds to the Poisson ratio.
The inverse problem solved in this article consists in trying to identify the Young modulus,

whose ground truth value is fixed at 1 kPa. The ground truth value of the Poisson ratio is chosen
at 0.3. Note that for such a simple model, the stress tensor is linear in the Young modulus.

2.5.3. Loading

For the EGM, the estimation with a boundary force has been widely studied, which is not
the case for body forces. Since boundary and body forces might have a different impact on
the estimation—notably, the cost function differs greatly between the two cases—, we choose to
consider two decoupled problems. In the first problem, the only force considered is a boundary
force, applied to the right boundary of the square. This boundary force is a compression
pressure t = −τn, with τ = 0.3 kPa. In the second problem, only a body force b = µex , with
µ= 0.3 mN/mm3 is applied. In both problems, the left boundary of the cube is clamped.

2.5.4. Choice of virtual fields for the VFM

Finding a kinematically admissible virtual field is rarely straightforward. Any virtual field
chosen should indeed be smooth enough on the whole domain, but also respect the imposed
displacement fields, i.e., be equal to zero anywhere a displacement is imposed. In our example,
our virtual fields should be null on the left boundary of the square to respect the imposed
boundary conditions. Additionally, U∗ should not cancel Wext, in order to avoid an estimation
that would necessarily be wrong. In the scope of our problem, we studied two different virtual
fields.

Plane waves as virtual fields. The first virtual field family corresponds to plane waves, written as

U∗ = d · sin(k · (X −X 0)), (39)

where d is the plane wave direction, chosen here equal to the wave propagation direction e for
the sake of simplicity. This wave corresponds to a tension-compression wave. k represents the
wave vector, and is defined as:

k := 2π

∆
e, (40)

with ∆ the period of the wave.
This choice was possible given the simplicity of our geometry. It was indeed easy to find a

continuous and differentiable function, null on the left boundary. Note that this virtual field
was chosen as it is easy to define, and as it includes a parameter (the frequency), which can be
easily varied, and that we study in this article. However, a more simple virtual field could be
defined, whose perfomances are studied in Appendix D. It is however much more difficult to find
kinematically admissible displacement fields for more complex geometries.

Virtual fields obtained by solving the model. This is the reason, which motivated [8] to propose
a method to build virtual displacement fields, applicable to more complex problems. This
method consists in particular in building a virtual field from an intermediate position, close to
the deformed position, with parameters close to the deformed configuration as well. We adapted
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the code provided in [38] to our problem, and used this virtual displacement field in our study for
comparison with our virtual field built as a plane wave.

Note that if this method can be applied to any geometry, the construction of the virtual field
requires the computation of a finite element problem (to compute the intermediate configura-
tion). As a result, with this choice of virtual field, the VFM is not a direct method anymore. In-
creasing the complexity of the geometry does therefore not always allow to build directly a kine-
matically admissible virtual field to zero. Note also that this virtual field is suited to investigate
more complex problems [8] and hence presents a complexity which is not required for our simple
problem. However, it remains important to characterize its performance with respect to simpler
virtual fields.

Identification in the scope of our hyperelastic problem. In the scope of the problem solved in
this article, the second Piola–Kirchhoff stress tensor depends linearly on the Young modulus E .
For the VFM, the estimation is direct, and consists solely in solving Equation (25): the right-
hand side of the equation is divided by the left-hand side of the equation—as a reminder, the
expression of Σ is detailed in Equation (38). Both sides are then multiplied by E .

In the case of a boundary force problem, the Young modulus is denoted as EΓ, and EΩ in
the case a body force problem. Based on the previous observations, EΓ and EΩ can directly be
expressed as:

EΓ/Ω = W Γ/Ω
ext

Wint(E = E0)
, (41)

with E0 the ground-truth value of the Young modulus.
The last step for identifying E is to define a kinematically admissible virtual displacement field

to zero.

2.5.5. Synthetic measurements generation

For the generation of synthetic measurements, the displacement fields are first computed
with the model with the parameters’ ground truth values, i.e., a Young modulus of 1 kPa and a
Poisson ratio of 0.3. The noise added to the displacement field and to the images consists in a
Gaussian random field with a null mean, and with SNRs of +∞—i.e., no noise—, 10, 5 and 3.3
respectively. Examples of meshes associated to the noisy measurements, obtained by adding
noise to the displacement fields are presented Figure 3.

As for the generation of noisy measurements, obtained by adding noise on images, the tracking
is done with a regularization using a Neohookean law, with a Young modulus of 1 kPa and a
Poisson ratio of 0.3. Additionally, the images are generated using the following intensity field
for the image I0:

I0(X ) =
0 if X ∉Ω√

sin
(
πX 0

s

)
sin

(
πX 1

s

)
if X ∈Ω,

(42)

where s corresponds to the tagging period, chosen as s = 0.1 in the scope of our illustrative
framework. This expression ensures that only the body is textured. The images created are
presented in Figure 4.

For the same noise level, the deformation depends strongly on the regularization level applied.
Examples of the impact of the regularization levels on the displacement field extracted from
images are presented Figure 5.
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Figure 3. Deformed configuration for different SNRs—synthetic measure—: +∞ (red), 10
(blue), 5 (green), 3.3 (purple), with an element size of 0.1 mm for the boundary force test, at
different steps of the deformation.

2.6. Implementation

The results generated in this article were obtained through the use of different libraries and open-
access code. In particular, the implementation of our methods relies heavily on the libraries
“dolfin_mech” [39] and “dolfin_warp” [40], which are based on FEniCS [41, 42] and VTK [43].

Additionally, we studied the noise robustness of the VFM, using the virutal fields proposed
by [8]. To do so, we adapted the code available in [38]. Note that this virtual field requires the
computation of the problem and is hence close to FEMU in terms of computation costs.

The code used to generate the figures presented in the Results section is freely available. In
particular, the different estimation methods are implemented in the library dolfin_estim [44].
The code to generate the figures is reproduced in the appendix of the paper, and is currently avail-
able interactively at https://apeyraut.gitlabpages.inria.fr/identification-methods-paper-demos.

3. Results

This section presents the estimation results for the different methods presented in Section 2. The
obtained results allow us to compare the performance of our new formulation of the EGM with
another direct method, the VFM with a plane wave, and two non-direct method, the VFM using
a virtual field created from [8], and the FEMU method.

https://apeyraut.gitlabpages.inria.fr/identification-methods-paper-demos
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Figure 4. Images generated for different SNRs, with superimposed meshes of the ground-
truth solution: +∞ (red), 10 (blue), 5 (green), 3.3 (purple), at different steps of the deforma-
tion when the load applied is a boundary force.

