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Abstract. Matched Asymptotics is a powerful mathematical technique with broad applicability in various
engineering fields. One of its key uses is in Fracture Mechanics, where it provides accurate approximations
in the vicinity of the crack tip with low computational complexity. This method can be seamlessly integrated
with the Coupled Criterion (CC), which enables the prediction of crack nucleation and propagation in brittle
materials. Hence, this paper deeply explains how the MA technique can be applied together with the CC in
the context of Fracture Mechanics, providing a detailed literature review of the advances made in the last
decade.

Résumé. Les développements asymptotiques raccordés constituent une technique mathématique puissante,
largement applicable dans divers domaines de l’ingénierie. L’une de leurs principales utilisations se situe
en mécanique de la rupture, où ils permettent d’obtenir des approximations précises à proximité de la
pointe des fissures tout en maintenant une faible complexité de calcul. Cette méthode peut être intégrée
de manière fluide au critère couplé (CC), qui permet de prédire l’amorçage et la propagation des fissures
dans les matériaux fragiles. Cet article explique comment la technique des développements asymptotiques
raccordés peut être utilisée conjointement avec le critère couplé dans le cadre de la mécanique de la rupture,
tout en offrant une revue détaillée de la littérature sur les avancées réalisées au cours de la dernière décennie.
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1. Introduction

The matched asymptotic (MA) expansion method is an approach that enables solving an equa-
tion or a system of equations [1–5]. It is well adapted to solve singularly perturbed differential
equations, for which different approximate solutions are determined, each of which being ac-
curate for a given part of the domain under investigation. These solutions are then combined to
give a single approximate solution that is accurate for the whole domain under investigation. The
domain may generally be divided into two subdomains. In the first one, the solution (called the
outer solution) is accurately approximated by an asymptotic series representing a regular pertur-
bation (i.e. by setting to zero a small parameter representing, e.g., a singular perturbation). The
second one consists of a region in which this first approximation is inaccurate, due to perturba-
tion terms that are not negligible. This constitutes the inner solution. The outer and inner solu-
tions are then combined through a process called “matching” in such a way that an approximate
solution for the whole domain is finally obtained.

Asymptotic expansions were used to define the elastic constitutive law of the homogeneous
equivalent material of a composite when a tangential slip is allowed on the fiber/matrix inter-
face [6]. It was shown that a limit slip coefficient exists beyond which the stiffness of the material
rapidly decreased. They were also used in the framework of homogenization as an alternative
to the multiple scalings approach [7, 8]. MA expansions were used in combination to the sin-
gularity theory to determine the elastic displacements and stress fields corresponding to a class
of junctions between rods and bulk bodies modeled as a flexible clamping in the framework of
two-dimensional elasticity [9]. Leguillon analysed the problem of crack branching in a homo-
geneous elastic but non isotropic material. Based on asymptotic expansions, the energy release
rate was computed and a revisited Griffith’s criterion including anisotropic fracture properties
was suggested [10]. Sicsic and Marigo studied the propagation of a crack band and derived the
conditions for which it behaves like a Griffith’s crack [11]. MA expansions were also used to study
the behavior of interface cracks, for instance to further analyse the “Cook and Gordon” [12] in-
terface debonding effect ahead of a primary crack [13], edge debonding in laminates [14] or to
analyze the role of residual thermal stresses on the crack deflection or penetration at a bimaterial
interface. The 2D and 3D singularities at a bimaterial interface were derived [15], also consider-
ing contact and friction between two anisotropic materials [16]. The mode III asymptotic expan-
sions for a crack in or along a joint enabled defining an apparent toughness of the interface to
be used for crack propagation [17]. It was also used to derive the stress intensity factors near an
angular point on the front of an interface crack [18].

Moreover, the character of the stress singularity at the tip of a classical crack in a homogeneous
material was approximated by an asymptotic series for cracks in Mode I, Mode II and Mode
III. The first two modes were studied in the work of Williams [19], which is well known by
the scientific community, since asymptotic solutions for free–free, clamped–clamped and free–
clamped boundary conditions are given therein.

MA expansions are particularly relevant when studying fracture and especially crack initiation
in a structure. Indeed, the latter can be studied in the framework of MA expansions as the
unbroken problem corrected by the crack that initiates (provided its smallness with respect to
the structure characteristic dimensions). This idea was actually made effective by Leguillon [20,
21] who proposed to study crack initiation by coupling a stress criterion and an energy criterion.
This approach has spread and is now a common way to study crack initiation, as evidenced
by numerous applications summarized in the two review papers [22, 23]. The CC can be
implemented through several ways, for instance by solving an implicit equation if analytical
solutions can be provided for the stress fields and the energy release rate variation as a function
of the crack surface [22, 24–26]. A second way to implement the CC is through finite element
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Figure 1. V-notched three-point bending specimen subjected to a force F with a crack
(length ℓ) initiating at the V-notch tip. Notice that e represents the notch depth.

