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Abstract. The mechanical behavior of isotropic solid viscoelastic material (VEM) can be described both in
time or frequency domain considering temperature effects. Thus, one can make use of viscoelastic functions
such as Young’s and/or shear moduli and the Poisson’s ratio. The viscoelastic dynamic behaviors in different
temperature and frequency or time ranges can be grouped into a single graph, named nomogram. The
present work proposes a method for constructing nomograms for viscoelastic functions, Young’s and shear
relaxation moduli, and Poisson’s ratio, defined in the time domain. It also proposed a nomogram for the
complex Poisson’s ratio in the frequency domain.

Résumé. Le comportement mécanique des matériaux viscoélastiques solides isotropes (VEM) peut être dé-
crit à la fois dans les domaines temporel et fréquentiel, en prenant en compte les effets de la température.
Ainsi, il est possible d’utiliser des fonctions viscoélastiques telles que les modules de Young et/ou de cisaille-
ment, ainsi que le coefficient de Poisson. Les comportements dynamiques viscoélastiques dans différentes
plages de température, de fréquence ou de temps peuvent être regroupés en un seul graphique, appelé no-
mogramme. Ce travail propose une méthode pour construire des nomogrammes pour les fonctions visco-
élastiques, les modules de relaxation de Young et de cisaillement, et le coefficient de Poisson, définis dans le
domaine temporel. Il propose également un nomogramme pour le coefficient de Poisson complexe dans le
domaine fréquentiel.
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1. Introduction

In recent decades, the use of viscoelastic materials (VEMs) has been increasing in several en-
gineering areas, such as civil construction, the automotive and aerospace industries, wind en-
ergy, transportation, and the biomedicine. Examples of VEMs include asphalt mixtures, pads,
bumpers, water piping, packaging, household utensils, gastrointestinal probes, and syringes.
To estimate the mechanical behavior of these materials, it is necessary to characterize the
parameters of viscoelastic rheological models, which can be done in frequency or in the time
domain [1–3].

Considering problems described solely in the frequency domain, several studies have been
conducted in recent decades aimed at identifying the complex Young’s and/or shear moduli func-
tions. There are various methodologies proposed with this focus [2, 4–7]. Similarly, consider-
ing the time domain, some works [8–17] present methodologies for identifying the relaxation
and/or creep moduli (in traction or shear). Another important viscoelastic function for predict-
ing VEMs behavior is Poisson’s ratio, which can also be defined in time or in frequency domain.
Aiming at identifying this function, several works have been published [18–24]. According to au-
thors [3–5, 25], the dynamic properties of complex viscoelastic functions can be expressed in
terms of a loss factor and the dynamic modulus, over large ranges of temperature and frequency.
On the other hand, those functions can be grouped into a single graph, named a nomogram,
which results in a compact, simple, and fast way of obtaining the properties of the material under
analysis.

In this context, the main contribution of the present work is to propose the construction of
a nomogram for the complex Poisson’s ratio in the frequency domain. Constructions of nomo-
grams for the relaxation moduli (Young’s and shear), defined in the time domain, are also pro-
posed. It is important to highlight that in all the mentioned methodologies, the VEMs are con-
sidered to be isotropic, linear, and thermorheologically simple. Among numerous engineering
applications, these nomograms can be used to obtain the materials’ viscoelastic properties for
use in both the frequency and time domains to control vibrations in structures involving rubbery
materials, as presented in the works [26–28].