Two different problems are considered: a boundary force problem and a body force problem.
Within these two problems, two cases are also studied: identification using the synthetic mea-
surements generated by altering directly the displacement field computed with the model, and
identification using the synthetic measurements generated by adding noise to the images gen-
erated with the model. Additionally, the estimation is performed for two different mesh sizes: a
mesh with characteristic element size of 0.1 mm, and a mesh with characteristic element size of
0.05 mm.

Note that for the case where the identification is conducted on the images altered with noise,
different regularization levels were investigated. However, for the sake of simplicity, only two
regularization levels are presented in this section. The first regularization level is 0, to illustrate
the poor identification results obtained when no regularization is added. The second case
corresponds to a regularization level of 0.2, for which the identification is the best for all tests
performed—except for the last figure, which will be detailed later in the article.

3.1. Estimation performance in the case of boundary forces

3.1.1. Error distribution on the coarser mesh

This section compares the estimation performance of our proposed EGM with the perfor-
mances of the FEMU method and the VFM, when the synthetic measurements are created by
adding noise to the displacements, and by adding noise to the images—for a regularization level
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Figure 5. Tracking solutions for different regularization levels (regularization = 0 on top,
regularization = 0.2 at the bottom) for SNRs of 10 (blue), 5 (green), and 3.3 (purple), at
different steps of the deformation when the load applied is a boundary force.

of 0.0 and 0.2. The estimation was conducted using a mesh with a characteristic element length
of 0.1 mm. The load considered here is a boundary force. The obtained results are presented in
Figure 6.
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Figure 6. Estimation error for the boundary force test, with a characteristic element size
of 0.1 mm. This figure presents the error distribution on the estimated Young modulus
depending on the noise, for the EGM (in green), the VFM from [8] (in red), the VFM with a
plane wave (in blue), and the FEMU method (in yellow). For the top row, noise is directly
added to the displacement field, and for the bottom row, the synthetic measurements are
generated by adding noise to the images, with a regularization of 0.0 (left) and 0.2 (right).
For all methods, for noise applied to the displacements, for a SNR going to +∞, the Young
modulus is perfectly identified. When noise increases (smaller SNRs), the error on the
estimated parameter increases as well. FEMU is the most robust method, while the EGM
and the VFM are far less robust. For noise added to the images, a notable error is introduced
for a SNR of +∞ for the EGM. When regularization increases, the estimation drastically
improves for all methods.

This figure illustrates the error committed on the estimated parameter depending on the
noise. The lines and transparent areas (green for the EGM, blue for the VFM using a plane
wave as the virtual field, red for the VFM using [8]’s method, and yellow for the FEMU method)
correspond to the averages and the standard deviations of the distributions respectively.

Estimation using the synthetic measurements generated by adding noise to the displace-
ments. When noise is added directly to the synthetic displacement field, the estimation quality
depends strongly on the chosen method. The same—classical—pattern can however be observed
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for all methods: when no noise is applied to a synthetic measurement, the parameter can be per-
fectly identified. As noise added to the data increases—i.e., as the SNR decreases—, the quality
of the estimation decreases: the average of the distribution grows further from the ground-truth
value of the parameter. Additionally, the uncertainty on the parameter increases—i.e., the stan-
dard deviation is higher.

The FEMU method is the most accurate. It displays high robustness to noise, with a mean
error remaining close to 0 for all noise levels, and a standard deviation remaining under 3% for
the smaller SNR studied—i.e., for the highest noise. On the other hand, the EGM displays the
highest noise sensitivity. If the Young modulus is perfectly identified when no noise is applied,
the estimation becomes very poor when noise increases, with for example and error of about
−40% ± 20% for a SNR of 10. Additionally, for all SNRs, the parameter is underestimated; the
smaller the SNR, the higher the negative error.

Additionally, the results obtained for the VFM illustrate well the impact of the choice of the
virtual field on the estimation: the distribution is very different whether the virtual field was
chosen as a plane wave or based on the work of [8]. For example, for all SNRs, the Young modulus
tends to be overestimated with the virtual field from [8], while it is underestimated for the plane
wave. For both studied virtual fields, the estimation remains good for SNRs higher or equal to 10.
However, for smaller SNRs, the error on the estimation becomes much higher.

Estimation using synthetic measurements generated by adding noise to the images. The previ-
ous results were obtained by altering displacements with noise, which lead to unstructured non-
physical displacement fields. In order to quantify the estimation performance on more realistic
data, we then chose to generate synthetic measurements by adding noise to images, and to re-
trieve the displacement fields with a tracking process, using two regularization levels: no regu-
larization and a regularization level of 0.2. For a null regularization, the behavior of all methods
is very close to what was observed in the top row of Figure 6. The main difference consists in the
introduction of an error of −25% for the EGM when no noise is applied to the measurements—
SNR of +∞. This error is due to errors committed during the tracking process, as the estimation
improves drastically when regularization increases.

For all methods, for a regularization of 0.2, the mean error of the estimation remains close to 0
for all SNRs, and the standard deviation is much smaller than for a null regularization. Note that
the improvement of the estimation is marginal for the FEMU method, for which the estimation is
robust for every cases studied. The estimation with the VFM improves for both virtual fields. The
EGM remains the less accurate method. However, the larger error, around−10%± 8%, is obtained
for very small SNRs, and the error is much smaller for experimental values of SNRs (around 10
for CT-scans, for example). The EGM could therefore be used for inverse problems with our
new formulation, since it shows a very good robustness to noise, as long as the Equilibrium Gap
regularization is also used for the tracking.

3.1.2. Error distribution on the finer mesh

The results presented in the previous section were obtained on a rather coarse mesh, for which
estimation is known to perform well. However, it can be expected to perform more poorly when
the mesh is refined [12]. We therefore also chose to conduct our study on a finer mesh, in order
to be closer to applications on real problems. The estimation is performed on a mesh with a
characteristic element size of 0.05 mm. The results are presented in Figure 7.

