ACADEMIE
DES SCIENCES

INSTITUT DE FRANCE

Comptes Rendus

Meécanique

Bastien Andrieu, Bruno Maugars and Eric Quémerais
Dynamic load-balanced point location algorithm for data mapping
Volume 354 (2026), p.53-70

Online since: 3 February 2026

https://doi.org/10.5802/crmeca.335

[cO=2mmmm This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

<

MERSENNE

The Comptes Rendus. Mécanique are a member of the
Mersenne Center for open scientific publishing
www.centre-mersenne.org — e-ISSN : 1873-7234


https://doi.org/10.5802/crmeca.335
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

ACADEMIE Comptes Rendus. Mécanique
DES SCIENCES 2026, Vol. 354, p. 53-70
https://doi.org/10.5802/crmeca.335

INSTITUT DE FRANCE

Research article

Dynamic load-balanced point location
algorithm for data mapping

Bastien Andrieu® * %, Bruno Maugars ” and Eric Quémerais ® ¢

% ONERA/DMPE, Université Paris-Saclay, 92320 Chatillon, France
b ONERA/DAAA, Université Paris-Saclay, 92320 Chatillon, France

E-mails: bastien.andrieu@onera.fr, bruno.maugars@onera.fr,
eric.quemerais@onera.fr

Abstract. Data mapping between geometric domains with non-matching discretizations is an essential step
in multi-component numerical simulation workflows. This paper presents a novel point location algorithm,
designed for transferring data from unstructured meshes to point clouds, in a massively parallel distributed
environment. Special emphasis is placed on load balancing, which is paramount for making the most of
computing resources and achieve optimal performance. In general, the geometric entities of interest are
unevenly distributed in the input frame provided by the calling codes. The algorithm therefore aims to
rapidly prune the search space using a series of parallel preconditioning techniques, while redistributing data
equitably across all processes at each step. Exact point-in-cell location is then computed in an embarrassingly
parallel, well-balanced frame. All data movements performed throughout the point location algorithm
are transparent to the calling codes, as the resulting geometric and parallel mappings are returned in the
same frame as the input data. These mappings enable data transfer via spatial interpolation and optimized
process-to-process communications. A weak scaling study is carried out in three scenarios representative
of the variety of real-life applications. Comparison with a state-of-the-art algorithm shows that the new
algorithm performs better overall, with speed-ups of up to a factor of 10 on 4,800 CPU cores.

Keywords. High Performance Computing (HPC), Message Passing Interface (MPI), dynamic load balancing,
computational geometry.
Note. Article submitted by invitation.

Manuscript received 15 January 2025, revised 5 October 2025, accepted 20 October 2025, online since 3 Febru-
ary 2026.

1. Introduction

In many scientific and engineering applications, numerical simulations require transferring data
between arbitrarily discretized domains. Such applications include code coupling for multi-
physics simulations [1,2], solution transfer following adaptive remeshing [3], and Lagrangian
particle tracking [4]. Depending on the different numerical methods, these spatial discretizations
usually consist of meshes or point clouds.

Data transfer from a source (donor) domain to a target (receiver) domain breaks down to two
main steps. First, a mapping between the source and target degrees-of-freedom (DoFs) must
be computed. When treating the target DoFs as points, the task consists in identifying which
cell of the source mesh contains each of these points. Such points typically correspond to mesh

* Corresponding author

ISSN (electronic): 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/


https://doi.org/10.5802/crmeca.335
https://orcid.org/0009-0000-9937-0244
https://orcid.org/0009-0007-2018-6358
mailto:bastien.andrieu@onera.fr
mailto:bruno.maugars@onera.fr
mailto:eric.quemerais@onera.fr
https://comptes-rendus.academie-sciences.fr/mecanique/

54 Bastien Andrieu, Bruno Maugars and Eric Quémerais

nodes or quadrature points in the Finite Element and Discontinuous Galerkin methods, or cell
centers in the Finite Volume method. Second, the source-to-target mapping is used to interpolate
and transfer data. The location step is the most computationally intense, but only needs to
be performed once at initialization if both source and target geometries remain static during
the simulation. However, data transfer between domains with dynamic discretizations requires
repeated location computations, making the performance of this operation crucial. Ideally, the
time needed for data mapping should be within the same order of magnitude as the time required
for a single iteration of a computational code. Naively testing all possible pairs of cells and points
results in quadratic complexity, which is prohibitively expensive in practical applications. It is
therefore essential to devise efficient preconditioning techniques that eliminate all the irrelevant
pairs.

The growing demand for high-fidelity simulations requires an ever-increasing number of
degrees-of-freedom, and simulations exceeding a billion DoFs are becoming more prevalent [5].
Such simulations require so much memory and computing power that they can only be achieved
on massively parallel distributed-memory systems, using parallel programming models such as
the Message Passing Interface (MPI) [6]. In this context, the domains between which data is to be
transferred are decomposed into partitions distributed across multiple processes.

This parallel context poses an additional challenge. The domain decompositions are tailored
for the specific needs of each computational code and are therefore not optimal for the location
problem. Since the source and target partitions are unlikely to align, extra communication is
necessary to compute point location and exchange interpolated data. To prevent communication
latency from becoming a bottleneck, the preconditioning stage must also minimize unnecessary
communications. Besides, the geometric entities of interest may be poorly distributed in the
decompositions provided as input to the location algorithm. For instance, when transferring data
through the common surface between two adjacent volume domains, only a fraction of processes
hold a portion of this surface in their partition. If no action is taken to redistribute the workload,
this imbalance can severely degrade performance.

The distribution and amount of input data can vary significantly across different data map-
ping applications. Ensuring good performance regardless of this variability is challenging and
developing a single algorithm that runs efficiently in all situations remains an open problem.

The rest of this paper is structured as follows. Section 2 gives a brief overview of existing work
on data transfer for massively parallel simulations. A novel parallel point location algorithm
tailored for data transfer between distributed meshes and point clouds is then described in
Section 3. Finally, a performance study of this algorithm in several test cases representative of
the variety of real applications is reported in Section 4, along with comparisons with another
high-performance algorithm.