2. Theoretical concepts

VEMs are materials defined by their elastic and viscous behaviors simultaneously. Such mechan-
ical behavior can be described through rheological models involving springs and dampers, where
the spring represents the elastic part and the damper represents the viscous part. Thus, for any
association, whether in series, in parallel, or in a combination of those arrangements involving
springs and Scott-Blair’s fractional dampers, fractional viscoelastic rheological models are ob-
tained [29]. According to [30], for one-dimensional problems, the modeling of those systems re-
sults in fractional differential equations such as[

1+
n∑

r=1
ar

dβr

dtβr

]
σ(t ) =

[
k +

n∑
r=1

br
dβr

dtβr

]
ε(t ). (1)

In this equation, n, k, ar , and br (r = 1, . . . ,n) are parameters associated with the chosen
rheological model, σ(t ) is the stress function, ε(t ) is the strain function, t is time, and dβr (·)/dtβr

represents a differential operator of non-integer order βr , which is given by βr = r +β−1, where
0 <β< 1 [29]. In the present study, Riemann–Liouville’s definition of the fractional derivative are
the most appropriate, since it is assumed that the structural system is initially at rest, and there
is no need to treat the information that occurs for a time t < 0 [29]. Thus, considering a function



Tiago Lima de Sousa et al. 311

Figure 1. Fractional Zener model illustration. The parameters are related to uniaxial and
shear tests.

f (t ), the Riemann–Liouville’s definition of fractional derivative on the left, with an order β, is
given by

dβ f (t )

dtβ
= 0Dβ

t [ f (t )] = 1

Γ(m −β)

dm

dt m

∫ t

0

f (τ)

(t −τ)1+α−m dτ, where m −1 <β< m, (2)

in which β is a positive real number, m is a positive integer number and Γ(·) is the Euler’s Gamma
function [29].

According to [29, 31, 32], there are several constitutive models involving fractional derivatives,
such as Maxwell, Kelvin-Voigt, and Zener. Pritz [33] and Ciniello et al. [34] claim that the
Fractional Zener Model (Figure 1) has shown to be efficient in predicting the behavior of linear
VEMs in time and/or frequency domains.

Considering that the mechanical behavior of VEMs can be described by the rheological model
presented in Figure 1, the differential equation that relates stress and strain can be shown as:(

1+ µE

E1 +E2

dβ

dtβ

)
σ(t ) =

(
E1E2

E1 +E2
+ E2µE

E1 +E2

dβ

dtβ

)
ε(t ), (3)

where E1 and E2 are stiffness moduli of the elastic elements, and µE is the intensity of the Scott-
Blair element [29, 31, 32, 34].

Defining the auxiliary parameters E∞ = E1E2/(E1 + E2), E0 = E∞rE , rE = (E1 + E2)/E1, and
τ
β

E =µE /(E1 +E2). it is possible to rewrite Equation (3) as(
1+τβE

dβ

dtβ

)
σ(t ) =

(
E∞+E0τ

β

E

dβ

dtβ

)
ε(t ). (4)

Equation (4) is written for a uniaxial tension test. This equation also has a corresponding form
when considering shear tests. In this case, the stress–strain relation in shear test can be placed
as: (

1+τβG
dβ

dtβ

)
τ(t ) =

(
G∞+G0τ

β

G

dβ

dtβ

)
γ(t ), (5)

where τβG =µG /(G1+G2), G∞ =G1G2/(G1+G2), G0 =G∞rG and rG = (G1+G2)/G1. The G1 and G2

parameters are the stiffness moduli of the elastic elements, and µG is the intensity of Scott-Blair
element for shear constitutive model.

According to Tschoegl [30] and demonstrated by Sousa et al. [24], applying the Laplace
transform to all terms of Equation (4), for t > 0, and considering a steady-state sinusoidal
excitation of axial frequency, the steady-state response can be expressed as

σ(s)+τβE sβσ(s) = E∞ε(s)+E0τ
β

E sβε(s). (6)
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Defining Ẽ(s) =σ(s)/ε(s), where Ẽ(s) is the function named Young’s operational modulus [30],
one obtains

Ẽ(s) = E∞+E0τ
β

E sβ

1+τβE sβ
. (7)

Analogously, applying Laplace transform to Equation (5) one can obtain(
1+τβG sβ

)
τ(s) =

(
G∞+G0τ

β

G sβ
)
γ(s). (8)

So, the shear operational modulus is obtained, defined as G̃(s) = τ(s)/γ(s), produces