Estimation using synthetic measurements generated by adding noise to the displacements.
Similarly to previous observations, when noise is added directly to the synthetic displacement
field, the quality of the estimation depends strongly on the method chosen. The estimation
remains fairly stable compared to the estimation performed on the coarser mesh: there is no
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Figure 7. Estimation error for the boundary force test, with a characteristic element size
of 0.05 mm. This figure presents the error distribution on the estimated Young modulus
depending on the noise, for the EGM (in green), the VFM from [8] (in red), the VFM with
a plane wave (in blue), and the FEMU method (in yellow). Three cases are investigated:
(i) noise added to the synthetic displacement field (top row), (ii) noise added to images
(middle row), (iii) noise added to images, refined using the multiresolution. If the estima-
tion quality is very poor for the first two cases, the estimation improves drastically with the
multiresolution.
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notable difference for the distribution obtained with the FEMU method, and the global behavior
of all direct methods remains stable, even thoug their estimation quality is far poorer. For
example, for the VFM, the average identified Young modulus deviates from its ground truth value
more rapidly than with the coarser mesh with both chosen virtual fields: for a SNR of 10, the
average error for the VFM with a plane wave as virtual field is −6% with the coarser mesh, while
it is around −20% with the finer mesh. The estimation is also far better with the coarser mesh for
the EGM. The average error for a SNR of 10 is around −40% in that case, while it is almost equal
to −90% for the finer mesh. If refining the mesh does not seem to impact the estimation quality
with the FEMU method, it seems to deteriorate greatly the estimation with the direct methods.

Estimation using synthetic measurements generated by adding noise to the images. The esti-
mation was performed for measurements obtained with a null regularization and a regulariza-
tion of 0.2. For a null regularization, the FEMU method and the VFM which uses a plane wave as
virtual field give good results when no noise is added to the data. However, the estimation quality
deteriorates rapidly as noise increases, especially for the VFM. For the FEMU method, the estima-
tion error also increases with noise, although the standard deviation of the distribution remains
fairly small. For the VFM from [8], the estimation did not converge, even for a SNR of +∞, due to
tracking errors. For the EGM, when no noise is applied, an initial error of −100% can be observed,
due to tracking errors. This error is much higher than for the coarser mesh and deteriorates when
the SNR decreases.

When the regularization increases, the estimation improves for all direct methods. In partic-
ular, for the EGM, the error observed for a SNR of +∞ is corrected. The same behavior can be
observed for the VFM from [8], for which the parameter becomes identifiable when no noise is
added to the images. For the VFM with a plane wave as virtual field, the estimation improves
slightly, with a smaller standard deviation for small SNRs, and an average error closer to 0. How-
ever, the quality of the estimation becomes poorer when noise increases for all these cases. Al-
though the estimation is better for direct methods, it becomes far less accurate for the FEMU
method. If the Young modulus is still identifiable when no noise is added to the images, the es-
timation becomes less accurate when noise increases: the average error increases, as well as the
standard deviation. Overall refining the mesh leads to a poorer estimation and does therefore
not seem to be a good option for all estimation methods, with both synthetic data generation
methods.

Estimation based on tracking using the multiresolution method. The decrease in accuracy of
the estimation when using synthetic measurements with a refined mesh could have been antici-
pated, as using a finer mesh for the tracking process necessarily leads to a increased noise sensi-
tivity of the solution. While mechanical regularization is designed to prevent such phenomenon,
it may not be sufficient. Consequently, the multiresolution method, which consists in applying
the tracking process on successively refined meshes, helps to avoid this problem. To perform the
tracking on a finer mesh, the solution at a given frame is initialized by the solution of the tracking
on a coarser mesh, at the same frame. The results for the estimation using synthetic measure-
ments generated by adding noise to images on a finer mesh obtained with the multiresolution
method, are presented in Figure 7, on the bottom row.

The multiresolution improves slightly the results for a null regularization, compared to the
results obtained when performing the tracking directly with the refined mesh. The FEMU method
displays the best results: its average is close to the ground truth value, and the standard deviation
is small for all SNRs. The initial error for a SNR of +∞ is also smaller for the EGM—even though
it is still high. As noise increases, the average error is also high for this method, even though the
standard deviation remains fairly small. Similarly, the estimation is of good quality for the VFM,
when no noise is added to the images, but deteriorates as noise increases.
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Increasing the regularization, together with the multiresolution, however improves greatly
the estimation, leading to error distributions close to the results found with the coarser mesh.
The FEMU method and the VFM display the same behavior: for all SNRs, the average of the
distribution is close to the ground-truth value and the standard deviation is very small. A very
good robustness to noise is observed for all methods. As before, the EGM presents the highest
sensitivity to noise. However, the error committed during the estimation is highest for a SNR of
3.3 (12% ± 8%) and remains reasonable. As a result, the EGM can also be considered as a robust
estimation method for finer meshes, should the multiresolution been used in addition to the
Equilibrium Gap regularization.

3.2. Estimation performance in the case of body forces

The previous section focused on presenting results allowing the comparison of our new formu-
lation of the EGM with the VFM and the FEMU method, for a boundary force test. As the form of
the boundary force term and of the body force term differ greatly in the loss function, we would
also like to evaluate the perfomance of our new formulation of the EGM for a body force test,
which is presented in this section.

3.2.1. Error distribution on the coarser mesh

This section presents the error distribution on the identified Young modulus on a mesh with
a characteristic element size of 0.1 mm, for the four methods, with a synthetic measurement
created by adding noise to the displacements, and with a synthetic measurement created by
adding noise to the images—for a regularization level of 0.0 and 0.2. The only load studied in
this section is a body force. The obtained results are presented in Figure 8. Note that in this
section, we compare the results obtained with the boundary force test and with the body force
test, even though the two displacement fields are different. Indeed, their norm are of the same
order (0.06 for the boundary test and 0.02 for the body force test). Additionally, the noise added
to images is proportional to the displacement norm. As such, the results obtained with the body
and the boundary force tests can be quantitatively compared.

Estimation using synthetic measurements generated by adding noise to the displacements.
The sensitivity to noise is very similar to what was observed for the boundary force test, for all
methods except for the EGM. However, for the VFM, if the global behavior of the distribution
remains similar, the error is however globally smaller for the body force test than for the boundary
force test (average closer to the ground-truth value and smaller standard deviation). On the
contrary, the estimation of the Young modulus using the EGM method is poorer with the body
force than for the boundary force test. If the parameter can indeed be identified perfectly when
no noise is applied to the displacement field, the error becomes very high very fast as noise
increases and the Young modulus is systematically underestimated.