(FE) simulations of the full structure under investigation including the crack that initiates [27–
30]. In cases where analytical solutions are not available and so as to achieve a numerically more
efficient approach than full FE implementation, an effective way to implement the CC is to use
MA expansions. The objective of this paper is to give an overview of the matched asymptotic
approach of the CC. We first recall the general idea (Section 2) and the formulation (Section 3) of
the MA approach. Then, we describe its numerical implementation (Section 4) and provide some
application examples (Section 5).

2. The idea behind matched asymptotics

Before presenting the mathematical formalism of the matched asymptotic (MA) approach of the
Coupled Criterion (CC), this section is dedicated to provide the philosophy behind it to further
understand how it can be set up and define the main required ingredients. In the sequel, the CC is
formulated under linear elasticity and small deformation assumptions. Both inertial effects [31,
32] or dissipation mechanisms other than cracking that may occur during initiation, such as, e.g.,
plasticity [33], diffuse damage [34] or viscous effects, are disregarded. The MA approach of the
CC is useful to efficiently study the problem of a small crack initiating in a complex structure
subjected to a mechanical or thermal loading. The objective is to determine the loading level at
which the crack is likely to initiate as well as the initiation crack length. As a matter of example,
we consider the problem of a crack of length ℓ that initiates at the tip of a V-notch (angle β)
in a specimen loaded under three-point bending (Figure 1). Notice that this technique is only
valid provided ℓ is smaller than a characteristic dimensions of specimen (ℓ≪ e in Figure 1), an
initial assumption that should be checked after the implementation, once the actual value of ℓ is
obtained using the coupled criterion.

2.1. The coupled criterion

The main idea behind the CC arises from the following observations:

• Considering an energy criterion only, it enables assessing the propagation of a crack
based on the material critical energy release rate Gc [35–37] but generally fails to study
its initiation.

• Considering a stress criterion only, it enables assessing crack initiation based on the
material tensile strength σc except in the presence of a singular point.

Stress and energy criteria thus appear as complementary and their combination enables assess-
ing crack initiation in many configurations. The stress criterion of the CC is a condition estab-
lished in the initial domain before crack initiation (thus without crack). It states that the stress
normal to the future crack path must be larger than the material strength attained under a simi-
lar principal stress state. For instance, it reverts to comparing the opening stress to material ten-
sile strength under uniaxial tensile loading. For the sake of simplicity, we will consider a brittle
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material that exhibits a Rankine strength surface in the sequel, which enables defining the ma-
terial strength surface based on a single parameter, its tensile strength. The stress criterion thus
requires the calculation of the stress field before crack initiation. In the vicinity of a V-notch, the
stress tensor actually writes as an expansion in powers of r , William’s expansion in this case since
it is a singularity, Taylor’s expansion for a smooth stress field:

σ= K rλ−1s(θ)+o(rλ−1), (1)

where r and θ are polar coordinates, λ is the characteristic exponent of the singularity and s is
the stress function derived from the characteristic mode of the singularity u. The characteristic
exponent and mode of the singularity are obtained by solving an eigen-value problem [2] . The
parameter K is the Generalized Stress Intensity Factor (GSIF) of the singularity, it represents the
magnitude of the loading around the V-notch. Notice that in (1) only the dominant term has been
represented, assuming that it is real and has multiplicity one, due to the symmetry of the problem
represented in Figure 1. However, this is not the case of mixed mode loadings, for example, where
two or more singular terms should be considered, with the associated GSIFs.

The energy criterion of the CC is obtained from the energy equilibrium between the states
prior to and after crack initiation. The crack surface creation energy GcS, where S is the crack
surface, must be balanced by the variation in external force work (Wext) and in elastic strain
energy (Wel) so that:

∆Wel +GcS =∆Wext (2)

When solving the CC, the objective is to determine the initiation crack surface Sc and initiation
imposed loading (for instance the initiation force Fc based on the example provided in Figure 1)
by simultaneously fulfilling both stress and energy criteria. We thus need (i) one calculation
on the structure without the crack to compute the stress fields and (ii) several calculations with
different crack surfaces to establish the energy equilibrium. If we are considering small cracks in
a large structure, this may be computationally costly as fine meshes are required in the area close
the crack location. The MA approach provides an alternative and efficient method to apply the
CC, which is described in the sequel. Notice that in a bidimensional problem (2) can be expressed
as

∆Wel +Gcℓ=∆Wext (3)

where ℓ is the newly created crack length (a priori unknown). At the initiation imposed loading
ℓ = ℓc, the initiation crack length. Moreover, it is important to highlight that in problems where
there are notches or pre-existing cracks, the crack nucleation is frequently determined by the
initiation GSIFs of the singularity, denoted as Ki. These parameters depend on the initiation
imposed loading and the geometry of the problem. In the problem represented in Figure 1, there
is only one leading term, see (1), and therefore only one initiation GSIF.