2. Related work

The precise Code Interaction Coupling Environment (preCICE) library (7] is a state-of-the-art
open-source coupling library which features multiple data transfer methods. The underlying
location algorithm, recently improved by Totounferoush et al. [8], can be broken down into two
major steps. The first step consists in comparing the axis-aligned bounding boxes (AABBs) of
the mesh partitions owned by each process, in order to establish the pairs of processes from
the two coupled codes that will need to communicate. The AABBs are initially collected by a
master process for each coupled code. They are then transmitted to the other master process
and subsequently broadcast to all the remaining processes involved in the computation. In the
second step, source mesh partitions are exchanged to the corresponding target processes using
a process-to-process communication pattern. Each process then locates its own target points



Bastien Andrieu, Bruno Maugars and Eric Quémerais 55

within the received source mesh partitions. This is performed efficiently using an R-Tree data
structure. While showing great improvement over their previous algorithm, some limitations still
remain. Most of the total execution time is spent exchanging and comparing the AABBs in the
first step and communicating source mesh partitions to the target processes. The load imbalance
issue is also not addressed. In fact, the performance studies shown assume meshes uniformly
distributed on all processes, which is unlikely in real-life surface coupling applications.

The Finite Volume Mesh (FVM) library (9] features location and exchange capabilities, leaving
the interpolation step to the calling codes for better genericity. The location algorithm follows
essentially the same two steps as preCICE, albeit with noticeable strategic differences. First, the
partition AABBs are exchanged via collective communications, thus avoiding the bottleneck in-
herent to the master-slave approach implemented in preCICE. Second, the location computation
is performed on the source side, meaning each process sends its target points to its correspond-
ing source processes. This approach reduces the amount of communication, since smaller mes-
sages are needed to exchange points instead of mesh partitions. In order to keep the memory re-
quirements low, blocking send/receive communications are used and the received point clouds
are located one at a time. The location step is then accelerated by storing the received points in
alocal octree. Fournier [10] notes that this strategy can lead to excessive serialization in worst-
case scenarios. To solve this problem, a technique for ordering communicating processes by re-
cursive subdivision is implemented in the Parallel Location and Exchange (PLE) library, which
is derived from FVM. Fournier also points out that the first coarse-grained filter based on a sin-
gle AABB per process can lead to the communication of a large number of potentially irrelevant
points, due to numerous false positive detections. Assuming a uniformly distributed point cloud,
the number of points received by each process is correlated to the volume of its AABB. Yet this
volume highly depends on the shape of the partitions and can vary considerably from one pro-
cess to another, resulting in significant load imbalance. Possible optimizations are proposed to
address this issue, including the use of a distributed box-tree data structure, enabling finer filter-
ing. Once calculated by the calling code, the interpolated data is finally exchanged following the
same communication pattern as in the first stage of the location algorithm. All pairs of processes
which partition AABBs intersect thus communicate, even if no points from one process have ef-
fectively been located in the mesh partition held by the other. Load imbalance and serialization
can therefore compromise this step as well.

The Data Transfer Kit (DTK) library [11] addresses the load imbalance issue by creating a
secondary rendezvous decomposition [12], well balanced for the location problem. Points and
cells outside the domain bounded by the intersection of the global source and target AABBs
are first discarded. Recursive coordinate bisection is then performed on the combined source
and target geometries. The MPI communicator is also recursively split along the way, leaving in
the end one partition per process, each containing geometrically close source cells and target
points. The splitting procedure aims to balance the combined number of source cells and target
points. Some rendezvous partitions can thus end up containing virtually only source cells and
no target points, or vice versa. This worst-case scenario can occur if the level of refinement of
both source and target discretizations differ significantly. Geometric location in the rendezvous
decomposition is accelerated using geometric binning or a local kd-tree. The authors also
propose to perform the interpolation step in a well-balanced fashion in the same rendezvous
decomposition, at the expense of additional communications required to transfer the source field
data from the initial decomposition to the rendezvous decomposition.

The algorithm presented in the next section aims to remedy the shortcomings mentioned
above, by developing a more refined preconditioning strategy and ensuring good load balance
at each critical step.



56 Bastien Andrieu, Bruno Maugars and Eric Quémerais

3. Point location algorithm
3.1. Key concepts

Before presenting this algorithm, the following paragraphs define the terms used in this paper
and outline the key concepts at the core of our point location algorithm.

3.1.1. Point location problem

We focus on data transfer between unstructured meshes and point clouds, with interpolation
schemes using stencils restricted to the source cell containing each target point. Other types of
interpolation with wider stencils (e.g. k nearest neighbors, radial basis functions, etc.) would
require a different preconditioning strategy, which will be studied in future work.

Given a set S of source cells and a set T of target points, point location consists in finding for
each point in T the host cell from S in which it lies, if any.

The two sets S and T are initially distributed on P processes that form an arbitrary MPI
communicator. All subsequent communications will occur within this communicator, which is
provided as an input.

3.1.2. Frames

Dynamic load balancing is essential to achieve high performance on distributed-memory
systems, and involves redistributing data across processes throughout the algorithm. In this
paper, the different data distributions are called frames. If E designates a set of entities, the part
of E held by process p in frame & will be denoted by Epg . The size of this part is denoted by IEpg l.
The input frame will be denoted by .#. In order to remain as generic as possible, no particular
assumption is made on this frame. Some parts may contain more entities than others, some may
even be empty. Some entities may also be held by multiple processes, as in the case of ghost cells
or mesh vertices located on boundaries between adjacent partitions.

3.1.3. Global identifiers

To keep track of an entity (a source cell, its bounding box or a target point) moving across
different frames, our algorithm relies on global identifiers (IDs). Contrary to the local IDs used
within each partition, global IDs are frame-independent and unique, meaning that if two entities
on different processes share the same global ID they are in fact two instances of the same entity.
This is essential for achieving reproducible results that do not depend on how data is distributed
in the input frame. Such global numbering can either be provided as an input, or generated from
any ordered data set.

3.1.4. Dynamic load balancing framework

Dynamic load balancing is traditionally achieved using graph-based partitioning methods
since they generally yield simply connected partitions with minimal edge cut. While these
properties are essential for most computational codes, they are of little interest for solving the
point location problem in parallel. When partition connectedness is not an issue, parallel sorting
algorithms provide a more cost-effective solution for redistributing the workload. Global IDs are
also used extensively for this purpose in our algorithm. Entities are re-partitioned by assigning
each process an equal-sized block of entities with contiguous global IDs. This is achieved by
sorting entities globally in ascending order of IDs using parallel bucket sort. If entities have
associated weights, a parallel bucket sampling algorithm' is used in order to devise blocks of
equal weight prior to sorting.