Estimation using the synthetic measurements generated by adding noise to the images. Two
cases are investigated: the estimation is first conducted with a null regularization, and then with
a regularization of 0.2. For a null regularization, the behavior of all methods is very close to what
was observed for synthetic measurements built by adding noise to the displacement field. The
main difference with the previous case consists in the introduction of an error of −90% for the
EGM and for a SNR of +∞ due to tracking errors. Note that this error is much higher than for the
boundary force test. When the regularization increases, the estimation improves drastically. As
before, the VFM displays a behavior very close to the FEMU method. As for the EGM, the initial
error is corrected, and the method seems far less sensitive to noise.
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Figure 8. Estimation error for the body force test, with a characteristic element size of
0.1 mm. This figure presents the error distribution on the estimated Young modulus
depending on the noise, for the EGM (in green), the VFM from [8] (in red), the VFM with
a plane wave (in blue), and the FEMU method (in yellow), for synthetic measurements
generated by adding noise to the displacements (top row), and synthetic measurements
generated by adding noise to images (bottom row), for a regularization level of 0.0 (left) and
0.2 (right). The estimation with the body force test is globally better than with the boundary
force test, for all methods except the EGM, when noise is added to the displacement field.
When adding noise to the images, the results with no regularization are very close to the
results generated by adding noise to the displacements. Adding regularization improves
the estimation for all methods, and in particular for the EGM.

3.2.2. Error distribution on the finer mesh

As for the boundary force test, we chose to conduct the estimation on a refined mesh. Knowing
that the results would be poor if the estimation was performed directly on a finer mesh, we
chose to only present the results obtained on a finer mesh generated with the multiresolution
method. The results obtained are presented in Figure 9. Note that contrarily to previous cases,
the regularization added for this case is 0.8. A regularization of 0.2 indeed did not lead to a good
estimation quality. Hence, the regularization strength had to be increased for better results.

When no regularization is applied during the tracking process, the estimation is of very poor
quality for all methods except FEMU, but improves when regularization increases. In particular,
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Figure 9. Error distribution on the estimated Young modulus depending on the noise for
the body force test, with an element size of 0.5 mm obtained with the multiresolution
method, for the EGM (in green), the VFM from [8] (in red), the VFM with plane waves
(in green), and the FEMU method (in yellow). The synthetic measurement used for the
estimation was generated by adding noise to images, with a regularization of 0 (left) and
0.8 (right). When no regularization is added to images, the estimation is very good for the
FEMU method but very poor for all direct methods. The estimation improves for all direct
methods when regularization increases.

for a null regularization, the mean and standard deviation for the EGM do not even appear on
the graph because the error committed during the estimation process is too high. The estimation
quality also improves drastically with regularization for the EGM. For SNRs larger than 5, the
standard deviation remains small, and the average error close to 0. For a very small SNR—3.3—,
the average error is however high, and the standard deviation large: the parameter is identified
with an error of −25% ± 25%. A SNR of 3.3 however corresponds to very noisy data, and is
out of the scope of many mechanical applications. Additionally, for small SNRs, the estimation
quality for the EGM is slightly poorer for the body force compared to the boundary force test (the
standard deviation is wider).

3.3. Impact of the choice of virtual field for the VFM

The presented results illustrate that the estimation quality with the Virtual Fields Method (VFM)
varies significantly depending on the virtual field selected for the identification. Our results
indeed indicate that the error distribution of the identified Young modulus differs depending
on whether the virtual field was chosen as a plane wave or constructed based on the method
described in [8]. For most tests and synthetic measurements considered, both virtual fields
indeed tend to have a different impact on the estimation. For example, if the parameter is
underestimated with the plane wave, it is often overestimated with the virtual field built from [8],
and conversely.

This variation in estimation quality is also noticeable with the virtual field chosen as a plane
wave, when modifying the value of ∆, which is a constant chosen empirically, and represents
the period of the wave, which is directly linked to the plane wave frequency, as presented in
Equation (39). The error distribution on the estimated Young modulus with the virtual field
chosen as a plane wave is presented in Figure 10 for different values of ∆, depending on the
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Figure 10. Error distribution for the Young modulus identified with the VFM, with a plane
wave as virtual field, for different values of the period ∆—ranging from 0.1l to 1000.0l, with
l the characteristic length of the cube—, for a boundary force test and with noise directly
applied to the displacement field. The results are presented for SNRs ranging from 10 to
+∞. When no noise is applied to the synthetic measure, all values of ∆ lead to a perfect
estimation of the Young modulus. As noise increases, smaller values of ∆ lead very large
estimation error.

SNR. The error distribution was investigated for measurements created by adding noise to the
displacements, for a boundary force test. Since the Young modulus was not identifiable in that
case for SNRs higher than 10, as presented in Figure 6, the study was conducted for SNRs ranging
from 10 to +∞. The values of ∆ studied range from 0.01l to 1000.1l , where l represents the
characteristic length of the square. Note that the higher ∆, the smaller the plane wave frequency.

Figure 10 presents the error distribution of the estimated Young modulus for different values
of ∆, to which different colors are associated. The highest value of ∆ appears in yellow, while the
smallest value of∆ is in blue. The error distribution is represented with error bars: the mean value
of the distribution is represented as a square, while the bars represent the mean ± the standard
deviation of the distribution. For a SNR of +∞, the Young modulus is perfectly identified for all
values of ∆. For a SNR of 100, i.e., a very small level of noise, the parameter is still identifiable
with all ∆, except for the smallest value (∆= 0.1l ). As noise increases, the smaller values of ∆ lead
to large errors on the identified parameter. For example, for a SNR of 20, which is still fairly small,
the error on the identified parameter is high for all∆ greater than 1.7l , i.e., the standard deviation
is greater than 25%.

However, the estimation quality decreases for high values of ∆ when noise increases. For
example, the estimation is better for ∆= 2.5l than for ∆= 1000l for a SNR of 10, as the average of
the distribution is not centered in zero for the larger value of ∆. As ∆ increases, the plane wave
indeed becomes flatter—i.e., the oscillations of the plane wave are barely noticeable— and the
impact of the noise is much higher. Choosing the value of ∆ hence consists in finding a good
trade-off between precision and robustness.

Additional studies, which are not directly related to the main topic of this article but present
interesting results regarding the limitations of our method, are included in the appendices. In
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particular, the robustness to model errors of the different methods is studied. Appendix A
presents the impact of model errors on the Poisson coefficient on the estimated Young modulus,
while Appendix B presents the impact of the value of the volume regularization on the estimation.

4. Discussion

The results obtained have highlighted that our new formulation of the EGM leads to very different
results depending on the method of synthetic data generation, the mesh size, the noise level,
and the type of applied load. Generally, the VFM leads to better results, but seems to be very
dependent on the chosen virtual field. Lastly, the FEMU method performs better than the two
other investigated methods. These results can be explained by observing the analytical forms of
the cost functions of the methods.

