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Abstract. This paper presents an analysis of the behavior of a non-cohesive granular material deposit excited
at its base by a horizontal harmonic vibration. The analysis is carried out numerically by means of a 2D
discrete element model. The performed simulations highlighted some aspects of vibration behavior in non-
cohesive deposits, such as the shape of the vertical profile of the displacement, notably in the case of large
displacements. The analysis particularly focused on the amplification of the movement at the free surface of
the deposit, as well as its dependence on some parameters such as the excitation frequency and the excitation
amplitude of the deposit confinement. The obtained results showed that the behavior of the deposit following
the change in the excitation frequency is similar to the case of an elastic deposit excited by a harmonic
displacement at the base, i.e. the Dynamic Amplification Factor (DAF) initially increases with the frequency
increase, it reaches a peak of resonance then it decreases. The resonance frequency estimated from this
analysis is close to the fundamental frequency for low excitation amplitudes, but becomes smaller as the
excitation amplitude increases. On the other hand, for a fixed frequency, increasing the amplitude of the
excitation induces greater amplification. It has been shown that this increase results from the degradation of
the shear modulus due to the increase in the level of involved shear strain. Therefore, unlike elastic deposits,
for non-cohesive granular deposits, increasing strain leads to a degradation of the shear modulus, resulting
in a downward shift of the resonance frequency and can induce a significant increase in amplification. The
confinement of the deposit is achieved by increasing the gravitational acceleration; it has been shown that
increased confinement makes the deposit stiffer, and therefore reduces the amplification of the introduced
movement.

Résumé. Cet article présente une analyse du comportement d’un dépôt de matériau granulaire non cohésif
soumis à une vibration harmonique horizontale appliquée à sa base. L’analyse est réalisée numériquement à
l’aide d’un modèle bidimensionnel basé sur la méthode des éléments discrets. Les simulations effectuées
ont mis en évidence certains aspects du comportement vibratoire des dépôts non cohésifs, notamment
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la forme du profil vertical du déplacement, en particulier dans le cas de grands déplacements. L’analyse
s’est particulièrement concentrée sur l’amplification du mouvement à la surface libre du dépôt, ainsi que
sur sa dépendance à certains paramètres tels que la fréquence et l’amplitude de l’excitation ou encore le
confinement du dépôt.

Les résultats obtenus montrent que le comportement du dépôt face à la variation de la fréquence
d’excitation est similaire à celui d’un dépôt élastique soumis à un déplacement harmonique à sa base.
Plus précisément, le facteur d’amplification dynamique (DAF) augmente initialement avec la fréquence,
atteint un pic de résonance, puis diminue. La fréquence de résonance estimée dans cette analyse est
proche de la fréquence fondamentale pour de faibles amplitudes d’excitation, mais devient plus basse à
mesure que l’amplitude augmente. Par ailleurs, pour une fréquence donnée, l’augmentation de l’amplitude
de l’excitation engendre une amplification plus importante. Il a été démontré que cette augmentation
résulte de la dégradation du module de cisaillement due à une augmentation du niveau de déformation en
cisaillement. Contrairement aux dépôts élastiques, pour les dépôts granulaires non cohésifs, l’augmentation
de la déformation conduit à une dégradation du module de cisaillement, entraînant un décalage vers le bas
de la fréquence de résonance et pouvant induire une amplification significative.

Le confinement du dépôt est simulé par une augmentation de l’accélération gravitationnelle. Il a été
montré qu’un confinement accru rend le dépôt plus rigide, ce qui réduit l’amplification du mouvement
introduit.

Keywords. Sand deposit, Behavior of a granular soil, Discrete element method, Shear wave, Propagation.

Mots-clés. Dépôt de sable, Comportement d’un sol granulaire, Méthode des éléments discrets, Onde de
cisaillement, Propagation.
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1. Introduction

Seismic wave propagation from the bedrock to the free ground surface depends strongly on the
nature of the traversed soil layers. In particular, it is known that stiffness and damping of these
layers have significant effects on the transmission of the motion. For granular soils these two
properties i.e. stiffness and damping depend on the applied movement characteristics such as
amplitude and frequency, as well as on certain soil state parameters, such as confining and
density states. The classical methods used in the analysis of movement transmission and its
amplification from the bedrock to the surface are usually based on continuum mechanics. These
methods work well for cohesive soils, however for granular soils, given the discontinuous nature
of the material, discrete element modeling could provide more understanding of the involved
mechanisms.