1 An implementation on the GPU of this algorithm is presented in [13].



Bastien Andrieu, Bruno Maugars and Eric Quémerais 57

3.1.5. Subsets

Some input data might not be relevant to the location problem, e.g. cells that are guaranteed
to contain no points. Our algorithm aims to isolate the subsets of interest by quickly pruning
these irrelevant entities. Building new global numberings restricted to such subsets provides
better conditioning for the sorting algorithms used for dynamic load balancing. Communication
graphs are associated to each subset in order to enable data movement between the different
frames. To make this possible, an explicit link between the subset and parent global numberings
are maintained throughout the different steps of our algorithm. Table 1 illustrates this concept.

Table 1. Illustration of a subset (second row) and its parent set (first row) distributed on three processes (each
process is represented by a color). The subset is described in two different frames: & which is balanced
with respect to the parent set, and %, which is balanced with respect to the subset. Frame % is obtained by
redistributing the subset entities in ascending order of parent global IDs. This order is preserved in the global
numbering proper to the subset.

Frame % Frame %,
GlobalID in parentset | 37 1 9 4 6
Global ID in subset - 3 - |- - | - 1 2

3.2. Algorithm outline

The point location algorithm presented in this paper is structured in the following five main steps.
A first coarse-grained filter is followed by a second, finer preconditioning step based on fast
point-in-box tests. This search for candidate cell-point pairs is accelerated using a distributed
tree structure, which allows to redistribute evenly the location workload. The third step consists
in computing exact point-in-cell location for all candidate pairs. Potential conflicts are then
resolved in a fourth step, in order to retain at most one host cell per point. Last, the source-
to-target process-to-process communication channels are established for subsequent exchanges
of interpolated data.

These five steps are detailed in the next sections and illustrated with a basic, two-dimensional
example.

3.3. Coarse filtering

The first step in our point location algorithm consists in a coarse filtering similar to the one
proposed by Plimpton et al. [12]. The aim is to quickly eliminate cells and points that are clearly
irrelevant to the location problem. Each process computes the AABB of the source cells in its
partition. A collective reduction operation is then performed to obtain the global AABB of §,
denoted by S (shown in solid gray line in Figure 1(b)). Let T’ denote the subset of target points
located inside S. These are the only points that can possibly be located inside a source cell. The
global AABB T of T’ is then computed in a similar way (shown in dashed black line in Figure 1(b)).
Let ' denote the subset of cells whose AABB intersects T’. These are the only cells that can
possibly contain target points. Cells (resp. points) notin S’ (resp. T') will no longer be considered
in the remainder of the algorithm. This step proves useful when the source and target geometries
overlap only partially (such as in the example of Figure 1), yet induces very little overhead if they
overlap completely, as will be highlighted in Section 4.

At this stage, each process holds a (possibly unequal) part of each subset S’ and T”, respectively
denoted by S;,] and T,’;” . In the example shown in Figure 1, S’ is distributed over almost only two
processes.



58 Bastien Andrieu, Bruno Maugars and Eric Quémerais

o o [e 60060000050
oo o S oooooo °o o °°ooo
AENAS S o o:oooo ENA S
° © ©o © © 0o
o o 00 )
o5 | o X 0% 20°% o 5
o 0° 0%
B o o
VAT Yo R CZANe)
o
°© o © ° o ()
o A o 000
) o ° ° ° 0 (8)
o o
© o ° ° o
o © 6 o° 0%0 o
o o © °© o 9,
o} ° o o 000
o AN ° o Jo © o (o)
° ©°50°%50
o o
° o 0° 500
1o © 5 ° 0% 000
Q o\ o ° 000
° o o0 ooo
9 Qoooo0® ©°0,%
©\o o000 @ 9 9gQ%0
" / ;s .
(a) Whole partitions. (b) Subsets S’ and T’ in the same frame. The solid gray

and dashed black rectangles depict the global AABBs of S
and T', respectively.

Figure 1. Source mesh and target point cloud partitions in the input frame .# (each color represents a process).

3.4. Search for candidate pairs

The search for candidate cell-point pairs relies on inexpensive point-in-box tests. However,
the naive strategy that consists in checking all possible pairs local to each process becomes
prohibitively expensive for large numbers of cells and points. Besides, at this stage, subsets S’
and T’ are arbitrarily distributed in the input frame, and their respective parts generally do not
align.

Therefore, each process must identify to which other processes each of its points or boxes
should be sent. This filtering is also based on AABB comparisons. To address the issues raised
in Section 2, our algorithm relies on multiple boxes per process. This more refined filter helps
reducing the amount of data exchanged in this step.

Sundar et al. [14] present a method for constructing distributed linear octrees that naturally
yields such boxes. This octree structure can also be leveraged to speed up the second stage of the
candidate search, local to each process.

In principle, the distributed box-tree proposed by Fournier [10] is quite similar to this struc-
ture. Both are constructed following a bottom-up approach, ensuring a good load balance us-
ing re-partitioning based on the Morton space-filling curve [15]. However, whereas the box-tree
requires fine-tuning of four parameters with complex combined effects, the octree proposed by
Sundar is governed by just two parameters: the maximum depth of the tree and the maximum
number of points contained in each of its leaf nodes.

3.4.1. Octree construction

The algorithm for constructing the distributed octree [14] consists in the following main steps.
Target points are first sorted globally in ascending Morton order and redistributed evenly to
obtain a new frame @. In this frame, all partitions {T;,@} contain an equal amount of points. This
first step is further detailed in Section 3.4.3. The points are then sorted locally and converted
into octree leaves at maximum depth. Then, a minimal linear octree is constructed in parallel by
filling in the gaps between successive leaves by empty octants. Finally, the octree is coarsened
so as to partition the point cloud into as few coarse blocks as possible while maintaining good
load balance. From each of these coarse blocks stems a finer sub-tree local only to the process
owning that block. This algorithm ensures that the number of blocks per process is between 1



Bastien Andrieu, Bruno Maugars and Eric Quémerais 59

i o e =

O

(a) Distributed quadtree and the associated target parti- (b) AABBs of the source cells in the Morton SFC-based
tions in frame @. Coarse blocks (solid black rectangles) balanced frame 2.

and their effective AABBs (dashed rectangles) are shown,

along with the sub-trees local to each process.