4.1. Estimation performance of the EGM

For the sake of simplicity, we study here the cost function of the EGM in small elastic strains. The
presented work can easily be extended to more complex problems. Let us first write the finite
element discretization of the EGM cost function presented in Equation (26):

LEGM =
(
DKUmeas −DF

)T
M

(
DKUmeas −DF

)
. (43)

In linear elasticity, the stiffness matrix K depends linearly on the Young modulus E . Let us thus

define a matrix K̃, defined as

K̃= 1

E
K. (44)

Injecting (44) into (43) hence yields the following expression of the cost function:

LEGM =
(
EDK̃Umeas −DF

)T
M

(
EDK̃Umeas −DF

)
. (45)

The estimation consists in finding the parameter E minimizing the cost function, i.e., the
parameter E verifying

∂LEGM

∂E
= 0, (46)

which leads to the following expression of E :

E = 1

2

FTDTMDK̃U
meas

+UT
meas K̃

T
DTMDF

UT
meas K̃

T
DTMDK̃Umeas

. (47)

Let us first investigate the case where the synthetic measurement is generated by adding noise
to the displacements. Umeas therefore corresponds to the approximated measured—and noisy—
displacement field and can be expressed as

Umeas =U0 +G, (48)

where G represents the noise added to the approximated reference—i.e., associated to θ0 and
η

0
—displacement field U0. Injecting Equation (48) into Equation (47) therefore gives the follow-

ing expression for the Young modulus:

E = 1

2

FTDTMDK̃ (U0 +G)− (U0 +G)T K̃
T
DTMDF

(U0 +G)T K̃
T
DTMDK̃ (U0 +G)

. (49)

According to Equation (49), the Young modulus depends linearly on the noise on the numera-
tor and quadratically on the denominator. As a result, the more the noise increases, the more the
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Young modulus is underestimated, as the quadratic dependency of the denominator amplifies
the impact of the high frequencies of noise on the estimation. When no noise is applied to the
displacements, the parameter should moreover be identified perfectly. This behavior is consis-
tent with the results obtained.

This is especially true when the noise is added directly to the displacements, resulting in
highly unstructured measurements. As a result, this method for data generation, even though a
classical approach for performance quantification in inverse problems, is non-physical. Using
our second generation method, which consists in adding noise to images, would be a more
consistent alternative.

When noise is added directly to the images without regularization, the generated measure-
ment is similar to the synthetic measurement generated by adding noise to displacements: there
is no additional term enforcing a physical behavior during the tracking process, and the noise is
hence highly unstructured. Additionally, an initial error appears for a SNR of +∞, due to tracking
errors: the EGM being very sensitive to any small variation of the displacement field, small track-
ing errors can indeed lead to significant errors in the estimation. This initial error is moreover
greater for the body force test than for the boundary test, as only the boundary where the pres-
sure is applied is considered for the boundary force test, whereas the entire domain is taken into
account for the body force test. As a result, more tracking errors are included in the body force
test, leading to a greater initial error.

Increasing the mechanical regularization however allows to correct this initial error, smooths
the form of the noise, and improves drastically the estimation for all noise levels. This result is also
consistent with [12], who observed that the regularization allowed to decrease the error on the
displacement field obtained with the tracking process for all noise levels. This result is consistent
with the form of Equation (47) as well. Noise is indeed included in Umeas, but corrected during
the tracking. As a result, it is more structured and hence leads to a better estimation. Note that
the estimation for the boundary force test is slightly better than for the body force test, when
regularization is added during the tracking process, as well as when noise is added directly to
displacements, for the same reasons as those previously mentioned.

Overall, our new formulation of the EGM provides a less accurate estimation than the other
methods studied for comparison. This finding aligns with classical behaviors documented in
the literature [4], which suggest that direct methods typically yield significantly poorer results
compared to indirect methods, such as the FEMU method, although it is significantly less
expensive. Furthermore, a carefully selected virtual field for the VFM is expected to display
a better performance than the EGM, as the latter considers all virtual fields, including the
suboptimal ones. However, defining a good virtual field might be challenging for complex
geometries. Additionally, the EGM is less accurate than other methods only when noise is added
to the displacement field: it is not the case anymore when noise is added to images for a good
regularization choice. The EGM can hence be very well adapted for the estimation, depending
on the desired level of accuracy. Even when higher accuracy is wanted, the EGM may be very
useful, insofar as it can be used to initialize the estimation and therefore improve and fasten the
identification process.

4.2. Estimation performance of the VFM

The results presented in this article showed that the estimation with the VFM leads a better
accuracy and noise robustness than the EGM. This is consistent with the fact that well-chosen
virtual fields should lead to a better estimation quality than the EGM, which includes all possible
virtual fields, even the ones leading to a poor estimation quality. The noise sensitivity however
differs for both studied virtual fields—the plane wave and the virtual field constructed from [8].
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This difference is noticeable for both boundary force and body force tests, and is in accordance
with the literature: [17] has indeed shown that all virtual fields do not display the same sensitivity
to noise. If new approaches have been designed to create virtual fields more robust to noise [19,
45], there does not exist a general method to create an optimal virtual field—i.e., the virtual field,
which displays the highest robustness to noise—yet.

The variability in accuracy was for example illustrated in this work when the virtual field was
chosen as a plane wave, by varying the frequency. This variation of accuracy depending on the
frequency of the plane wave can be explained by studying the cost function of the method. As
for the EGM, since the generalization is straightforward—the expression of the identified Young
modulus is obtained directly from Equation (41)—, let us conduct the analysis for linearized
quantities without loss of generality. Additionally, for illustrative purposes, let us study the
expression of the Young modulus for a boundary force—which can easily be replaced by the body
force. In that case, we have shown that

EΓ = W Γ
ext(U

∗)

Wint(U meas;E = 1,U∗)
=

∫
Γ
τn ·U∗ dΓ∫

Ω
σ(U meas;E = 1) : (∇U∗)sym dΩ

. (50)

Both numerator and denominator depend linearly on U∗. In order to find EΓ, an admissible
virtual field U∗ needs to be defined. As reminded in Equation (39), the family of virtual fields
chosen as a plane wave can be written U∗ = sin(k · (X −X 0))e. As a result, the gradient of U∗ is:

∇U∗ = |k|cos(k · (X −X 0))e ⊗e. (51)