In the context of this modeling approach, transient wave propagation in granular materials
was studied using a discrete element model by Martin et al. [1], three particular cases were
investigated including dry cohesionless material, elastic cemented particulate media and fluid
saturated granular material, the results of this study indicated that the wave velocity depends
upon the stiffness of the interparticle contacts and the distribution of branch vectors along the
propagation direction. Furthermore, it is shown that the attenuation of the wave amplitude
depends on the number of branch vectors in the propagation direction. The influence of force
chains on the wave scattering and attenuation in granular soils was also studied by Peters and
Muthuswamy [2]. As part of a study on the instabilities of force chains, Campbell [3] treated the
destabilizing effect of wave propagation using discrete element modeling. Zamani and El Shamy
[4] have carried out an investigation of the vertical propagation of a shear wave in a granular
deposit through discrete element modeling, they studied the change of the shear modulus and
the damping ratio for low frequencies. The properties extracted from the DEM simulations
were used to calculate the deposit response assumed as a continuum with linear viscoelastic
behavior using the SHAKE software. The obtained results were then compared to those of the
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DEM modeling. Ning et al. [5], after developing an appropriate method for measuring wave
velocity in a discrete element model, have studied the effects of particle size and elastic properties
on the wave propagation velocity. O’Donovan et al. [6] have conducted an experimental study
on a soil model in a cubical cell, they then compared the results with both discrete element
(DEM) simulations and continuum modeling. In their study, they used point source transmitters
and receivers in order to assess the shear and compression wave velocities in the samples,
from which some of the elastic moduli can be deduced. As a result, a satisfactory agreement
between experimental observations and DEM simulations is confirmed. Recently, Arran and co-
authors [7] modeled the flow of spherical particles on a rough inclined base. By comparison with
their experimental results on physical models dealing with seismic waves emitted by granular
flows [8, 9] they highlighted the effect of velocities of basal particle, which are difficult to
measure experimentally, on the flow properties. In order to better understand how the dynamic
load affects the evolution of the microstructure and the whole granular assembly behavior,
Longlong and Shunhua [10] proposed a criterion to recognize the major propagation path of
dynamic load in 2D granular materials, called the “dynamic force chain”. This analysis showed
that the spatial distribution of dynamic force chains in the indentation of granular materials
provides a direct measure of dynamic load diffusion. It is demonstrated that the statistical
evolution of dynamic force chains has a strong correlation with the indentation behaviors.
Besides, discrete element modeling of wave propagation in saturated granular materials has also
received interest, particularly in the context of the study of sand liquefaction phenomenon under
seismic vibrations [11–13].

Despite all these studies, movement propagation in granular soils still has many unclear
behavioral aspects. Indeed, for these soils, deformation is particularly related to intergranular
slips, which themselves depend on several parameters such as the strain amplitude, the vibration
frequency, the confining pressure, etc. Hence, these complex aspects deserve to be subjected
to more analysis. This work consists of an analysis of the behavior of a non-cohesive granular
deposit subjected to dynamic excitation at its base using a 2D discrete element model. The
exciting motion is harmonic with a controlled amplitude and frequency. We particularly aim
to highlight and analyze some involved features, such as the movement amplification at the free
surface and its dependence on the frequency and amplitude of excitation as well as the deposit
confinement. We also show the macroscopic behavior of the deposit during large displacements
or near the resonance.

2. Discrete element modeling

The discrete element method used in this work was first initiated by Cundall in 1992 [14] and is
based on molecular dynamics. It models granular materials at the micromechanical scale using
independent elements. The grains of the material interact with each other through contact forces
that are calculated through simple models based on a slight overlap of the grains [15, 16]. It is
assumed that the global deformation of the medium is mainly due to the relative movements
of the grains considered as rigid bodies [17, 18]. Because of their simplicity and the savings in
calculation time they involve, circular element shapes are still the most widely used.

The movement of each grain i is governed by the following Newton’s second law, which allows
to obtain the accelerations of the grains.

mi⃗̈xi =
∑

j
F⃗ contact

i j +mi g⃗

Ii ⃗̈ϕi =
∑

j
M⃗ contact

i j

(1)
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Figure 1. (a) Normal force model. (b) Shear force model.

with ⃗̈xi and ⃗̈ϕi represent respectively the translational and rotational accelerations of the grain
i , mi and Ii are the mass and the moment of inertia respectively, F⃗ contact

i j is the interaction force

applied by a grain j in contact with grain i , g⃗ is the acceleration due to gravity and M⃗ contact
i j is the

torque with respect to the center of gravity of grain i applied by the contact forces F⃗ contact
i j .