Figure 2. SFC-based frames for target and source entities.

and 8. These sub-trees share a common ancestry, thus forming a complete, distributed octree.
Such an octree (in fact a two-dimensional quadtree) is represented in Figure 2(a).

3.4.2. Octree query

Once octree construction is complete, our algorithm proceeds as follows. The coarse blocks
are gathered on all processes so that each process can determine to which other processes it
should send the source AABBs it owns. A given source AABB is sent to a process if it intersects
at least one of the coarse blocks owned by this process. In order to further reduce the amount of
false positive detections, each block is reduced to the AABB of the points it contains. Such AABBs
are shown as dashed rectangles in Figure 2(a).

As the number of processes increases, the memory and CPU cost of storing and querying these
blocks can become problematic. CPU overhead can be amortized by storing the blocks in a tree
structure, thus enabling queries in O(IS’pllog(P)) time. This operation is trivial, since the blocks
are natively obtained from a coarse octree. The shared coarse tree associated to the example in
Figure 2(a) is represented in Figure 3. Besides, a single instance of this coarse tree can be stored
on each compute node, taking advantage of shared memory. On typical supercomputers with
tens of cores per compute node, the memory footprint of the coarse tree can thus be reduced by
at least an order of magnitude.

Querying the coarse tree thus provides a connection between each source AABB and its
processes of interest. This connection is used to exchange the boxes through collective MPI
communications. As a result, each process receives a partition S;?@ of source AABBs in the octree
frame 0. The part of the octree local to this process is then inspected in order to find candidate
points for each of these boxes.

Despite the acceleration provided by the tree structure, querying the coarse blocks can be-
come a critical step if the partitions S’p] are unbalanced. This is typically the case in the example



60 Bastien Andrieu, Bruno Maugars and Eric Quémerais

Figure 3. Schematic view of the shared coarse tree. Each leaf corresponds to a coarse block, colored by its owner
process.

shown in Figure 1(b). Moreover, an arbitrary distribution of boxes can result in a highly dense
communication graph, significantly increasing the latency of collective communications.

To address these issues, the source AABBs are redistributed before querying the shared coarse
tree. A good heuristic is to apply the same sorting and redistribution as performed on the points
in the first step of octree construction. The new, balanced frame thus obtained is denoted by 3.
As shown in Figure 2(b), the source partitions {S;;@} are mostly aligned with the target partitions
{Tl’,@}. The next paragraph briefly describes how this re-partitioning is achieved.

3.4.3. SFC-based re-partitioning

Given an arbitrarily distributed set of geometric entities (i.e. points or boxes), the goal is to
find a new, well-balanced distribution that maximizes data locality. Space filling curves (SFC)
have been used extensively for this purpose [16,17].

SFCs map continuously points in three-dimensional space to one-dimensional space. These
curves have inherent multi-resolution properties due to their iterative construction, making
them attractive for constructing linear tree structures. Setting a maximum resolution reduces
space to a finite number of voxels. The cartesian coordinates of a point can then be encoded
as a nonnegative integer, corresponding to its voxel index, dictated by the traversal order of the
SEC. The Morton SFC (or “Z-order curve”) [15] provides a straightforward encoding that can be
very efficiently computed using bit shifts. The Morton ordering is equivalent to that obtained by
traversing an octree depth first.

Subsets S’ and T’ are re-partitioned independently, but in the same way. The strategy
described in Section 3.1.4 is followed, except that Morton codes are used instead of arbitrary
global IDs. These Morton codes are computed by encoding either the target point coordinates or
the coordinates of the source AABB centers. The subset global IDs thus obtained correspond to
the order in the globally sorted array of Morton codes.

The re-partitioning induces a new balanced frame for each subset S’ and T’, to which data
must be communicated from the input frame. The coordinates of the target points are commu-
nicated, along with only the AABBs of the source cells. The search for candidate pairs indeed re-
quires no additional information such as mesh connectivity or vertex coordinates. To obtain the
final source-to-target mapping in the input frame, as discussed in Section 3.7, it is essential to
maintain an explicit link between subset entities and their corresponding parent sets. The global
IDs of entities in the parent sets S and T are therefore communicated to the new frames as well.

Since S’ and T are re-partitioned independently from each other, the exchange of point data
can be overlapped by computations for finding the balanced distribution of source cells, using
non-blocking collective communications. Moreover, the exchange of cell data can be overlapped
by the construction of the distributed octree.



Bastien Andrieu, Bruno Maugars and Eric Quémerais 61

3.5. Exact point-in-cell location

Once the octree query is complete, a connection is obtained between the source cells and their
candidate points. This connection is represented in the form of a graph that is distributed in the
octree frame G.

The next step consists in computing the exact location of these candidate points for each cell.
Weights for subsequent interpolation of source data at target points must also be calculated. Ap-
plications based on the Finite Element method usually rely on shape function interpolation. To
this end, the isoparametric coordinates of each candidate point are determined using Newton—
Raphson iteration. When dealing with ill-conditioned shape functions (e.g. highly curved high-
order elements), this iteration may fail to converge. In this case a second, more robust technique
is used, which consists in recursively subdividing the cell after a first decomposition into sim-
plices. When dealing with meshes composed of arbitrary polygonal or polyhedral cells, a first in-
clusion test determines whether each candidate point lies inside or outside the cells. In the first
case, mean value coordinates [18,19] are calculated to serve as interpolation weights. In the sec-
ond case, the nearest projection onto the cell’s faces is computed, along with the distance from
this projection.

These exact location computations could be carried out in the frame &. However, this frame
is not guaranteed to be well balanced. Some processes may indeed hold more cells than others,
or cells with more candidate points. Load balance in this stage is critical since computing exact
location is expensive. In addition, these computations require a full description of the source
cells, i.e. mesh connectivity along with vertex coordinates, whereas only AABBs are available at
this point in frame &. This additional information is only available in the input frame .#.