G̃(s) = G∞+G0τ
β

G sβ

1+τβG sβ
. (9)

According to Tschoegl [30], from the operational moduli (Young’s and shear), one can obtain
the Poisson’s operational ratio, denoted by υ̃(s), given by

υ̃(s) = Ẽ(s)

2G̃(s)
−1. (10)

Thus, from Equations (7), (9), and (10), one can obtain the Poisson’s operational ratio, as

υ̃(s) = E∞
2G∞


(
rEτ

β

Eτ
β

G

)
s2β+

(
rEτ

β

E +τβG
)

sβ+1(
τ
β

E sβ+1
)(

rGτ
β

G sβ+1
)

−1. (11)

From the viscoelastic operational functions described in this section, the viscoelastic re-
sponses defined in the time domain can be obtained by applying the Laplace’s inverse transform.
These functions can also be described in the frequency domain for experiments in steady-state,
where s = iΩ.

2.1. The influence of temperature in the mechanical behavior of VEMs

Temperature is a variable that directly influences the behavior of VEMs. According to Lakes [1]
and Ferry [35], the viscoelastic response can be described by using the time-temperature super-
position principle, which proposed a shift in the time (or frequency) scale of the viscoelastic re-
sponse. This means that each time (t ) or frequency (Ω) record at a temperature (T ) can be shifted
to a reference temperature (T0) according to

tR = t/αT (T, T0) and/or ΩR =αT (T, T0)Ω, (12)

where tR and ΩR are named ‘reduced time’ and ‘reduced frequency’, respectively [35–37]. In this
case, αT (T, T0) is a function that represents the temperature shift factor.

The literature presents several models that describe the shift factor, including those by Gold-
stein, Bestul-Chang, Arrhenius, and Williams–Landel–Ferry. The most widely used in scientific
works is the mathematical model proposed by Williams, Landel, and Ferry [38], named the WLF
model, which is given by

logαT (T, T0) = −C T
1 (T −T0)

C T
2 + (T −T0)

, (13)

where C T
1 and C T

2 are intrinsic constants of the material.

2.2. Viscoelastic functions in the frequency domain

According to Tschoegl [30] and Park and Schapery [39], Young’s modulus in the frequency
domain, considering the influence of temperature, can be obtained by combining Equations (7)
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and (12), resulting in

E∗(ΩR) = E 0 +E∞τ
β

E (iΩR)β

1+τβE (iΩR)β
, (14)

where E 0 = E∞, and E∞ = E0. In addition, the complex shear modulus, G∗(ΩR), can be obtained
similarly, relating Equations (9) and (12), resulting in

G∗(ΩR) = G0 +G∞τ
β

G (iΩR)β

1+τβG (iΩR)β
, (15)

where G0 = G∞, and G∞ = G0. This model, Equation (14) or Equation (15), is known in the
literature as a four-parameter fractional constitutive model [29, 31, 32].

Based on Equation (11), the complex Poisson’s ratio can be posed in its final form as

υ∗(ΩR) = E 0

2G0


(
rEτ

β

Eτ
β

G

)
(iΩR)2β+

(
rEτ

β

E +τβG
)

(iΩR)β+1(
τ
β

E (iΩR)β+1
)(

rGτ
β

G (iΩR)β+1
)

−1. (16)

This complex function can be rewritten in its general form as given by υ∗(ΩR) = υ′(ΩR) −
iυ′′(ΩR), where υ′(ΩR) and υ′′(ΩR) correspond to the real and imaginary parts, representing the
dynamic modulus and the loss modulus of the complex Poisson’s ratio, respectively. Thus, by
relating these parts, one can obtain the loss factor of the complex Poisson’s ratio, denoted as
ηυ(ΩR), mathematically defined as

ηυ(ΩR) = υ′′(ΩR)/υ′(ΩR). (17)

Therefore, based on the viscoelastic parameters, one can construct several curves associated
with the complex viscoelastic functions presented in the current section. Hence, nomograms in
the frequency domain can be obtained.