Contact forces are decomposed into a normal component F⃗n and a tangential component F⃗s

contained in the plane tangent to the grain at the point of contact [19]. In this work, the normal
contact force is computed through the viscoelastic model (Figure 1a) as:

F⃗n = (−knDn −νnVn) · n⃗ (2)

where kn is the elastic constant, vn is the viscous damping constant, Vn is the normal velocity
and Dn is the overlap of the two grains i and j , defined geometrically by:

Dn = ∥x⃗ j − x⃗i∥− ri − r j (3)

in which ri and r j are the radii of grains i and j .
The tangential contact force (F⃗s ) is computed through a viscoelastic model with friction

(Figure 1b) as:

F⃗s = min(ks Ds + vsVs ,µd Fn )⃗s (4)

where ks is the tangential stiffness, vs the viscous damping coefficient, µd is the inter-particle
coefficient of friction, Ds is the grain deformation due to shear force, Vs is the tangential velocity
of grain j with respect to grain i and s⃗ is the tangential unit vector as indicated in Figure 1a.

The duration of a contact between two grains (tc ) is equal to the natural half-period of the
equivalent oscillator. Using this contact force model, this half-period is equal to:

tc =π

√
meff

kn
(5)

It is crucial in practice to consider this contact period tc . In fact, the integration of the movement
equations is only stable if the integration time step ∆t is sufficiently small in comparison to tc ,
i.e. the evolution of the contact should be accurately described. In practice, in order to prevent
certain instabilities, the integration time step ∆t is taken as [19]:

∆tmax ≈ 0.1π

√
meff

kn
(6)

where meff is the smallest effective mass in the system.
In order to account for the damping of the rolling motion of natural grains, a rolling resisting

torque is incorporated in the model. This torque is calculated by placing the normal force off-
center of the contact, such eccentricity is adjusted to reduce or increase rolling resistance.
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It should be noted that in order to obtain quantitative results comparable to experimental
ones, a calibration of the model parameters is necessary. However, for a phenomenological
analysis such as in our case, these parameters are usually selected in such a way as to save
computation time without departing from the normal behavior of the model.

3. Analytical solution of wave propagation in a viscoelastic deposit

For some mechanical and/or movement conditions where the deposit can be assumed as a
continuum with elastic damped behavior, the equation governing the propagation of a horizontal
harmonic displacement (u) in the vertical direction (z) is given by [20] as:

1

c2

∂2u

∂t 2 = ∂2u

∂z2 + 2ξ

ω

∂3u

∂t∂z2 (7)

where c is wave propagation velocity, ξ is the hysteretic damping ratio and ω is the circular
frequency of the movement. For a deposit of thickness h resting on an oscillating bedrock, the
final solution of this equation is presented in [20] as:

A ·u(z, t )

u0
= cosh(ph)cos(qh)cosh(pz)cos(qz)sin(ωt )

+ sinh(ph)sin(qh)sinh(pz)sin(qz)sin(ωt )

+ cosh(ph)cos(qh)sinh(pz)sin(qz)cos(ωt )

− sinh(ph)sin(qh)cosh(pz)cos(qz)cos(ωt ) (8)

with A, p and q are calculated from equations:

A = cosh2(ph)− sin2(qh) (9)

(ph)2 + (qh)2 = (π2/4)(ω2/ω2
1)

1+4ξ2 and (ph)(qh) = ξ (π2/4)(ω2/ω2
1)

1+4ξ2 (10)

The fundamental frequency of the deposit being the first resonance frequency for very low
damping, it is given by:

ω1 = πc

2h
(11)

This solution indicates that for a harmonic excitation, the displacement of any point of the
deposit is harmonic. In addition, it states that the shape of the displacement, i.e. the plot of
the displacement versus of the depth at a given time, depends on the excitation frequency. As
examples, Figure 3 shows the displacement shapes for a deposit excited at its base by a harmonic
displacement of amplitude u0 and with excitation frequencies ω/ω1 = 0.42 and ω/ω1 = 1.12. For
these examples, the damping ratio is set to ξ = 8%. Note that the system’s damping ratio can be
estimated from the dynamic amplification factor at resonance as shown below.