The choice is thus made to create a new, better balanced rendezvous frame in which exact
location will be computed. In order to keep data movements to a minimum, the rendezvous
frame is created such that each cell is owned by a single process. Points may in turn be duplicated
on multiple processes. The number of candidate points in the AABB of each cell gives a simple
yet effective estimation of the workload associated to that cell. This way, cells with no candidate
points can simply be discarded. The different cell types could also be taken in consideration to
further refine this estimate.

This rendezvous frame is obtained using the approach described in Section 3.1.4 by sorting
cells in ascending order of the subset global IDs derived from the SFC-based re-partitioning. The
data locality provided by this global numbering reduces duplication of mesh entities (e.g. faces,
vertices) since adjacent cells are likely to be owned by the same process in the rendezvous frame,
as indicated in Figure 4(a).

3.6. Conflicts resolution

Each target point may be contained in the AABB of multiple source cells. Besides, these cells
may reside on different processes in the rendezvous frame, and therefore so do the target points.
In the end, each point must be mapped to at most one host cell. Possible conflicts are resolved
by filtering the location data computed in the previous step in order for each point to keep only
the best match among its associated candidate cells. This filtering is performed in two stages.
First, the candidates local to each process are sorted in ascending order of signed distance.’ The
nearest candidate in that process is then kept, while the others are discarded. The second stage
is similar, except that this time the sorting is carried out on the best candidates identified by all
the processes in the previous stage. If a point is located exactly between two cells, the conflict is
resolved by selecting the cell with lower global ID. This way, the location algorithm is guaranteed

2A negative distance indicates that the point is contained inside the cell.



62 Bastien Andrieu, Bruno Maugars and Eric Quémerais

o Q|°
o
olo ©
[eYANE) (e)
o A e
i~ ©
o o\ °
o
5 o
oOo
] qg
o o
o
30
o
o
)
© o
o)
075
[®)
o
o\o

(a) Partitions of candidate cells and points in the ren- (b) Location conflict for a point with multiple candidate
dezvous frame 2. Points duplicated on multiple processes cells (colored by owning process in frame %).
and are shown in multiple colors.

Figure 4. Exact point-in-cell location steps.

to yield reproducible results, that do not depend on the number of processes. In order to balance
the workload, this second stage is performed in a new frame %.

The approach described in Section 3.1.4 is used once again to devise such a balanced frame.
Distance values of the cells that pass the first filter are exchanged from the rendezvous frame %
to the conflict-resolution frame %¥. The result of the second filter is then sent back to frame % so
that each cell can discard candidate points for which it is not the best match.

In the situation depicted in Figure 4(b), a target point ¢ is associated to four candidate cells,
distributed on three processes in frame % (indicated by colors). On the blue process, the first
filter retains the nearest cell, namely s3. Distances from si, s, and s3 are then communicated to
the process holding ¢ in frame ¥. The second filter finally retains s;.

3.7. Return to the input frame

At this stage, all false positive detections have been eliminated. The remaining cell-point pairs
form the actual mapping used for transferring data between the source and target domains.
However, this data is usually distributed in the same frame as the input source and target
partitions, namely frame .#. This data could be first communicated from frame .# to the
rendezvous frame £, in which interpolation would be performed, as suggested by Plimpton
et al. [12]. Nevertheless, frame 2 may no longer be well balanced since the connection between
cells and points has just been pruned. Besides, additional application-specific information may
be required for spatial interpolation, and would need to be communicated to frame 2 as well.
Experience shows that the interpolation step is about two orders of magnitude less expensive
than the location step. Possible load imbalance due to poor distribution in the input frame
therefore does not compromise performance. Sticking to frame .# for interpolation is thus a
sensible choice. The source-to-target mapping is thus transferred from the rendezvous frame
to the input frame.



Bastien Andrieu, Bruno Maugars and Eric Quémerais 63

A process-to-process communication pattern is finally established between the source and
target partitions in this input frame, to enable subsequent exchanges of interpolated data.

4. Performance results

The point location algorithm presented in this paper has been implemented in the open-source
CWIPI coupling library [20,21], along with high-level wrappings to MPI primitives to carry out
the transfer of interpolated data using non-blocking send/receive communications, based on the
previously described communication pattern. CWIPI formerly relied on the FVM library for data
mapping, using the algorithm mentioned in Section 2. The tests presented in this section were
carried out in version 1.1.0 of CWIPI [21] which incorporates both algorithms, thereby enabling a
direct comparison.

4.1. Test cases description

The following setup is considered to study and compare the performance of the two point loca-
tion algorithms. Starting from a cartesian grid, an unstructured source mesh is obtained by de-
composing the hexahedral cells into tetrahedra. To break the alignment with the cartesian axes,
the geometry is deformed and a slight random perturbation is applied to the vertex coordinates,
as shown in Figure 5.

(a) Volume source mesh used in the full and partial vol- (b) Surface mesh extraction used in the surface overlap
ume overlap scenarios. scenario.

Figure 5. Meshes used in the tests (colors indicate the different partitions).

A second mesh is generated using the same procedure, and its cell centers are employed
as the target point cloud. Grids with slightly different numbers of points are used so that
the two meshes do not match exactly. The source and target meshes are partitioned using
the PT-Scotch library [22] on two separate MPI communicators, each with the same number
of processes. The communicators are then merged by CWIPI into a single COMM_WORLD
communicator. Since the partitioning method used is not deterministic, the sensitivity of both
algorithms to input distributions is examined by executing each test case multiple times. A weak
scaling study is carried out, with roughly 2.5 - 10° cells (resp. points) in each source (resp. target)
partition. First, a source-to-target mapping is constructed using the point location algorithms.
Then, a field evaluated on the source mesh is interpolated and transferred to the target points
using either the communication scheme proposed by FVM or the one described in the end of
Section 3.7. Interpolation here consists simply in assigning each target point the field value of
its host cell, as the study focuses primarily on the performance of the parallel algorithm (the



64 Bastien Andrieu, Bruno Maugars and Eric Quémerais

use of a more refined scheme such as shape-function interpolation would have no impact on
overall performance, since the interpolation weights are calculated regardless). The code for
reproducing the test cases (as well as the input meshes, which are automatically generated at
runtime) is available online (see Section 5 for the details).

Different scenarios representative of the wide range of real-life applications are realized by
offsetting the meshes relative to each other in the x-direction, as represented in Figure 6. For
each of the three configurations considered, execution times for the location and interpolation
steps are reported for both algorithms. Minimum, mean and maximum times over the multiple
executions of each test are reported. Finally, a detailed breakdown of the location time is
presented for the new algorithm.