2.3. Viscoelastic functions in time domain

According to Ciniello et al. [34], the Young’s relaxation modulus in the time domain, considering
the influence of temperature for the fractional Zener model, can be obtained by applying the
Laplace inverse transform to Equation (6), resulting in

E(tR) = E∞
[

1+ rE Eβ
(
− (t/(τEαT (T,T0)))β

)]
, (18)

where Eβ(·) is the Mittag-Leffler function of order β [40].
Similarly, starting from Equation (9), the relaxation in shear modulus function is obtained

considering temperature, which can be expressed as

G(tR) =G∞
[

1+ rG Eβ
(
− (t/τGαT (T,T0))β

)]
. (19)

According to Sousa [41], the Poisson’s ratio function, defined in the time domain, considering
the effect of temperature, can be written as

υ(tR) = E∞
2G∞

1+
τβGτβE rE −τ2β

E rE −τβGτ
β

E +τ2β
E(

τ
β

G rG −τβE
)
τ
β

E

(
Eβ

(
−tβR /τβE

))
+ ·· ·

+
−τβG

(
τ
β

G r 2
G −τβE rE rG −τβG rG +τβE rE

)
(
τ
β

G rG −τβE
)

rGτ
β

G

(
Eβ

(
−tβR /rGτ

β

G

))−1. (20)

The viscoelastic functions presented in this section constitute a basis on which it is possible
to predict the mechanical behavior of linear, isotropic, and thermorheologically simple VEMs
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Table 1. Pseudo-algorithm implemented for constructing nomograms in the time and
frequency domains

Step 1: Obtain the mechanical properties of VEMs considering the influence of tempera-
ture.

Step 2: Define the viscoelastic function to construct its nomogram.
Step 3: Specify the reference temperature and the frequency/reduced time interval.
Step 4: Plot the viscoelastic function(s) at the reference temperature within the defined

interval for reduced frequency. The abscissa axis represents the reduced frequency
(or reduced time), and the left ordinate axis shows the values of the viscoelastic
functions.

Step 5: Create a right ordinate axis while keeping the abscissa axis fixed.
Step 6: Construct another graph for different temperatures on the same axis: reduced

frequency versus frequency. The resulting curves are straight.

in the time domain, considering the effect of temperature. Thus, from the material parameters
identified by Sousa et al. [24] or Sousa [41], and considering the viscoelastic functions presented
here, nomograms are constructed in the time and frequency domains.

3. Methodology for construction and evaluating of nomograms in time and frequency
domains

For the frequency domain, the dynamic properties of the complex viscoelastic functions, at
several temperatures, can be presented in a single graph, called a nomogram. Similarly, in the
time domain, the nomograms can be constructed for viscoelastic functions like the relaxation in
traction/shear modulus and the Poisson’s ratio.

Table 1 schematically presents a method for constructing nomograms in frequency or in
time domain. The methodology consists of a pseudo-algorithm that describes a computational
procedure used for construct nomograms of viscoelastic functions step-by-step.

3.1. Obtaining dynamical properties from nomograms

Figure 2 presents a nomogram constructed at a reference temperature of 5 °C and includes a time
interval from 0.1 s to a value around 2 years (ordinate axis on the right) for graphical analysis.
The method for obtaining the dynamic property corresponding to the relaxation modulus is
described in the pseudo-algorithm presented in Table 2. Similarly, others viscoelastic functions
can be constructed and evaluated—defined in time or frequency domain—to determine their
dynamic properties.

3.2. Viscoelastic parameters

The viscoelastic functions can be constructed by simply replacing the viscoelastic parameters
in the models discussed in Section 2. The adopted viscoelastic parameters (Table 3) were
determined by Sousa [41] through an optimization procedure employing a hybrid method that
integrates Genetic Algorithms and nonlinear programming. This approach utilized experimental
data from the EAR®-C1002 material, as reported by Jones [42]. The minimized objective function
was the mean squared error between the empirical data and the theoretical fractional Zener
viscoelastic models, characterized by four parameters. These models are formulated in the
frequency domain and incorporate temperature effects.
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Figure 2. Nomogram in time domain for the Young’s relaxation modulus.