This figure shows that for an excitation frequency lower than the fundamental frequency, the
displacement profile has the shape of the first natural oscillation mode (Figure 3a). However,
when the excitation frequency exceeds the fundamental frequency, the second mode shape
appears by the formation of a zero-displacement node at a specific height that rises from the
base. This height increases with the increase in the excitation frequency (see Figure 2b) until the
second natural frequency is reached, then the shape of the third mode appears and so on.

In this study, we define the dynamic amplification factor at the top (i.e. the free surface) as
DAF = us /u0, where us and u0 are the displacement amplitudes at the free surface and at the
base respectively. Using the displacement solution (Equation (8)), the DAF is plotted in Figure 3
in terms of the frequency ratio (ω/ω1) ranging from 0 to 1.12 and for damping ratios of 5%, 10%
and 15%.
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Figure 2. Normalized displacements of analytical solution for two different excitation
frequencies.

Figure 3. Dynamic Amplification Factor at the deposit’s free surface (DAF) in terms of the
frequency ratio (ω/ω1) damping ratios: 5%, 10% and 15%.

This figure clearly shows the typical evolution of amplification against the excitation frequency
increasing. The DAF increases starting from 1 for low frequencies, it reaches a maximum value at
the first resonance frequency then it decreases. The maximum DAF value occurring at resonance
is inversely proportional to the damping ratio, it can be approximated for low damping ratios
by DAFmax ≈ 2/πξ [20]. It is worth noting that for common dampings, the resonance occurs at
frequencies very close to the fundamental frequency.

4. Details of the numerical model of wave propagation

In the present work, an analysis of the vertical propagation of a shear wave in a sand deposit
is carried out using 2D discrete element modeling, the used model is implemented in a C++
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Table 1. Model parameters

Parameters Value
Number of grains 5000

Grains radii ri 1.00×10−3 to 2.00×10−3 m
Density Gs 2600 kg/m3

Normal intergranular stiffness kn 1.2×106 N/m
Shear intergranular stiffness ks 9.6×105 N/m

Intergranular friction coefficient µ 0.5

code. In a first step, a dense deposit is built by pluviation under gravity on a horizontal rigid
plateau (considered as a bedrock), with introducing periodic boundaries to model an infinite
layer in the horizontal direction. After stabilization, the positions of the grains of the deposit
are stored to become the reference positions for displacements. Next, the deposit is subjected
to a horizontal vibration though the supporting bedrock, while the upper surface of the deposit
is kept free. In order to ensure good transmission of movement to the deposit, the bedrock is
roughened by bonding the lowest deposit grains to it. Therefore, these grains undergo the same
imposed bedrock displacement. In order to describe the response, the deposit is divided into a
number of layers for which the average grain displacements are monitored during the excitation.

The properties of the grains as well as the micromechanical parameters used in the computa-
tion of the intergranular contact forces are presented in Table 1.

The width of the deposit (i.e. the period) is initially set to 2 m, the resulting height for the used
number and size of the grains is about 0.54 m. Figure 3 shows the obtained sand deposit model
after pluviation with the different boundary conditions as well as the bonded chain of grains
called “excitation chain”. The subdivision of the deposit into control layers is also illustrated in
the same figure.

In this work, the applied excitation is a harmonic horizontal displacement of specified ampli-
tude and frequency u(t ) = u0 sin(ωt ), where u0 is the amplitude and ω is the circular frequency.
In order to avoid the transient response disturbances, the excitation is applied in three stages ac-
cording to the same idea presented in reference [4]. In the first step, the amplitude is gradually
increased from zero to the selected steady-state vibration amplitude. In the second stage, the
amplitude is maintained constant to produce a steady state oscillation. Finally, in the third stage
the amplitude is decreased from the steady-state amplitude until zero. In the following simula-
tions, the durations of the three stages are respectively set to 4.5 s, 6 s and 1.5 s. In this way, the
transient response should become almost attenuated in the steady-state oscillation phase. The
results that will be discussed below, essentially belong to this later phase. The deposit is divided
into 10 control layers and the recorded displacement is the average displacement over all grains
belonging to the layer.