(a) Full volume overlap. (b) Partial volume overlap. (c) Surface overlap.

Figure 6. Schematic view of the three scenarios. The partitioned source and target domains are shown in blue
and orange, respectively.

4.2. Hardware description

All the tests presented in this paper were carried out on the same supercomputer. Each of its
compute nodes is composed of two 2.4 GHz Intel Xeon 6240R (Cascade Lake) processors, each
one containing 24 cores, totalling 48 cores per node. The nodes are interconnected by an Intel
OmniPath 100 GB/s low-latency network. All experiments were run using one MPI rank per core.

4.3. Performance analysis

4.3.1. Fullvolume overlap

In the first test case, the source and target geometries overlap completely. This scenario arises
in situations such as solution transfer before restarting a simulation on a different mesh. In this
case, the coarse filtering step described in Section 3.3 reveals useless, since the global source and
target AABBs are essentially identical. However, it induces very little overhead since it accounts
forless than 1 % of the total execution time. This step is therefore omitted in the breakdown given
in Figure 8.

Although the source mesh is evenly distributed, the volume of the partition AABBs can
vary considerably between processes. In the worst case, a volume ratio of 300 is observed
between the largest and smallest AABBs. The number of points to be located by each process
in the FVM algorithm is equally unbalanced, as anticipated in Section 2. Furthermore, Figure 7
shows that the execution time of the FVM algorithm varies significantly between different runs,
indicating a high sensitivity to the input partitioning. In contrast, the new algorithm delivers
the same execution time regardless of the partitioning, and exhibits greater parallel efficiency.
This improvement is explained by the finer preconditioning (Section 3.4) and the redistribution
of the location workload (Section 3.5). A maximum load imbalance of 10 % is observed in the
rendezvous frame.



Bastien Andrieu, Bruno Maugars and Eric Quémerais 65

Figure 7(b) demonstrates the benefits of optimizing the communication graph used to ex-
change the interpolated data. The strategy described in Section 3.7 proves reasonable, consider-
ing the small proportion of execution time devoted to the “return to input frame” step, as shown
in Figure 8. Figure 7(c) also confirms that the interpolation step is significantly cheaper than
point location (by about two orders of magnitude).

180 0.4 600
—+— FVM —&— FVM —&— FVM
CWIPI 0.3 CWIPI 450 - CWIPI ,A/‘\/\‘
= 1201 = T
g g 0.2 1 300 A
5 60+ =
0.1 150 4
pa—
0 T T 0 T T 0 T T
10! 10? 103 10* 10! 10? 103 10* 10! 10? 103 10*
Number of CPU cores Number of CPU cores Number of CPU cores
(a) Point location. (b) Interpolation and exchange. (c) Ratio point location / interpolation

and exchange.

Figure 7. Execution times for the FVM and CWIPI algorithms (full volume overlap). Average times over all runs
are represented by solid lines, while shaded areas illustrate the range of elapsed times across all runs.

15
B Return to input frame
B Resolve conflicts
12 1 Exact point-in-cell location
Setup rendezvous frame
Search for candidate pairs .
E 9 A SFC-based re-partitioning
o B
Eslpmm W
3 -

103 223 480 1034 2228 4800
Number of CPU cores

Figure 8. Breakdown of average execution time for the new point location algorithm (full volume overlap).

In applications with dynamic geometries, point location must be performed frequently.
Higher frequency generally translates into greater fidelity and numerical robustness. The CPU
cost of data mapping should ideally be comparable to that of one iteration of a computational
code, which is on the order of 1us per cell for state-of-the art computational fluid dynamics
solvers. In comparison, the CPU cost of the new point location algorithm ranges from 20 s
to 50 us per target point in this test. Dynamic simulations with large meshes thus remain chal-
lenging, and optimizations are necessary to overcome the data mapping bottleneck. As indicated
in Figure 8, these optimizations should focus primarily on the preconditioning stage.



66 Bastien Andrieu, Bruno Maugars and Eric Quémerais

4.3.2. Partial volume overlap

In the second test case, the target point cloud is shifted so that it overlaps only a thin layer
of the source mesh (a few cells thick). This scenario mimics applications such as the multi-
component simulation presented in [23], in which data mapping is used to integrate the different
moving parts of a full aircraft engine into a single unsteady large-eddy simulation.

Full source and target geometries are provided to the location algorithms, letting them filter
out irrelevant points and cells. Figure 9 shows that variations in the input partitioning have a
strong impact on the performance of the FVM algorithm, as in the first test case. Besides, most
processes are idle during the location step, since the AABB of their source mesh partition intersect
no target partition AABB. This load imbalance results in suboptimal parallel efficiency.

10 20 1200
—dh— FVM —h— FVM —t— FVM
81 CWIPIL _ 151 CWIPI 900 4 CWIPI
= 61 g /\/\
g o 10 600 ¥
g 41 E
=
5] 5 300 -
p /./ ‘/‘/-r—‘/
0 T T 0 T T 0 T T
10! 10? 10% 104 10! 10? 103 104 10! 102 108 104
Number of CPU cores Number of CPU cores Number of CPU cores
(a) Point location. (b) Interpolation and exchange. (c) Ratio point location / interpolation
and exchange.

Figure 9. Execution times for the FVM and CWIPI algorithms (partial volume overlap). Average times over all
runs are represented by solid lines, while shaded areas illustrate the range of elapsed times across all runs.

4 I Return to input frame
I Resolve conflicts
Exact point-in-cell location |
31 Setup rendezvous frame
Search for candidate pairs ||
Z SFC-based re-partitioning s
(«b] 2 i —
E _
1 -
0

103 223 480 1034 2228 4800
Number of CPU cores

Figure 10. Breakdown of average execution time for the new point location algorithm (partial volume overlap).