2.2. The matched asymptotic approach

The MA approach of the CC is based on the fact that the crack can be considered as a small
perturbation to the elasticity problem where the structure is subjected to a given loading. It
consists in successively considering two problems to be solved at two scales. The first problem,
solved in the so-called outer domain, is obtained by considering the full structure and neglecting
the crack that initiates. In complement, the second problem focuses only on the inner domain
around the crack initiation point, independently of the whole structure under investigation. The
final solution is then obtained by matching both problems to obtain the stress and energy balance
required for the CC application.
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Figure 2. (a) Outer domain where the crack is disregarded, the contour Γ can be used to
calculate the Generalized Stress Intensity Factor acting at the V-notch for a given force F .
(b) Inner domain where the whole structure is disregarded, the normalized crack length
is 1 and the arrows represent the imposed asymptotic displacement fields prescribed at a
fictitious boundary sufficiently far from the crack.

Outer domain. In the outer problem, the perturbation (i.e. the crack) is neglected and a solution
of the problem without perturbation is provided in the outer domain (i.e. the structure without
crack). This solution is valid everywhere except in a zone near the crack initiation location, for
which a correction to this solution must be brought. The outer domain corresponding to the
example given in Figure 1, is shown in Figure 2a. In the outer domain, the loading is described
in terms of prescribed displacement or force. Then, the GSIF of the singular point (here, the V-
notch tip) can be calculated for a given applied force or displacement. Under the assumptions
of small deformation and linear elasticity, the GSIF is proportional to the imposed force. For
a given imposed force, the GSIF can be computed using a contour integral [2] on a closed
path surrounding the singular point (e.g., Γ in Figure 2a). The GSIF calculation based on the
contour integral can be implemented in 3D [38] or in 2D for isotropic [21, 39] or anisotropic [40,
41] materials, for multi-material configurations [40, 42–44], or even based on displacement
fields measured experimentally by digital image correlation [45]. Other approaches also exist
to compute the GSIF, such as the quasidual function method [46, 47], least square fitting [48] or
an extraction from the strain energy density [49]. The solution obtained in the outer domain is
valid except near the crack initiation location, which requires a correction representative of the
initial problem (Figure 1).

Inner domain. The correction to the solution obtained in the outer domain without the pertur-
bation is obtained through the second problem which is solved in the inner domain. It consists in
focusing only in a zone near the crack initiation location, providing a detailed description of the
crack around the singular point, regardless of the entire structure itself. The inner domain thus
corresponds to the singular point that would lie in an infinite medium and would be subjected
to remote asymptotic displacement or stress fields. The prescribed loading is thus described in
terms of GSIF. An example of inner domain corresponding to the problem depicted in Figure 1 is
shown in Figure 2b. In the inner domain, the space variables are normalized with respect to the
crack length so that the normalized initiation crack length is 1. Since the whole structure geome-
try and boundary conditions are disregarded in the inner domain, the asymptotic displacement
fields are prescribed as boundary conditions in order to obtain the stress and energy balance re-
quired to solve the CC. The solution derived in the inner domain is thus accurate in a zone near
the crack initiation location.

Matching inner and outer problem solutions. Solving the problems in the outer and inner
domains yields two solutions (displacement fields) that accurately represent the initial problem
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Figure 3. Examples of configurations: (a) Inclusion, (b) crack ahead of a V-notch or (c) cav-
ity close to a free edge, that can be studied applying the MA approach of the CC. For display
purposes in the representation ℓ is purposely not small compared to any dimensions of the
structure.

of the structure containing a small crack respectively far from and close to the crack initiation
location. Matching both solutions also requires a common description of the applied loading.
Since it is only described by the GSIF in the inner domain, it justifies the need of calculating
the relation between the GSIF and the applied force or displacement in the outer domain. The
next step in the MA approach consists in combining both solutions to finally solve the initial
problem. This is done by matching both displacement fields in a zone that is (i) sufficiently far
from the singular point in the inner domain and (ii) sufficiently close to it in the outer domain.
The matching conditions finally enable obtaining the stress and energy balance corresponding
to the initial problem under investigation (Figure 1) and further apply the CC for studying crack
initiation.