Table 2. Pseudo-algorithm to obtain dynamic properties of VEMs, defined in time and
frequency domains

Step 1: Define the time and temperature to obtain the relaxation modulus (for example, 2
years and 30 °C).

Step 2: From the specified time (e.g., 2 years), draw a horizontal line up to the desired
temperature (e.g., 30 °C), as illustrated in Figure 2.

Step 3: Draw a vertical line up to the relaxation curve, which corresponds the reference
temperature.

Step 4: Draw a horizontal line from the intersecting point of the relaxation curve up to the
left ordinate axis.

Step 5: Obtain the value of the relaxation modulus for the specified time and temperature.

Table 3. Viscoelastic parameters obtained from Sousa [41]

Viscoelastic parameters Numerical values
E0 (MPa) 2.128667556644×106

E∞ (MPa) 1.723757249223×109

τ
β

E 1.279369260811×10−2

G0 (MPa) 7.119033966574×105

G∞ (MPa) 6.202192164498×108

τ
β

G 1.189166029556×10−2

β 4.524176145415×10−1

C T
1 1.433136320936×101

C T
2 (°C) 1.031149458767×102
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Figure 3. Nomogram of complex Young’s (left) and shear (right) moduli.

4. Results and discussion

The current section presents the nomograms for the complex moduli (Young’s and shear) and the
proposed nomogram for the complex Poisson’s ratio. Subsequently, the nomograms proposed for
the relaxation moduli in tension and shear are shown, as well as the Poisson’s ratio defined in the
time domain.

4.1. Nomograms of Young’s and shear complex moduli, and complex Poisson’s ratio:
frequency domain

Using the methodology presented for constructing nomograms and the mechanical properties
(Table 3), nomograms are created for the complex viscoelastic functions (Young’s and shear
complex moduli, and complex Poisson’s ratio). In all cases, the mechanical properties can be
obtained over a frequency interval from 10−2 Hz to 106 Hz for the following temperatures: −30 °C,
−20 °C, −10 °C, 5 °C, 30 °C, 50 °C, and 80 °C. However, other temperatures can also be selected to
be included in the nomogram.

Figure 3 presents the nomograms constructed for the Young’s and shear complex moduli. In
these graphs, the storage moduli and the loss factor are depicted together. It should be noted that
the loss factor values shown in the graph need to be divided by 103. For instance, at a frequency of
approximately 1 Hz and a temperature of −20 °C on the nomogram corresponding to the Young’s
complex modulus (Figure 3, left), the dashed line indicates a loss factor close to 0.1. Additionally,
the value of Young’s dynamic modulus is approximately 2000 MPa.

The complex Poisson’s ratio can be obtained by inserting the parameters from Table 3 into
Equation (16). Hence, Figure 4 proposes a nomogram for the complex Poisson’s ratio, which
presents its dynamic modulus and loss factor. These properties can be obtained in a similar man-
ner. For example, at a frequency near 1 Hz and a temperature of 5 °C, the value of the dynamic
modulus and that of the Poisson’s loss factor are approximately 0.49 and 0.002, respectively.

The nomograms presented in this section establish a basis that can be used to quickly and
approximately obtain the mechanical properties of VEMs. Furthermore, the methodology dis-
cussed in this paper enables the determination of the dynamic properties of the viscoelastic func-
tions under analysis.
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Figure 4. Nomograms of complex Poisson’s ratio: dynamic modulus and its loss factor.

Figure 5. Nomograms in time domain: Young’s (left) and shear (right) relaxation moduli.