Note that in order to be well-defined, our virtual field should not cancel Wext at the right
boundary. As a result, ∆ (appearing through the relation |k| = 2π/∆) should not be of the form
α/l , where l is the characteristic length of the cube, and α an integer. Based on the previous
equation, |k| can be factorized at the denominator, such that:

EΓ =

∫
Γ
τn · sin(k · (X −X 0))e dΓ

|k|
∫
Ω
σ(U meas;E = 1) : cos(k · (X −X 0))e ⊗e dΩ

. (52)

By observing Equation (52), we can note that noise is present at the denominator, where 1/∆
is a factor. Noise is indeed included in the term σ(U meas;E = 1), through U meas, which depends
on the noise g through the relation:

g =U meas −U 0, (53)

where U 0 is the measurement without noise. As a result, Equation (52) can also be written:

EΓ =

∫
Γ
τn · sin(k · (X −X 0))e dγ

|k|
∫
Ω
σ(U 0 + g ;E = 1) : cos(k · (X −X 0))e ⊗e dΩ

. (54)

For linear elasticity, σ(U 0 + g ;E = 1) depends in reality linearly on the first derivative of U meas,
and hence linearly on the first derivative of U 0 + g . It is therefore clear that the impact of noise
will increase as the value of ∆ decreases. This phenomenon will in particular be noticeable
for unstructured noise, i.e., random Gaussian noise added directly to the displacement field.
However, in general cases, and contrarily to the EGM, it is impossible to predict whether the
parameter will be overestimated or underestimated with the VFM, with a virtual field chosen
as a plane wave. In large strains, the external work indeed depends on the measured—noisy—
displacement field. For example, in the case considered here, W Γ

ext =
∫
ΓT F−T · N ·U∗ J dΓ (in

large strains) depends on the noisy displacement trough F−T and J . The expression of the Young
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modulus therefore depends on the noise through its numerator and denominator. It is hence not
straightforward to predict the behavior of the estimation.

The estimation quality improves greatly for the VFM when noise is added to images—for a
good regularization—compared to the case where synthetic data is generated by adding noise
to displacements, due to the smoothing of noise with the second data generation method.
Moreover, and contrarily to the EGM, the estimation seems more robust with the VFM when a
body force is applied than for the boundary force test. We assume it is because less noise is
considered at the numerator for the body force test—only included in J— than for the boundary
test—included in J and in F−T —, as detailed in the Methods section.

Overall, the VFM seems to give better results than the EGM. However, it was possible to
define the plane wave as virtual field only given the simplicity of the considered geometry.
Choosing a good kinematically admissible virtual field for more complex problems is rarely
as straightforward. Methods have been proposed to overcome this issue, such as the one
studied in this article, proposed by [8]. If this particular method allows to build a kinematically
admissible displacement field, with good estimation performances, it however transforms the
VFM in a indirect method, i.e., the method is not entirely direct anymore as it requires finite
element computations for given steps of the estimation. As a result, if our new formulation of
the EGM leads to a lower estimation quality, it may still be a better option than the VFM for
computationally expensive problems.

4.3. Estimation performance of the FEMU method

In general, the noise robustness of indirect methods is higher than for direct methods. These
methods are however very expensive, since they require finite element computations at every
step of the optimization. The robustness to noise of the FEMU method was studied here for
comparison. The FEMU method is indeed a direct method known to be very robust to noise [4],
which is what is observed for all cases of our study. The only case where the estimation is not
good is when noise is added to images, for a fine mesh generated without the multiresolution
method. As explained in the Results section, [12] noticed this phenomenon in his study. The
finer the mesh, the bigger the function space for the solution, which can lead to ill displacement
fields solutions. The problem is however solved when using the multiresolution method.

Using measurements generated by adding noise to the displacements or to the images does
not seem to significantly impact the estimation quality of the FEMU method. We assume this
is due to the form of the cost function: unlike the direct methods studied here, which include
first derivatives of the noise in their cost functions, and are therefore strongly impacted when the
noise is unstructured, the FEMU method only aims to find the Young modulus that leads to a
computed displacement field, which best matches the noisy measurements. Consequently, even
when noise is added directly to the displacement field, the latter will not be able to fit exactly the
unstructured data, and the solution displacement field matching best the data will automatically
“average” the noise, which limits its impact on the estimation.

The robustness to noise of the FEMU method is therefore much higher than for the VFM and
the EGM, and should be preferred when high accuracy is needed. This method might however be
too expensive. In this case, our new formulation of the EGM may be a good alternative. It indeed
displays a good noise robustness and presents the advantage of being a direct method, and is
therefore far less expensive than the FEMU method.

4.4. Comparison of the estimation performance of the three methods

The choice of an estimation method is rarely simple. It indeed usually requires a good trade-off
between accuracy and computation time. For example, the FEMU method represents the best
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option in terms of accuracy and robustness to noise and model errors. This method is however
very expensive, since it requires a finite element computation at each iteration. Consequently,
for complex problems requiring many inverse problems, the FEMU method will induce very high
computation times and might not be adapted. In this case, direct methods such as the VFM and
the EGM may be better options.

Based on the results presented in this article, the VFM seems at first sight to be the best option.
The estimation with this method indeed leads to more accurate results: in general, the estimated
Young modulus is closer to the ground-truth value, and is identified with less uncertainty than
with the EGM. However, the results presented with the VFM were obtained for two well-chosen
virtual fields. The choice of a plane wave as virtual field was only possible given the simplicity
of the geometry. Defining a kinematically admissible displacement field is however much more
difficult for more complex geometries. In order to build a good virtual field in such cases, the
method proposed by [8] is particularly appropriate but is (as mentionned before) not a fully
direct method anymore. Even if less accurate than the VFM for a well-chosen virtual field, the
EGM is therefore a good option, since building a good virtual field for a complex problem is not
straightforward or might be expensive.

Note however that the robustness to noise of the EGM is very low when the synthetic measure-
ments used for the estimation are generated by adding noise directly to the displacement field,
but improves greatly when noise is added to images, and the displacement field retrieved with
tracking associated to the Equilibrium Gap regularization. Other methods, such as filtering high
noise frequencies or generating the random Gaussian noise on a coarser mesh and projecting it
on the finer mesh, could be considered to create synthetic measurements with smooth and phys-
ical noise. We however preferred our method of generating noisy images, because of its closeness
to real data processing.

When using the second method of synthetic data generation, the estimation with the EGM
becomes very good. Until high noise levels, the average of the estimated Young modulus
distribution is close to the ground truth value, and the standard deviation is relatively small.
However, the EGM remains overall less accurate than the FEMU method, which may be a better
option when high accuracy is needed, even though it is very expensive.