5. Simulation results and discussion

5.1. Displacement time history and movement amplification

In this simulation, the parameters of the exciting displacement are set to u0 = 4× 10−4 m and
ω = 25 rad/s. In the first stage (i.e. from 0 to 4.5 s), the displacement amplitude is increased
proportionally to time from zero until 4× 10−4 m. Then, maintained at the same level for 6 s
and finally decreased gradually to reach zero during 1.5 s. Figure 4 shows the displacement time
history at the bedrock (Figure 5a) and at the top layer of the deposit (Figure 5b).
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Figure 4. Illustration of the sand deposit’s model, boundary conditions and subdivision
into a number of monitoring layers.

Figure 5. Displacement time history, (a) at the bedrock (excitation), (b) at the top layer of
the deposit.

These figures clearly show the different phases of the movement at the bedrock and at the
top layer (which represents approximately the surface of the deposit). Figure 4b shows that the
amplitude at the deposit’s surface in the steady state phase is almost constant, i.e. the effect of
the transient response disappears in this phase. The comparison of the two displacement plots
(Figures 5a, b) in the steady state phase, shows that the introduced displacement at the bedrock
(excitation) having an amplitude of 0.4 mm is amplified in the top layer where the amplitude
becomes about 0.85 mm. Besides, Figure 4b shows that the deposit experiences a free elastic
damped oscillation after ending the excitation (i.e. after t = 12 s).

The amplification of the movement in the bulk of the deposit is illustrated in Figures 5a, b.
The first shows a part of the steady state response (7 s ≤ t ≤ 8 s) at the base, the middle and the
top layers, and the second presents the vibration amplitude versus the layer’s height from the
bedrock (y-coordinate).

These figures indicate that the movement amplification increases from the base up to the top
layer. On the other hand, Figure 6b shows that the displacement profile has the characteristic
shape of the first mode of vibration; this reveals that the excitation frequency is lower than the
first resonance frequency of the deposit.
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Figure 6. (a) Displacement time history for steady state oscillation at three different depths.
(b) Displacement amplitude versus the layer’s height from the bedrock during steady state
oscillation.

Figure 7. (a) Illustration of the degradation of the shear modulus with increasing applied
strain. (b) Shear modulus degradation curve versus the strain level [21].

5.2. Fundamental frequency of the deposit

Soils are known for their non-linear mechanical behavior, their shear modulus degrades when
the level of strain involved increases, as shown in Figure 7a. In this figure, Gmax is the small strain
shear modulus and G is the modulus corresponding to a specified strain γ. Figure 7b shows the
degradation curve of G in terms of the involved level of strain (γ0) according to reference [21]. It
is clear that Gmax corresponds to strains approximately smaller than 10−5.

The fundamental frequency is defined as the first natural frequency of a small strain (pseudoe-
lastic) oscillation. To obtain this frequency, we subjected the deposit to a harmonic vibration in
the same way described above, with the amplitude u0 = 4×10−4 m and the frequency of 25 rad/s.
The fundamental frequency of the deposit is taken as the frequency of free vibration remaining
after the end of the excitation. Figure 8 presents a zoom of the time history of displacements
corresponding to the free vibration phase (after the end of excitation) at different depths of the
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Figure 8. Zoom of time history response at different depths for free vibration phase.

deposit. This figure shows that the displacements are harmonic and without a phase offset for
the different depths, which corresponds to the oscillation shape of the fundamental mode. The
fundamental period can be estimated from the displacement plot, it is about T = 0.166 s. Hence,
the fundamental frequency is ω1 = 2π/T = 37.82 rad/s.

For an elastic oscillation of the deposit, the shear wave velocity can be calculated from the
fundamental period through the expression c = 4h/T [20], hence for our deposit c = 12.91 m/s.

Besides, it could be noted that the wave propagation velocity for this model is lower than
the characteristic velocities of natural soils. This is reasonable due to the low intergranular
stiffness deliberately adopted in the model in order to reduce the calculation time. However,
it appears that this wave velocity has a negligible effect on the phenomenological aspects of
the response. O’Donovan et al. [6], following their simulations on wave propagation in granular
media, indicated that the change in intergranular stiffness changes the propagation velocity but
has no noticeable effect on the nature of the response.