4.2. Nomogram of the shear traction relaxation modulus and the Poisson’s ratio: Time
domain

Using the parameters presented in Table 3 to consolidate the viscoelastic functions for the time
domain, nomograms are proposed for the traction and shear relaxation moduli, as shown in
Figure 5. Subsequently, a nomogram for the Poisson’s ratio in the time domain is presented in
Figure 6. In all cases, these properties are observed over a time interval ranging from 1 s and 108 s
(close to two years) at temperatures including: −45 °C, −40 °C, −35 °C, −25 °C, −10 °C, 5 °C, 30 °C,
and 50 °C. However, other temperatures can also be selected for inclusion in the nomogram.

One observes that the graphs of the nomograms in the time domain are inverse forms of the
corresponding nomograms in the frequency domain. For example, the relaxation modulus is a
monotonically decreasing curve over time, whereas its counterpart in the frequency domain, the
dynamic Young’s modulus, exhibits an increasing trend with higher frequencies. Conversely, in
the time domain, the Poisson’s ratio shows a monotonic increase. However, the dynamic Poisson’s
modulus displays a decreasing trend as frequency increases. These results ensure a coherent
physical interpretation of the material behavior [21, 41, 43], demonstrating the methodology’s
effectiveness and its potential for application across various engineering fields.
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Figure 6. Nomogram of Poisson’s ratio, defined in time domain.

5. Final remarks

The present work describes and implements a methodology for constructing viscoelastic func-
tions in both the time and frequency domains. Initially, in the frequency domain, nomograms
were presented for the complex Young’s and shear moduli. Subsequently, a nomogram was pro-
posed for the complex Poisson’s ratio, incorporating two viscoelastic functions: the dynamic
modulus and the Poisson’s loss factor. These properties’ values can be easily obtained for any
desired frequency and temperature.

Nomograms of viscoelastic functions were proposed, defined in the time domain. Using the
presented methodology, nomograms were created for the Young’s and shear relaxation moduli,
and subsequently, a nomogram for the Poisson’s ratio was proposed in the time domain. The
graphs obtained for these nomograms describe the inverse behavior of the corresponding nomo-
grams in the frequency domain. These results ensure a coherent physical understanding of the
material’s behavior.

The use of a viscoelastic model based on a parametric constitutive model (here, the fractional
Zener model) enables the derivation of two algebraic expressions for Poisson’s ratio, one in the
time-domain and the other in the frequency-domain. Accordingly, the methodology applied in
this work is suitable whenever the constitutive model used allows the conversion between the
time-frequency domains and the obtaining of the expression for the Poisson’s ratio. This, in turn,
enables the construction of a nomogram for this crucial material property.

An important point to highlight is that the proposed model can be applied in a finite element
analysis involving VEMs and requires only the input of material properties. For finite element
analyses in the time-domain, the mechanical properties of the medium are evaluated incremen-
tally at each time interval. Thus, Poisson’s ratio is updated at each time increment. For finite
element analyses in the frequency-domain, such as harmonic analysis, the structure’s response
depends on the properties at each frequency. Therefore, the physical parameters (including Pois-
son’s ratio) must be evaluated at each frequency value.

Note that in a time-domain FEM analysis, for very short times, Poisson’s ratio has a value
close to 0.39 (Figure 6). This corresponds to an analysis in the frequency-domain for very high
frequencies (Figure 4). This behavior is close to that of a solid with low viscosity. On the other
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hand, for very long times, the value of Poisson’s ratio is close to 0.49 (Figure 6). This behavior
corresponds to an analysis in the frequency-domain for very low values of this variable (Figure 4),
characterizing a behavior close to that of a nearly incompressible fluid.

As its main contribution to established knowledge, the present work proposes the construc-
tion of new nomograms of viscoelastic functions in the time and frequency domains, which al-
low for prompt and precise visualization of the dynamic behaviors of the VEM under analysis.
Additionally, it is important to note that the methodology outlined for constructing nomograms
can be extended to other viscoelastic functions (e.g., bulk modulus), various VEMs, and diverse
combinations of constitutive models and shift factors.
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