5. Conclusion

When full-field measurements are available for inverse problems in large hyperelastic strains,
different estimation methods can be considered. All methods present advantages and drawbacks
in terms of accuracy and in terms of noise and/or model errors robustness. Four different
methods were investigated in this article: the FEMU method, very robust even though quite
expensive, the VFM, with two different virtual fields—a direct method, with virtual fields chosen
as plane waves, and an indirect method, with virtual fields from [8]—and the EGM, which is less
robust but also less expensive than the indirect methods. Note that no general formulation of the
EGM has been proposed in large hyperelastic strains. The originality of our work hence lies in a
new formulation of the EGM in large hyperelastic strains (which is directly based on a recently
proposed continuous formulation and consistent discretization of the EG principle [12]), and its
performance quantification, by comparing it with the other three aforementioned methods for
various noise levels.

The quantitative study of the impact of the robustness to noise of each method relies on the
generation of synthetic data. Two methods for generating such data are investigated here. The
first method is based on a classical approach in uncertainty quantification: a random Gaussian
noise is added to a displacement field computed with the model using reference parameters.
The second method consists also to first compute a displacement field with the model with
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parameters chosen at reference values. Images of the reference and deformed configurations are
then created, to which a random Gaussian noise is added. The displacement field between the
two configurations is finally retrieved with a tracking process, to which mechanical regularization
is added. The second method therefore allows to generate noisy displacement fields closer to
experimental data, insofar as the noise produced with the first method is highly unstructured.

The results obtained allow to quantitatively study the estimation quality of each method, and
in particular of our new formulation of the EGM. As expected, the FEMU method gives very
good results: for all cases studied, this method displays a very high robustness to noise. The
VFM is on contrary less accurate, but far less expensive when using plane waves as virtual fields.
Additionally, this method is in average more accurate than the EGM.

The VFM however depends strongly on the chosen virtual field. It indeed requires the choice
of a “good” kinematically admissible virtual field, which did not represent any difficulty in this
article given the simplicity of the geometry considered, but might be less straightforward for
more complex problems. General methods, such as the one presented in [8], can be developed to
find “good” virtual fields for more complex geometries. These methods however require model
computations for building the virtual fields, which transforms the VFM into a more expensive
method.

The EGM therefore represents a good alternative for the estimation process. As expected,
the estimation with the EGM is less accurate than with the VFM, since it takes into account all
kinematically admissible virtual fields, including the suboptimal ones. Additionally, the EGM
is not robust to noise at all when the synthetic measurements are generated by adding noise
to displacements. However, when the synthetic data is generated by adding noise to images,
with tracking preformed using the Equilibrium Gap mechanical regularization, the estimation
quality improves drastically. Therefore, the EGM could be a good choice for complex estimation
problems, even involving high noise levels.

Note that only the EGM, the VFM and the FEMU method have been investigated in the scope
of this article. However, other methods can also offer a good compromise between robustness
and cost. For example, the Reconditioned EGM [4, 10] could be an alternative, with higher noise
robustness than the VFM and the raw EGM, but smaller computational costs than the FEMU
method. Note also that we only identified one parameter in this article. We expect the uncertainty
to increase for our EGM formulation with the number of identified parameters, which we will
investigate in future studies.
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Appendix A. Quantification of the impact of Poisson ratio errors on the estimation

In this article we have studied the estimation quality of our new formulation of the EGM in large
strains and its robustness to noise, and have compared it to the performances of the FEMU
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Figure 11. Error distribution on the identified Young modulus depending on the noise, by
making an error of −20% (red), −10% (orange), 0% (green), +10% (blue) and +20% (pink)
on the fixed Poisson ratio, for the EGM (top left), the VFM with a plane wave as virtual field
(top right), the VFM from [8] (bottom left) and the FEMU method (bottom right).

method and of the VFM. However, other factor than the noise can influence the performance
quality of an estimation method. In particular, each method presents different sensitivities
to model errors. To investigate the robustness of the different methods to model errors, we
choose to study in this Appendix the impact of errors of the Poisson ratio value fixed during the
estimation. During the synthetic data generation, the Poisson ratio is indeed empirically fixed at
0.3. Model errors on this coefficient can be hence introduced by fixing the Poisson ratio at a value
different from the ground-truth during the estimation, e.g., 0.24 or 0.36. This will automatically
induce a bias in the estimation.

Figure 11 presents the error distribution of the estimated Young modulus depending on the
noise for the four methods—the EGM, the VFM with a plane wave as virtual field, the VFM
from [8] and the FEMU method—, when committing an error of −20% (in red), −10% (in orange),
0% (in green), +10% (in blue), +20% (in pink) on the Poisson ratio. The estimation was performed
using synthetic data generated by adding noise to images, for a body force test.

For all methods, underestimating the Poisson ratio leads to underestimating the Young modu-
lus, and conversely. This result can be explained by the (negative) linear dependency of the Pois-
son ratio to the Young modulus for isotropic materials (at fixed bulk modulus): when the Poisson
ratio increases, we can expect the Young modulus to increase, which is indeed what is observed
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here. Additionally, adding an error on ν during the estimation shifts the average and standard
deviation of the error distribution. The global tendencies of the distributions however remain
similar for all methods.

The results however show that model errors have a great impact on the estimation accuracy
for direct methods. For a Poisson ratio set to 120% of its ground-truth value during the estimation
process, the error committed for a SNR of +∞—i.e., no noise on the images—is around −18% for
the EGM and for the VFM using a plane wave, while it is around 6% for the FEMU method and
the VFM from [8].

This result can be explained by the direct dependency of the direct methods on the Poisson
ratio in the cost function. Small variations of this coefficient therefore directly impact the
expression of the Young modulus. The indirect methods, on the other hand, do not depend
directly on the Poisson ratio, which explains their higher robustness to model errors.

Our new formulation of the EGM seems therefore very sensitive to model errors, which
is a classical observation for direct methods. This is however a limitation of our new EGM
formulation to keep in mind when selecting methods for inverse problems.

Appendix B. Quantification of the impact of regularization errors on the estimation

In this appendix, we study the impact of errors on the regularization value used during the
tracking process on the estimation. For the body test, a volume regularization is indeed added
during the tracking process. This regularization enforces that the divergence of the stress tensor
should be as close as possible to an imposed body force of 0.3 mN/mm3. However, in some
experimental tests, the exact value of the body force might not be known, and the values set for
the estimation might therefore differ from the ground-truth value of 0.3 mN/mm3, which would
induce model errors.