5.3. Influence of the excitation frequency on the response of the deposit

In order to show the excitation frequency effect on the deposit’s response, several simulations
are performed for frequencies ranging from 10 to 40 rad/s, while the excitation amplitude is set
to u0 = 4× 10−4 m. Figure 9 shows the time history of displacements during the steady state
excitation stage at the bedrock and at the top layer of the deposit for frequencies of 10 and
20 rad/s. It can be noted that for the frequency of 10 rad/s, there is no movement amplification
at the top layer, thus the deposit exhibits a behaviour of a rigid body that follows the bedrock’s
displacement. However, for the frequency of 20 rad/s, the movement is amplified at the top layer,
therefore this frequency causes the deformation of the deposit.

Figure 10 shows the displacement time history of the top layer for the entire excitation
duration. Even though the displacement time histories were plotted for all frequencies, only the
plots corresponding to frequencies 20, 30, 32 and 35 rad/s are shown. In fact, these frequencies
seem to clearly trace the evolution of behaviour. It can be observed that going from 20 rad/s to
30 rad/s there is an increase in the amplification of the movement; the amplitude of the top layer
goes from 0.6 mm for 20 rad/s to approximately 1.6 mm for 30 rad/s. At frequencies of 32 rad/s
and 35 rad/s, and in particular for the top layer but not for the other layers, the displacement plot
shapes indicate the occurrence of irreversible grain sliding. This sliding could be attributed to the
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Figure 9. Steady state displacements time history at the bedrock and at the top layer of the
deposit for excitation frequencies: (a) 10 rad/s, (b) 20 rad/s. Excitation amplitude u0 =
4×10−4 m.

Figure 10. Time history displacements of the top layer for the excitation frequencies 20, 30,
32 and 35 rad/s. Excitation amplitude u0 = 4×10−4 m.
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Figure 11. Displacements profiles for different excitation frequencies. Excitation ampli-
tude u0 = 4×10−4 m.

strong movement amplification and the non-confining of the considered layer (top layer). Note
that this sliding begins when the vibration amplitude becomes sufficiently high, i.e. around the
end of the excitation increasing stage. Thereafter, the layer continues to oscillate around a new
position which may evolve over time. It may be noted from the plots, that the vibration amplitude
tends to undergo a slight decrease with time; this behaviour may be due to the densification
of the deposit which results from the significant relative movements of the grains. Note that
densification leads to a reduction in the deformability of the deposit.

Meanwhile, for frequencies where top layer sliding has occurred, the steady-state vibration
phase is considered to be the short phase immediately after the amplitude increase phase (i.e.
after 4.5 s), it is shown in the time history displacement plots (red windows in Figure 10). This
phase is shortened for these frequencies and it should correspond to the case where the sample
is close to its initial state before densification. To account for the possible shift from the initial
position (zero position), the amplitude of the displacement is calculated as half the difference
between the maximum and minimum peak values in the taken time interval.

The displacement profiles (i.e. the deformation shape of the deposit at a given time) for the
different excitation frequencies are represented in Figure 11 for the steady state vibration at a
positive peak time and the next negative peak time (positive peak time + a half period).
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Figure 12. Dynamic Amplification Factor versus excitation frequency for excitation ampli-
tude u0 = 4× 10−4 m. (a) DAF obtained from numerical modelling. (b) DAF comparison
between numerical modelling and analytical solution.

This figure demonstrates that for low frequencies (up to 30 rad/s), the displacement profiles
have the shape of the first vibration mode. For the frequency of 32 rad/s, we notice the appear-
ance of the node with zero displacement at the base then it rises for the frequency of 35 rad/s.
According to the relative discussion in Section 2, this indicates reaching and then exceeding the
first resonant frequency. These shapes of displacement profiles indicate that the first resonance
frequency for the excitation amplitude u0 = 4×10−4 m, is around 32 rad/s.

We define in the following the dynamic amplification factor (DAF) at the top layer in the steady
state vibration phase as:

DAF = us

u0
(12)

where us denotes the displacement amplitude at the top layer (surface layer) and u0 is the
displacement amplitude at the bedrock (excitation).

In order to show the evolution of the amplification with frequency, the DAF as defined here is
represented in Figure 12a in terms of the excitation frequency.

Figure 12a shows that the DAF evolves in a similar way to the case of an elastic deposit excited
by a harmonic displacement at the base; with the increase of the excitation frequency, the DAF
increases up to a maximum value that corresponds to the resonance then it decreases. The
resonance frequency that can be estimated from this graph is around 32 rad/s, which agrees well
with the displacement profiles in Figure 11.