The new algorithm effectively eliminates up to 95 % of the source cells and target points in the
first coarse filtering step, once again with minimal extra cost. Dynamic load balancing proves
less effective than in the first test case, since the average workload per process is considerably
reduced. In fact, the SFC-based re-partitioning step accounts for about 70 % of the total execu-
tion time, as reported in Figure 10. A more detailed analysis reveals that the bucket sampling
algorithm is responsible for 60 % of the cost of this step. This algorithm relies on parameters



Bastien Andrieu, Bruno Maugars and Eric Quémerais 67

tuned using heuristics, which could be further optimized for our application. The communica-
tion graph used by the FVM algorithm to transfer the interpolated data is much sparser than in
the first case. Consequently, both algorithms yield comparable execution times for this step. Still,
the new point location algorithm performs better on average and remains much less sensitive to
the input data distribution. In this second test, the location step takes around 10 s per target

point® with the new algorithm, which is still quite expensive compared to an iteration of fluid
simulation.

4.3.3. Surface overlap

In the third test case, the target point cloud is shifted so that it overlaps only one boundary face
of the source domain. This scenario is representative of surface couplings such as simulation
of fluid-structure interaction [1]. In such applications, data transfer is typically used to apply
specific boundary conditions. Only the surface geometric entities and their associated DoFs are
therefore considered.

As in the other two test cases, volume meshes are first generated and partitioned. The
surface of interest is then extracted without subsequent redistribution, as shown in Figure 5(b).
Consequently, the source cells and target points are unevenly distributed in this input frame,
since the surface is contained in only a fraction of the volume partitions. This fraction diminishes
as the number of processes increases. Nevertheless, the deterioration in load imbalance is
tempered by a decrease in the average number of cells and points per partition, which scales as
O(P~'/3). In this situation, communication latency becomes predominant. The new algorithm
carries out numerous data movements and is therefore penalized.

0.5 10 600
—4&— FVM —4&— FVM —&— FVM
0.4 7 CWIPI 81 CWIPI 450 - CWIPI
- 03 COMM_WORLD g 6 COMM_WORLD COMM_WORLD
T CWIPI = CWIPI 300 - CWIPI
E COMM_SURFACE g COMM_SURFACE COMM_SURFACE
& 0.2 E 4-
: b ./._.—N
] P.—"‘—.‘A 2 ﬁ 190
—_—
0 T T 0 T T 0 T T
10! 107 103 10* 10! 10? 103 10* 10! 102 103 10*
Number of CPU cores Number of CPU cores Number of CPU cores
(a) Point location. (b) Interpolation and exchange. (c) Ratio point location / interpolation

and exchange.

Figure 11. Execution times for the old and new algorithms (surface overlap). Average times over all runs are
represented by solid lines, while shaded areas illustrate the range of elapsed times across all runs.

A solution to improve parallel efficiency consists in using fewer processes so that the increased
average workload compensates for the communication overhead. This strategy is tested by split-
ting the initial MPI communicator (here COMM_WORLD), to obtain the sub-communicator
COMM_SURFACE restricted to processes holding a non-empty share of the surface in the in-
put frame. Figures 11 and 12 demonstrate the effectiveness of this strategy. In multi-component
simulations such as in [23], multiple simultaneous data transfers need to be carried out, in rela-
tively small, distinct geometric regions. Assigning one sub-communicator to each data transfer
task would allow for a more effective utilization of computational resources. Yet, this approach
could be refined by determining an optimal communicator size based on an assessment of the
total workload. Splitting the working communicator after the coarse filtering step could enable
even further improvement. However, if data transfer is considered as part of a multi-component

3 All the target points are considered, including the ones not contained in any cell.



68 Bastien Andrieu, Bruno Maugars and Eric Quémerais

0.3 R
©
\@@9@@
0@@/ @ 7
[ O

| Return to input frame
0.2 wem Resolve conflicts

Z Exact point-in-cell location

o Setup rendezvous frame

g Search for candidate pairs ]
&= 0.1 SFC-based re-partitioning

103 223 480 1034 2228 4800
Number of CPU cores

Figure 12. Breakdown of average execution time for the new point location algorithm (surface overlap), using
either COMM_WORLD or COMM_SURFACE as the input MPI communicator.

simulation, performance remains acceptable (on the order of 1 us per target point)* and the pro-
posed optimizations become less significant.

5. Conclusion

In this paper a novel point location algorithm has been presented, designed for data mapping
between distributed meshes and point clouds in a massively parallel environment. Compar-
isons with a state-of-the-art algorithm are favorable, with a speed-up of up to a factor of 10.
This achievement is made possible by a more refined preconditioning strategy combined with
dynamic load balancing.

Good scaling is observed for up to 1.2 billion cells and points on 4,800 CPU cores, proving that
our algorithm can be integrated in a wide range of real-life, large-scale data transfer applications.
In order to prepare for the exascale era, the performance analysis still needs to be carried out on
larger supercomputers. For instance, the first and last step of the algorithm (see Section 3.4.3
and 3.7 respectively) rely heavily on collective (all-to-all) MPI communications which could
become a bottleneck with a higher number of MPI ranks.

Work is also underway to harness the full potential of heterogeneous architectures and accel-
erate the preconditioning stage through CPU-GPGPU hybridization [13]. The expected speed-up
should help overcome the current bottleneck experienced in dynamic simulations. Finally, the
possible optimizations proposed in this paper to mitigate the communication overhead will also
be explored in future work.

Acknowledgments

The manuscript was written through contributions of all authors.

4The whole volume mesh is considered.



Bastien Andrieu, Bruno Maugars and Eric Quémerais 69

Underlying data

The tests presented in Section 4 can be reproduced by running the Python script
python_perfo_location_octree.py available in the tests/ directory after cloning
CWIPT’s GitHub repository: https://github.com/onera/cwipi/blob/master/tests/python_perfo_
location_octree.py.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research

organizations.
References

[1] T Fabbri, G. Balarac, V. Moureau and P. Benard, “Design of a high fidelity Fluid-Structure Interaction solver using
LES on unstructured grid”, Comput. Fluids 265 (2023), article no. 105963.

[2]  G.Coria,].-D. Parisse, J.-M. Lamet and N. Dellinger, “Modeling and simulation of chemical reactions at the surface
of an ablative wall interacting with a hypersonic flow”, 2022. Conference paper: 9th European Conference for
Aeronautics and Aerospace Sciences (EUCASS-3AF).

[3] E Alauzet, “A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes”, Com-
put. Methods Appl. Mech. Eng. 299 (2016), pp. 116-142.