Solving the CC. The matching of the inner and outer problem solutions provide a general solu-
tion that is accurate over the whole domain under investigation. It yields the displacement fields
in the whole structure in presence of a crack. It thus enables calculating the stress fields before
crack initiation (Equation (1)) as well as the elastic strain energy variation due to crack initiation
(Equation (2)) for a given loading. It finally yields all the ingredients required to solve the CC. The
remaining step consists in determining the minimum imposed loading and the corresponding
crack length for which both stress and energy conditions are fulfilled.

3. Formulation of the approach

The matched asymptotic expansion is used in mechanical engineering to predict the solution,
i.e. the displacement field Uℓ(x1, x2) (where (x1, x2) represents the Cartesian coordinates) in the
vicinity of an element that can be an inclusion, a crack or a cavity, see Figure 3. This element
is frequently called perturbation, since it is assumed that its size ℓ is small compared to any
dimensions of the structure.

As an example to illustrate the formulation of the problem, a small cavity located at the tip of
a V-notched is considered, see Figure 4, where the notation of the problem that is approximated
is represented. The domain Ωℓ has an outer contour Γ = ΓV ∪ΓN ∪ΓD ∪Γℓ. The contour ΓD is
characterized by an imposed displacement Ū , whereas the contours ΓN , ΓV and Γℓ have a stress-
free boundary conditions. The notation ΓV is referred to the contour of the V-notch and Γℓ to the
one of the small perturbation.

Hence, the set of equations that defines the actual problem is

−∇x · σℓ = 0 inΩℓ, (4)

σℓ = C : ∇xUℓ, (5)

σℓ ·n = h̄ on ΓN , (6)
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Figure 4. Representation of the notations in (a) the inner domaine and (b) the outer
domain for the example of a cavity ahead of a V-notch.

σℓ ·n = 0 on ΓV ∪Γℓ, (7)

Uℓ = Ū on ΓD, (8)

where ∇x is referred to the coordinates system of the actual domain x1, x2. In the MA approach, a
twofold representation of Uℓ(x1, x2) is proposed in the form of an outer and an inner expansion.
Notice that it is assumed that the specimen is in the absence of body forces.

Outer expansion. In this approximation, the actual solution is represented as

Ul (x1, x2) =U0(x1, x2)+·· · (9)

where U0(x1, x2) is the solution of the same elasticity problem considering that the perturbation is
not observable in the domain, i.e., solved in an unperturbed domainΩ0. As an example, Figure 4b
represents Ω0 associated with the actual domain of Figure 4a. The second term in (9) denoted
with an ellipsis is a “small correction” that decreases to 0 as ℓ→ 0. The solution U0(x1, x2) is a
good approximation of Uℓ(x1, x2) far away from the perturbation. For this reason, it is called the
outer field. The set of equations that defines U0(x1, x2) is

−∇x · σ0 = 0 inΩ0, (10)

σ0 = C : ∇x U0, (11)

σ0 ·n = h on ΓN , (12)

σ0 ·n = 0 on ΓV, (13)

U0 = Ū on ΓD. (14)

Notice that a better approximation of the outer expansion can be achieved by considering
higher order terms. Particularly, Leguillon et al. considered the second outer term in [50].

Inner expansion. A second expansion can be used to approximate the actual solution by intro-
ducing the change of variables yi = xi/ℓ and ρ = r /ℓ. In the limit when ℓ→ 0 we obtain an un-
bounded domainΩin in which the dimensionless characteristic length of the perturbation is now
equal to 1, see Figure 5 as an example, where the chosen characteristic length is the diameter of
the cavity.

The inner expansion is therefore expressed as

Uℓ(x1, x2) =Uℓ(ℓy1,ℓy2) = F0(ℓ)V0(y1, y2)+F1(ℓ)V1(y1, y2)+·· · (15)
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Figure 5. Scheme of the inner problem.

The set of equations related to the two terms V0(y1, y2) and V1(y1, y2) are

−∇y · σ̃0 = 0 inΩin,

σ̃0 = C : ∇y V0

σ̃0 ·n = 0 on ΓV ∪Γℓ

−∇y · σ̃1 = 0 inΩin,

σ̃1 = C : ∇y V1

σ̃1 ·n = 0 on ΓV ∪Γℓ
The problems indicated above are well-posed when the so-called matching conditions are added
to these sets of equations. As a results, it is obtained an inner expansion that is a good approxi-
mation of the actual solution Uℓ(x1, x2) in the neighbourhood of the perturbation.