We therefore choose to study the impact of error on the regularization term on the estimation.
Figure 12 presents the error distribution of the estimated Young modulus depending on the noise
for the four methods—the EGM, the VFM with a plane wave as virtual field, the VFM from [8]
and the FEMU method—, when committing an error of −20% (in red), −10% (in orange), 0% (in
green), +10% (in blue), +20% (in pink) on the volume regularization term. The estimation was
performed using synthetic data generated by adding noise to images for a body force test.

The model errors on the volume regularization term seems to mostly impact the EGM; the
impact on other methods is indeed marginal. For a volume regularization term set to 120%
of the body force ground-truth value, the average error committed for a SNR of +∞—i.e., no
noise on the images—is around −10% for the EGM and close to 0% for all other methods. This
phenomenon can be explained by the high sensitivity to the measured displacement field of the
EGM, already observed in the Results section. Any bias introduced on the regularization term will
induce a variation of the synthetic measure. Given its sensitivity to such variations, a high impact
on the estimation with the EGM can therefore be expected. Since all other methods are far less
sensitive to small accuracy variations of the measured displacement field, estimation with such
methods should be robust to a biased regularization, which is what is indeed observed.

Our new formulation of the EGM is therefore more sensitive to regularization errors than non-
direct methods. This limitation should be kept in mind when selecting this method to solve
problems for which the load in not perfectly known.

Appendix C. Estimation performance for a study in 3D

In this article, we proposed a study on a very simple geometry (a 2D square), for a simple problem
(only one parameter identified) as a proof of concept. Indeed, the EGM had never been used
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Figure 12. Error distribution on the identified Young’s modulus, by making an error of
−20% (red), −10% (orange), 0% (green), +10% (blue) and +20% (pink) on the volume
regularization value.

in finite deformation cases. Since the method is very sensitive to noise, and as we studied the
estimation performances for high noise levels, non-linear problems and fine meshes, it was not
straightforward that the estimation would perform well. However, the method can easily be
extended to more complex cases. As an illustration, Figure 13 presents the estimation quality,
when the problem is in 3D. In this case, a cube is clamped on the left face, and a homogeneous
pressure of 0.3 kPa is applied on the right face.

The estimation quality is similiar for both cases. In particular, for a good regularization level,
the estimation for the EGM in 3D displays a good accuracy.

Appendix D. Estimation performance for a perfectly and a partially known distribu-
tion of boundary forces

We studied in this article the estimation performance of the different methods for a known
boundary forces distribution. This case was chosen to evaluate the estimation performance
of the boundary term introduced in our new EGM formulation, for cases where the boundary
force is known, which is the case for some biomechanical applications [1]. However, the whole
distribution is not always known for all experiments: sometimes, only the resultant load is known.
As a result, we studied in Figure 14 the impact on the estimation performance of the EGM using
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Figure 13. Estimation error using the EGM for a boundary force test for 2D test (dark green)
and a 3D test (light green), when noise is added to displacements (left) and when noise is
added to images with a regularization of 0.2 (right).

Figure 14. Estimation error using the EGM for a boundary force test when the whole
distribution is known (blue) and when only the resultant is known (green), when noise is
added to displacements (left) and when noise is added to images with a regularization of
0.2 (right).

the exact boundary force distribution or only the resultant. In the case where only the resultant
is known, Equation (33) becomes:

LEGM,F
Γ

:= 1

2

(∫
Γ

(P ·N −T )dΓ

)2

. (55)

When noise is added to images, the estimation quality is equivalent whether the exact distri-
bution is known or not. However, when noise is added to displacements, the estimation is of bad
quality for both cases: the standard deviation for the case where only the load resultant is known
is additionally much higher, which could have been expected as in that case, the estimation holds
less information than for the case where the whole distribution is known.When using the EGM
with noise added to images and an appropriate regularization, the estimation quality is however
very good. Our method could therefore be a good option, even for experimental data which only
provide the resultant load and not the whole boundary force distribution.
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Figure 15. Estimation error using the VFM for a boundary force test when noise is added to
displacements (left) and when noise is added to images with a regularization of 0.2 (right),
for the virtual field chosen as a plane wave (blue), the virtual field from [8] (red) and the
virtual field introduced in Equation (56) (pink).

Appendix E. Estimation performance of an additional virtual field

The two virtual fields used in this article were chosen because on the one hand, the plane wave
was easy to define on our geometry, and one parameter (the frequency) could easily be varied to
study its impact on the estimation, and on the other hand the virtual field from [8] can be applied
to problems with more complex geometries. However, as highlighted by one of our reviewers,
these fields are respectively more adapted to non homogeneous problems and to more complex
problems. As a result, in this Appendix, we also study the estimation quality for the simplest
virtual field possible, expressed as:

U∗ =
(

(X [0]−X 0[0])
l
0

)
. (56)

The performances of the virtual field introduced in Equation (56) are presented in Figure 15,
and are very similar to those of the two other virtual fields. Indeed, for noise added to images,
there is no noticeable difference between the three virtual fields. Additionally, when noise is
added to displacements, for SNRs larger than 10, the performance of the new virtual field is
similar to the performances of the plane wave. As a result, this virtual field displays a good
estimation quality and its simplicity makes it very adapted to our problem.

Appendix F. Code for Figures 6, 7, 8, 9

F.1. Imports
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F.2. Parameters

F.2.1. Geometry

F.2.2. Loading and boundary conditions

F.2.3. Material behavior

F.2.4. Images

F.2.5. Varying parameters for the estimation
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F.3. Synthetic measurements

F.3.1. Synthetic images

F.3.2. Ground-truth motion

F.3.3. Tracking
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F.4. Generating plots

F.4.1. Helpers



Alice Peyraut and Martin Genet 299



300 Alice Peyraut and Martin Genet

F.4.2. Plots

Appendix G. Code for Figure 10

G.1. Imports

G.2. Parameters

G.2.1. Geometry and varying parameters

G.2.2. Material behavior
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G.2.3. Loading

G.3. Generating plots

G.3.1. Helpers
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G.3.2. Plots

Appendix H. Code for Figures 11–12

H.1. Imports
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H.2. Parameters

H.2.1. Geometry

H.2.2. Loading and boundary conditions

H.2.3. Material behavior

H.2.4. Images
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H.2.5. Bias

H.3. Synthetic measurements

H.3.1. Synthetic images

H.3.2. Ground-truth motion

H.3.3. Tracking
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H.4. Generating plots

H.4.1. Helpers
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H.4.2. Plots
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