[4]  A.Palha, L. Manickathan, C. S. Ferreira and G. van Bussel, “A hybrid Eulerian-Lagrangian flow solver”, 2015. Online
at https://arxiv.org/abs/1505.03368.

[5] A.W. Cary, J. Chawner, E. P. Duque, W. Gropp, W. L. Kleb, R. M. Kolonay, E. Nielsen and B. Smith, “CFD Vision
2030 Road Map: Progress and Perspectives”, in ATAA AVIATION 2021 FORUM, American Institute of Aeronautics
and Astronautics, 2021.

[6] The MPI Forum, “MPI: a message passing interface”, in Proceedings of the 1993 ACM/IEEE conference on Super-
computing (B. Borchers and D. Crawford, eds.), ACM Press, 1993, pp. 878-883.

[7]1  G.Chourdakis, K. Davis, B. Rodenberg, et al., “preCICE v2: A sustainable and user-friendly coupling library”, Open
Res. Eur. 2 (2022), article no. 51 (47 pages).

[8] A. Totounferoush, E Simonis, B. Uekermann and M. Schulte, “Efficient and scalable initialization of partitioned
coupled simulations with preCICE”, Algorithms 14 (2021), no. 6, article no. 166 (17 pages).

[9]1 Y. Fournier, J. Bonelle, C. Moulinec, Z. Shang, A. G. Sunderland and J. C. Uribe, “Optimizing Code_Saturne
computations on Petascale systems”, Comput. Fluids 45 (2011), no. 1, pp. 103-108.

[10] Y. Fournier, “Massively parallel location and exchange tools for unstructured meshes”, Int. J. Comput. Fluid Dyn.
34 (2020), no. 7-8, pp. 549-568.

[11]  S.Slattery, P Wilson and R. Pawlowski, “The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics
data transfer”, in International Conference on Mathematics & Computational Methods Applied to Nuclear Science
& Engineering (M&C 2013), 2013, pp. 5-9.

[12] S.J. Plimpton, B. Hendrickson and J. R. Stewart, “A parallel rendezvous algorithm for interpolation between
multiple grids”, J. Parallel Distrib. Comput. 64 (2004), no. 2, pp. 266-276.

[13] R. Cazalbou, E Duchaine, E. Quémerais, B. Andrieu, G. Staffelbach and B. Maugars, “Hybrid Multi-GPU Dis-
tributed Octrees Construction for Massively Parallel Code Coupling Applications”, in PASC 24 — Proceedings of
the Platform for Advanced Scientific Computing Conference, ACM Press: Zurich, Switzerland, 2024.

[14] H. Sundar, R. S. Sampath and G. Biros, “Bottom-up construction and 2: 1 balance refinement of linear octrees in
parallel”, SIAM J. Sci. Comput. 30 (2008), no. 5, pp. 2675-2708.

[15]  G. M. Morton, A computer oriented geodetic data base and a new technique in file sequencing, IBM, 1966.

[16] S. Aluru and E E. Sevilgen, “Parallel domain decomposition and load balancing using space-filling curves”, in
Proceedings 4th International Conference on High-Performance Computing, IEEE, 1997, pp. 230-235.

[17]  R. Borrell, J. C. Cajas, D. Mira, A. Taha, S. Koric, M. Vdzquez and G. Houzeaux, “Parallel mesh partitioning based
on space filling curves”, Comput. Fluids 173 (2018), pp. 264-272.

[18] K. Hormann and M. S. Floater, “Mean value coordinates for arbitrary planar polygons”, ACM Trans. Graph. 25
(2006), no. 4, pp. 1424-1441.

[19] T Ju, S. Schaefer and J. Warren, “Mean Value Coordinates for Closed Triangular Meshes”, ACM Trans. Graph. 24

(2005), no. 3, pp. 561-566.


https://github.com/onera/cwipi/blob/master/tests/python_perfo_location_octree.py
https://github.com/onera/cwipi/blob/master/tests/python_perfo_location_octree.py
https://arxiv.org/abs/1505.03368

70

[20]

[21]

[22]

[23]

Bastien Andrieu, Bruno Maugars and Eric Quémerais

E. Quémerais, “La Bibliotheque de Couplage CWIPI — Coupling With Interpolation Parallel Interface”, in ONERA,
le centre francais de recherche aérospatiale, 2013. Online at https://w3.onera.fr/ cwipi/bibliotheque- couplage -
cwipi (accessed on November 27, 2025).

ONERA, onera/cwipi: Library for coupling parallel scientific codes via MPI communications to perform multi-
physics simulations, 1.1.0. Online at https: / / github. com / onera / cwipi / tree / cwipi- 1.1.0 (accessed on
November 27, 2025).

C. Chevalier and E Pellegrini, “PT-Scotch: A tool for efficient parallel graph ordering”, Parallel Comput. 34 (2008),
no. 6-8, pp. 318-331.

C. P Arroyo, J. Dombard, E Duchaine, L. Gicquel, B. Martin, N. Odier and G. Staffelbach, “Towards the Large-Eddy
Simulation of a Full Engine: Integration of a 360 Azimuthal Degrees Fan, Compressor and Combustion Chamber.
Part I: Methodology and Initialisation”, J. Global Power Propul. Soc. 2021 (2021), pp. 1-16.


https://w3.onera.fr/cwipi/bibliotheque-couplage-cwipi
https://w3.onera.fr/cwipi/bibliotheque-couplage-cwipi
https://github.com/onera/cwipi/tree/cwipi-1.1.0

	1. Introduction
	2. Related work
	3. Point location algorithm
	3.1. Key concepts
	3.1.1. Point location problem
	3.1.2. Frames
	3.1.3. Global identifiers
	3.1.4. Dynamic load balancing framework
	3.1.5. Subsets

	3.2. Algorithm outline
	3.3. Coarse filtering
	3.4. Search for candidate pairs
	3.4.1. Octree construction
	3.4.2. Octree query
	3.4.3. SFC-based re-partitioning

	3.5. Exact point-in-cell location
	3.6. Conflicts resolution
	3.7. Return to the input frame

	4. Performance results
	4.1. Test cases description
	4.2. Hardware description
	4.3. Performance analysis
	4.3.1. Full volume overlap
	4.3.2. Partial volume overlap
	4.3.3. Surface overlap


	5. Conclusion
	Acknowledgments
	Underlying data
	Declaration of interests
	References