For a comparison with the analytical solution, Figure 12b shows the evolution with fre-
quency of the DAF obtained numerically and that calculated from the analytical solution pre-
sented above. The data used in this solution are those corresponding to the numerical deposit,
namely h = 0.54 m and ω1 = 37.82 rad/s. The damping ratio is chosen so that the maximum
value (at resonance) is equal to that obtained from the numerical model which is approximately
DAFmax = 4.75. Using the equation DAFmax ≈ 2/πξ, we obtain the damping ratio ξ = 13.4%. In
this figure, the excitation frequencies are normalized by the fundamental frequency of modelω1.
This figure shows that the evolution of the numerically computed DAF is very similar to that of
the analytical solution. However, resonance occurs at a frequency about 13% lower. We believe
that this difference can be attributed mainly to the degradation of the shear modulus due to the
increase in shear strains near resonance.
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Figure 13. Dynamic Amplification Factor versus excitation frequency for excitation ampli-
tude u0 = 4×10−6 m. DAF obtained from numerical modelling and analytical solution.

The analysis of the effect of excitation frequency on deposit response is repeated with an
excitation amplitude of u0 = 4× 10−6 m in the same way as for the amplitude 4× 10−4 m. It is
observed that for all frequencies, there is no sliding of the surface layer, and that the movement
remains harmonic and regular for all layers and frequencies. The plot of the displacement profiles
showed that the resonance frequency increases to around 37.5 rad/s. For this case we present
only the evolution of the DAF with excitation frequency (Figure 13), in the same way as Figure 12b.

This figure shows that the resonance frequency becomes very close to the fundamental
frequency estimated in Section 5.2 (ω1 = 37.82 rad/s). In addition, the maximum dynamic
amplification factor increases significantly (DAFmax = 17.08). These results indicate that there
is almost no degradation of the shear modulus and that the damping ratio becomes very low for
small amplitudes. We believe that the damping rate depends on intergranular slippage, which
decreases with decreasing excitation amplitude. It can therefore be concluded that the resonance
frequency depends on the excitation amplitude.

5.4. Influence of the excitation amplitude on the movement amplification

It should be remembered that for an elastic deposit excited at the bottom by a harmonic displace-
ment, the FAD is independent of the amplitude of the excitation. However, as the granular de-
posit does not behave elastically in all situations, it becomes interesting to show how it behaves
for different excitation amplitudes. For this purpose, simulations of the deposit response under
harmonic excitation at fixed frequency (25 rad/s) and with amplitudes ranging from 2×10−6 m
to 1×10−3 m are carried out. For all simulations, the displacements in the steady-state phase are
plotted and the DAF as defined above is calculated.

Figure 14 shows the evolution of the DAF with the excitation amplitude. In this plot, the
logarithmic scale is used for the x-axis (amplitudes) given the wide range of amplitude values.

It is clear that unlike the case of an elastic deposit where the DAF is theoretically constant, for
the present granular deposit the DAF is almost constant for small amplitudes, but it increases
sharply for large excitation amplitudes. This behaviour could be attributed to the degradation of
the shear modulus due to the increase of the shear strain level when the amplitude increases.
In order to check this presumption, we were interested in evaluating the shear strain level
involved for the different excitation amplitudes. Observing that the displacement profile has
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Figure 14. Evolution of the DAF at the top layer versus excitation amplitude. Excitation
frequency 25 rad/s.

Figure 15. (a) Average shear strain level versus excitation amplitude. (b) DAF versus the
shear strain level involved by the different excitation amplitudes.

an almost linear shape for the used excitation frequency (25 rad/s) as shown in Figure 11, the
shear strain level (γ0) can be approximated by the ratio of the difference between the horizontal
displacements of two layers to the vertical distance between them. In order to obtain an average
value over the whole deposit, γ0 is calculated in the following using the penultimate layer
(layer 9) and the first layer. Considering the possible phase shift (even very small) between the
displacements of the layers, γ0 is expressed as:

γ0 =
up

9 −u1

y9 − y1
(13)

where up
9 denotes a peak displacement of layer 9, u1 denotes displacement of layer 1 at the same

time (corresponding to up
9 ) and yi is the vertical coordinate of the i layer’s center. Average shear

strain levels are calculated for all the excitation amplitudes. Figure 15a shows the evolution of the
shear strain level with the excitation amplitude, while Figure 15b shows the DAF versus the shear
strain level involved by the different excitation amplitudes.
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Figure 16. Evolution of the DAF with the increase of the gravity acceleration.