Matching conditions. Since the outer expansion is a good approximation of the actual solution
far away from the location of the perturbation and the inner expansion is a good approximation
in the vicinity of the perturbation, there must exist an intermediate region where both expansions
are valid. In that region the matching conditions are defined. The behaviour of the far field near
the origin can be described by an expansion in powers of the distance to the singular point r , that
can be the Taylor’s expansion in the case of a smooth stress field or the Williams’ expansion in
case of a singularity. Assuming the example of the cavity in a V-notch highlighted in Figure 4, the
William’s expansion can be applied, normally expressed in polar coordinates as

U (r,θ) =U (0,0)+K rλu(θ)+o(rλ), (16)

assuming that the dominant term is real and have multiplicity one. The matching conditions can
be expressed as

F0(ℓ)V0(y1, y2) ≈ U (0,0), when ρ→∞ (17)

F1(ℓ)V1(y1, y2) ≈ Kℓλρλu(θ), when ρ→∞ (18)

where the term ≈ means “behaves like” and ρ = r /ℓ=
√

y2
1 + y2

2 . It can thus be set:

F0(ℓ) = 1 and V0(y1, y2) ≈U (0,0), when ρ→∞ (19)

F1(ℓ) = Kℓλ and V1(y1, y2) ≈ ρλu(θ). when ρ→∞ (20)

However, it can be shown that the matching condition over V1(y1, y2) does not fulfill the Lax-
Milgram theorem, since it has an infinite energy in the unbounded domain Ωin, while it should
decrease to 0 at infinity to have a finite energy. For this reason, the superposition principle is
applied,

V1(y1, y2) = ρλu(θ)+ V̂1(y1, y2) (21)

where V̂1(y1, y2) is the solution to a well-posed problem. The set of equations that defines the
new term V̂1(y1, y2) is:

−∇y · σ̂1 = 0 inΩin,

σ̂1 = C : ∇y V̂1,
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Figure 6. FEM model of the outer domain problem.

σ̂1 ·n = 0 on Γℓ,

V̂1 ≈ 0 as ρ→∞,

σ̂1 ·n = −C : ∇y
(
ρu(θ)

) ·n on ΓV

Note that the terms V̂1(y1, y2) and V1(y1, y2) are independent of the global geometry and the
applied load, that are included in the GSIF K . Finally, it yields a new expression for the inner
expansion, where V̂1(y1, y2) has finite energy at infinity,

Uℓ(x1, x2) =Uℓ(ℓy1,ℓy2) = F0(ℓ)U (0,0)+Kℓλ
[
ρλu(θ)+ V̂1(y1, y2)

]
+o(ℓλ). (22)

The MA approach thus enables determining the displacement field accounting for the pertur-
bation by the initiation crack length. It yields all the ingredients required to compute the initi-
ation loading and crack length by further implementation of the CC, i.e. the stress field before
crack initiation and the elastic strain energy release due to the crack.

4. Numerical implementation of the matched asymptotic approach

The strategy outlined and described in previous sections can be implemented using the typi-
cal computational tools employed in solid mechanics, such as the Finite Element Method and
the Boundary Element Method. In this work, the applications will focus on the Finite Element
Method, but the idea directly applies to other computational methods. The numerical imple-
mentation will be applied initially to the problem described in Figure 1 as a simple case and af-
ter it will be extended to more complex cases, where some other aspects have to be taken into
account.

As described in Section 2.1, the implementation of the coupled criterion requires the evalua-
tion of the stress and energy criteria separately. Thus, the objective of the numerical implemen-
tation of the MA will be the evaluation of these two criteria. Following the strategy of the MA
approach, two domains, inner and outer, are used for this objective. The numerical implementa-
tion will consist on using the Finite Element Methods to compute the necessary elastic solutions
in the two domains. Some of them will be used to impose matching between the two domains
and others to obtain the stresses or the change in elastic strain energy necessary to evaluate the
stress and energy criteria.

In this sense, the steps of a CC analysis assisted by MA and FEM for the problem described in
Section 2.1 are the following:

(1) Generation of a FEM model of the outer domain without crack. The mesh should be
fine enough around the V-notch in order to approximate accurately the displacement
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solution around this point, see Figure 6. The minimum required mesh size can be
determined based on a mesh convergence analysis.

(2) Computation of the outer domain model for a certain load. If the problem can be
considered linear, i.e. material behavior and boundary conditions are linear and it is
possible to assume small deformations, the solution will be linear with the load. In this
case, a unit load can be applied and the results obtained can be multiplied by the load to
get any result.