Figure 15a shows that the shear strain level increases monotonically (almost linearly) with
increasing excitation amplitude. Taking into account the shear modulus degradation with the
shear strain level curve (Figure 7b), this increase reveals that the shear modulus of the deposit
decreases with the increase of the excitation amplitude, which leads to a change in the DAF.
Such a change is well demonstrated by Figure 15b, this later shows that the DAF increases very
slightly for small deformations, while it takes on an increasingly significant variation slope for
large strains. This aspect is very similar to the shear modulus degradation curve. Furthermore,
the strain threshold which separates the two phases of variation of the DAF agrees well with that
which can be drawn from the degradation curve of the shear modulus (Figure 7b), it is about 10−4.
This result indicates that for a granular deposit, the movement can be largely amplified even
when far from the fundamental frequency. This is due to the degradation of the shear modulus,
which degrades with increasing excitation amplitude.

5.5. Effect of the confining on the movement amplification

When a layer of granular soil is deep and subjected to the weight of the upper layers, it becomes
confined and its motion transmission properties change. This section aims to highlight the effect
of confinement on the amplification of movement at the free surface of a granular deposit excited
at its base. A simple way to simulate confinement is to increase the gravity acceleration, so in this
work we analyzed the evolution of the DAF for gravity accelerations ranging from g up to 20 g.
The properties of the model are the same as those presented above and the base excitation is
harmonic with an amplitude of 0.4 mm and a frequency of 25 rad/s.

Figure 16 shows the evolution of the DAF as defined above, with the increase of the gravity
acceleration in (m/s2).

It is clear that the increase in the gravity acceleration decreases the amplification of the
displacement at the free surface. Indeed, increasing gravity leads to an increase in effective
stresses and therefore more frictional forces and less sliding, which makes the granular deposit
more rigid and therefore reduces the amplification of surface movement. It can be noted that
the DAF tends towards unity for large values of gravitational acceleration. This result agrees with
theoretical knowledge according to which very stiff deposits (like rocks) do not amplify seismic
movements.
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6. Conclusion

This work consisted of a numerical analysis of the vertical propagation of shear waves in a sand
deposit through 2D discrete elements modeling. The used discrete element model is based on the
molecular dynamics method with circular shaped elements. The intergranular normal forces at
contacts are calculated through a linear viscoelastic law while the tangential forces are calculated
through a viscoelastic perfectly plastic model. Rolling friction is incorporated to account for the
damping of the grains rolling motion. The exciting motion is introduced through the deposit’s
base (bedrock), the deposit’s upper surface is free and periodic boundaries are implemented on
lateral boundaries. The used excitation is harmonic with variable frequencies and amplitudes.
Qualitatively, the simulations carried out highlighted some behavioral aspects of the vibration
of non-cohesive deposits, such as the shape of the vertical displacement profile and the large
displacements near the resonance. In the quantitative aspect, first the deposit’s fundamental
frequency is obtained from the free vibration at low amplitudes. Thereafter, the analysis of the
effect of the excitation frequency on the response of the deposit showed in the range of the
studied frequencies, that the Dynamic Amplification Factor (DAF) increases starting from 1 for
low frequencies, it reaches a maximum value at the first resonance frequency then it decreases.
This analysis was used to estimate the resonance frequency. It appeared that the latter is close to
the fundamental frequency for low excitation amplitudes, but becomes smaller as the excitation
amplitude increases. This finding may be mainly due to the degradation of the shear modulus
as shear strains increase with increasing excitation amplitude. Unlike elastic deposits where the
DAF is theoretically insensitive to the amplitude, the analysis of the effect of excitation amplitude
on motion amplification confirmed that for a granular deposit, the DAF increases with increasing
excitation amplitude. It has been shown that this behavior is due to the degradation of the shear
modulus following the increase in shear strain. Furthermore, it is found that the strain threshold
beyond which degradation becomes significant is in the order of 10−4. Finally, the analysis of the
confinement effect on the response of the deposit, is carried out by increasing the gravitational
acceleration. It is shown that increasing the confinement makes the granular deposit stiffer and
reduces the movement amplification at the free surface.
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