(3) The displacements uFE(ρ,θ) and traction vector t FE(ρ,θ) in the vicinity of the V-notch are
extracted from the outer-domain model in a closed contour around (noted Γ), typically
a circle. Since this first problem contains a V-notch, these results can be directly used to
compute the value of the GSIF by using the property of orthogonality of modes through
the next contour integral:

K ≈
∫
Γ t FE(ρ,θ) ·ρλu−(θ)− t−(ρ,θ) ·uFE(ρ,θ)dΓ∫
Γ t (ρ,θ) ·ρλu−(θ)− t−(ρ,θ) ·ρλu(θ)dΓ

, (23)

where u(θ) is the displacement function of the singular mode corresponding to the
exponentλ and the GSIF K and u−(θ) is the corresponding dual one. The traction vectors
t and t− respectively correspond to the displacement functions of the singular and dual
modes. Once K is known, the stresses before the crack initiation (necessary for the
evaluation of the stress criterion) can be extracted directly from the singular expansion,
assuming the crack length at initiation is sufficiently small compared with the size of the
region governed by the first term of the William’s expansion.

(4) Generation of a FE model of the inner domain with crack, see Figure 7. The external
radius should be much larger than the crack length. Typically, the dimensionless crack
length is set to 1, and the external radius should be at least 200. The displacements given
by the singular mode are prescribed at the external boundaries.

(5) Two versions of this model are computed:
(a) Submodel 0: This submodel corresponds to the state just before the crack initiation.

The two crack faces (and then their corresponding nodes) are tied to each other, in
order to model the situation without crack.

(b) Submodel 1: This submodel corresponds to the state just after the crack initiation.
Crack faces are stress-free.

From these two submodels, the change in potential elastic energy∆Wel necessary for the
evaluation of the energy criterion (Equation (2)). Several strategies can be used:
(a) Crack closure technique: The change in potential elastic energy can be obtained

by the work of the virtual forces necessary to close the cracks for problems with
displacement control loading. Assuming linearity in the process, the change in
potential elastic energy can be computed with the following expression:

∆Wext −∆Wel =
∫
Γcrack

1

2
t 0+ · (u1+−u1−)dΓcrack. (24)

where t 0+ is the traction vector at the submodel 0 at one of the crack faces, named
positive. The terms t 1+ and t 1− refer to the displacements at the positive and the
opposite faces respectively in the submodel 1. In case of the existence of force
control loads, the below expression should include the work done by the external
forces during crack closure. The fact of having to take into account the external
forces takes away the advantages of this technique, so the next technique would be
recommended in case of force control loading.
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(b) Technique based on the change in the work of the external forces applied at the
external boundary. The change in potential energy can be computed by:

∆Wext −∆Wel =
∫
Γext

1

2
(t 0u1 − t 1u0)dΓext, (25)

where t 0 and t 1 are the traction vectors at the external boundary in the submodels
0 and 1 respectively. In both strategies, it is more convenient to extract the nodal
forces directly from the FEM results and multiply them by the nodal displacement,
instead of computing the contour integral.

(c) Technique based on the change in elastic strain energy: This technique is based
on computing directly the change in elastic strain energy. This is especially useful
when the problem is displacement controlled, otherwise it will be necessary to add
the work done by external forces during crack initiation. Thus, the next general
expression is:

∆Wext −∆Wel =
∫
ΓN

1

2
t
(
u1 −u0)dΓ+

∫
Ω

1

2

(
σ0 : ε0 −σ1 : ε1

)
dΩ (26)

where ΓN corresponds to the boundary with Neumann boundary condition. The
first term would vanish in case of displacement control.

(6) Since in this problem ℓ is the only characteristic length and the space variables are made
dimensionless with respect to ℓ in the inner domain, the dimensionless crack length in
the inner domain is 1. Therefore, it is only needed to compute ∆Wel for a dimension
crack length of 1. In fact, according to the Dimensional Analysis of the inner domain, the
change in potential elastic energy in this problem should follow the next expression:

∆Wext −∆Wel =
K 2

E
ℓ2λAh (27)

where h is the thickness, and A is a dimensionless parameter that can be obtained by the
steps described before for a unit imposed GSIF K . In case other characteristic lengths are
present in the inner domain, such as a blunt notch radius rb, or other unknown about the
crack initiation geometry, such as deviation angleα, the term A becomes a dimensionless
function that contains this dependence in terms of dimensionless parameters, such as
rb/ℓ or α. In next sections more complex problems will be presented in this sense.

(7) Once the value of K is estimated, the coupled criterion of the finite fracture mechanics
can be applied in a quite straightforward manner:

• Stress criterion: Combining the first term of the expression in (1) and the condition
outlined for the stress criterion, this criterion can be expressed as:

K rλ−1s(θ) ≥σc∀ r, 0 É r É ℓ (28)

Since for singular cases (λ< 1) this function is decreasing with r , this condition can
also be also written as:

Kℓλ−1s(θ) ≥σc. (29)

• Energy criterion: Combining the expression in (27) with the condition in (2), the
energy criterion can be expressed as:

K 2

E
ℓ2λAh ≥Gcℓh (30)

The two criteria have to be fulfilled simultaneously. In this case, since the left term
in Equation (29) is a decreasing function of ℓ and the left term in Equation (30) is an
increasing function of ℓ, the minimum value of K for which the two conditions are
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Figure 7. FEM model of the inner domain problem.

fulfilled is given solving the conditions as two equations with two unknowns ℓ and K .
The solution, for a critical length ℓi, is:

ℓi = GcE s(θ)2

Aσ2
c

(31)

and for the critical GSIF Ki,

Ki =
(
GcE

A

)λ−1 (
σc

s(θ)

)2λ−1

(32)

Since Ki is directly proportional to the external load, the critical load for crack initiation can be
calculated directly from the critical value for Ki.

5. Implementation in complex cases and examples

Previous sections were dedicated to present the MA approach of the CC in a relatively simple 2D
configuration involving a single length parameter (the crack length) under opening mode, such
as in [51]. In this section, we provide a detailed overview of more complex configurations and
examples to thoroughly demonstrate the full potential of the MA approach.

5.1. Cases with two lengths involved

The problem under investigation may involve more than one characteristic length parameter. An
emblematic example is the case of crack initiation at the tip of a blunted V-notch [39, 52, 53],
including as length parameters both the V-notch radius rV and the crack length ℓ. In such kind of
problems, one must choose which parameter will be used for the inner expansion. The correction
of the outer expansion will thus be obtained either in the inner domain where the initiation
crack length is 1 and the dimensionless V-notch radius is rV/ℓ, or in the inner domain where
the V-notch radius is 1 and the dimensionless initiation crack length is ℓ/rV. Either approach is
strictly equivalent, so that the final solution is independent of the choice of the normalization
parameter. The normalization parameter can thus be chosen for practicality reasons, such as the
use of a single (expansion with respect to the V-notch radius) instead of several FE meshes and
calculations (expansion with respect to the crack length). Other examples of the MA approach
with at least two length parameters include crack initiation at a shallow notch [54], a blunted
U-notch [55, 56], or a pore crack initiation [57, 58].
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5.2. Mixed mode loading

Considering mixed mode loading crack initiation means that the outer and inner expansions
involve more than one term in the form K j rλ j u j (θ), such as for instance:

U (r,θ) =U (0,0)+Karλa ua(θ)+Kbrλb ub(θ)+·· · . (33)

This is classically encountered when studying mixed opening and shear mode crack initiation,
for instance at a V-notch in 2D [51, 53, 59–61] or in 3D [56, 62]. Higher order terms, such as
the T-stress, may also be involved for instance when studying 2D crack deviation [63] or 3D
crack front segmentation into facets [64]. In such configurations, the stress field is composed
of the sum of the terms corresponding to each mode. The elastic strain energy (and thus the
Incremental Energy Release Rate) is the sum of terms corresponding to each mode (in the form
α j K j r 2λ j ) as well as coupling terms (in the form α j k K j Kk rλ j +λk ). These terms can be computed
either by directly prescribing mixed-mode loading boundary conditions in the inner domain, or
successively prescribing single-mode loading boundary conditions then using the superposition
principle.

5.3. Interface cracking

The MA of the CC can be applied to study crack initiation at an interface between two materials,
possibly in presence of a singular point [59, 65]. The characteristic exponent and correspond-
ing mode depend on the elastic property contrast and singularity geometry [66, 67]. It may even
result in complex characteristic exponents and modes [68], which does not prevent the imple-
mentation of the MA approach as the displacement field remains real but may requires the ma-
nipulation of complex numbers. Applications of the MA of the CC to interface cracking include
bimaterial joint failure [69–72] with the consideration of residual stresses [73], crack initiation
in microelectronics structures [74, 75], bond failure of a SiC–SiC brazed assembly [76] and crack
deflection in layered ceramics [77] or ceramic matrix composites [78].

5.4. Comparison with other models

The MA approach of the CC was compared to other fracture models such as Cohesive Zone
Model (CZM), Phase Field (PF) approach for fracture, Thick Level Set (TLS) and Strain Energy
Density (SED) approach. It was shown that the MA approach of the CC and Dugdale CZM yielded
similar initiation GSIF when applied to predict crack initiation at a V-notch [79, 80], which was a
particular case of the more general result that the CZM traction-separation profile corresponding
to the CC actually depends on the geometry, the type of loading, the cracking mechanism and
the adopted stress criterion [23]. The comparison between the TLS and the matched asymptotic
approach of the CC revealed similar apparent strengths for all cases provided the assumptions of
the MA approach are satisfied [81], as well as a dependence of the TLS results to the choice of the
stress decrease as a function of the crack opening. This dependence can be put in parallel to the
traction-separation profile of CZM so that one stress decrease function could be identified in the
TLS to retrieve the CC results. Abaza et al. [82] showed that the PF regularization length could
be calibrated so that the apparent SIF at crack nucleation were similar to those obtained with the
CC. Similar variations of the apparent SIF at crack nucleation in notched ceramic specimens were
then obtained for different notch geometries using CC and PF. The SED and CC comparison in the
case of a V-notch loaded under in-plane shear revealed that the analytically computed initiation
GSIF were proportional to powers of KIc andσc for both methods. The proportionality factor was
a function of the notch angle for the CC whereas it was a function of the Poisson’s ratio for the
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SED approach. Basing the control volume over which the strain energy density was averaged,
both approaches predicted similar apparent SIF at crack initiation [83].

5.5. 3D

There is no restriction regarding the 3D implementation of the MA approach [84]. The displace-
ment field is based on 3D William’s expansions [85, 86] which takes the same general form as the
2D one. The 3D singular exponent and associated eigenmode can be computed in a similar way
to the 2D one [2, 87]. The main difference compared to the 2D case is related to the dual mode.
If the primal mode is rλu(θ,φ), then the dual mode is r−λ−1u−

3D(θ,ϕ) in 3D instead of r−λu−
2D(θ)

in 2D. Otherwise, the space coordinates expansion is also performed with respect to a character-
istic length parameter, which can be chosen as the crack extension in a given direction [56, 64,
84] or with respect to the square root of the crack surface [62]. Overall, the CC has takes the same
form as in 2D and the same contour integral can be used to compute the GSIF [38], except that
the integration domain is a 2D surface in the volume encompassing the singular point instead
of a 1D curve in a surface. The main difficulty for the 3D CC application is the crack shape de-
termination. A 2D crack can generally be described by its length and angle, but there is an infi-
nite number of possible 3D crack surface. Even assuming a planar crack path, this plane must
be determined, which can be done for instance by maximizing the stress criterion [56] or based
on both stress and energy requirements by minimizing the initiation loading [64]. Then, in the
crack plane there is still an infinite number of 2D curves to describe the crack front. An option
to overcome this difficulty is to adopt a parameterized description of the crack shape [62, 64] or
derive the crack shapes from the stress isocontours [56].

5.6. Other applications

Some works including the MA approach of the CC also cover studying the presence of a process
zone or damage zone ahead of a V-notch or a crack [88–90]. It also provided a robust method
for small crack detection based on displacement fields measured by digital image correlation [50,
91]. Several works about ceramic failure were also proposed, such as cracking in layered ceram-
ics [92], platelet-based ceramics [41, 93, 94] or surface defects in polycristalline ceramics [95].
Other works concerned brittle fracture size effect [96], strength anisotropy of 3D printed mate-
rials [97], multicracking of a stiff inclusion in a soft matrix [98] or elliptical hole-induced crack
initiation [99].

6. Conclusions and further developments

Crack initiation is an unsolved problem in Linear Elastic Fracture Mechanics, that does manage
correctly to predict crack propagation in diverse material systems. However, crack initiation re-
quires the employment of more complex, computational costly and controversial tools. This re-
view shows how Matched Asymptotics and the Coupled Criterion of the Finite Fracture Mechan-
ics have been combined in the literature to predict crack initiation near stress singularities, such
as V-notches or multimaterial corners, or related to, such as U-notches.

The main advantages of this combination are: (i) it allows to obtain predictions with a very
low computational cost, where typically only linear models are involved and quasianalytical
expressions can be obtained for the load prediction, (ii) The results are easily generalized for
variations in material properties and even geometry, (iii) it is physically based, thus results can
be interpreted, explained and tailored following a physical reasoning and finally (iv) according to
the literature review it presents a good agreement with experiments.
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The main disadvantages are (i) the solutions are still limited to crack length at onset that has
to be very small compared with the characteristic lengths of the problem and (ii) it is necessary
to introduce special assumptions when nonlinearities are involved.

Other methods have been used to predict crack initiation in the stress singularities or in
the problems target of the combination of matched asymptotics and finite fracture mechanics:
Cohesive Zone Models (CZM) prescribe a cohesive law between a pair of surfaces, relating force
and separation, see e.g. [80]. This method is very versatile and presents good agreement with
experiments, but requires setting crack geometry before initiation and typically involve nonlinear
computational models. In the last decades gradient-damage-based models such as that named
Phase Field have been extensively developed. These models are based on the regularization of
the crack through a regularization length. It has been proven that when this length vanishes, the
result of LEFM is recovered. Then, for V-notches and related problems, these models present the
same problems as LEFM. To overcome this issue, several strategies have been proposed, such as
assuming that the regularization length is a material parameter [100], defining a CZM [101], or
understanding this regularization length in the context of the CC [90].
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