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Abstract. In this work, we propose the investigation of unsteady nonlinear heat conduction by using the
radial point interpolation method (RPIM) in high-order continuation coupled with homotopy transformation
for the first time. In this resolution strategy, the Euler implicit time scheme is used to transform the unsteady
nonlinear continuous problem into a sequence of stationary continuous problems. Moreover, by using the
RPIM, we transform the sequence of stationary nonlinear continuous problems into discrete problems.
Then, homotopy transformation is applied by introducing an arbitrary invertible pre-conditioner [K*] and a
dimensionless parameter a. These nonlinear problems are transformed into a sequence of linear problems
thanks to Taylor series expansions used in a continuation technique to compute the whole solution branch
by branch. Numerical examples have been investigated to show the accuracy and efficiency of the proposed
approach in this type of problem. The results obtained by the proposed high-order homotopic continuation
with the RPIM are compared with those computed by the Newton-Raphson method coupled with the RPIM,
high-order homotopic continuation with moving least squares, and high-order homotopic continuation with
the finite element method.

Keywords. Radial point interpolation method (RPIM), Homotopy transformation, High-order continuation,
Heat conduction, Thermal conductivity.
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1. Introduction

The determination of temperature and its distribution inside heat conducting materials depends
on the boundary conditions imposed to control the operating states of these materials. There-
fore, it is necessary to control this thermal variable in these conducting materials. The predic-
tion of temperature-dependent material properties requires the resolution of nonlinear transient
heat conduction problems. For example, thermal conductivity is assumed to be a function of
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temperature when its gradient is significantly large [1-7]. To that effect, several numerical reso-
lution methods based on the finite element method (FEM), the finite volume method, the finite
difference method (FDM), and so on have been developed for analysing this type of problem.
However, the re-meshing used by these methods and the complex geometry of the structures re-
quire considerable computation time; sometimes, in these conditions, these methods diverge.
For this reason, several other numerical methods, the so-called mesh-free methods, have been
developed during the past decades. These methods, such as the reference methods, permit us
to overcome difficulties with regard to re-meshing and complex geometries [8-14]. The princi-
ple of these methods is based on a set of arbitrarily scattered nodes in the studied domain to
approximate unknown solutions without the notion of connectivity [8]. According to the type of
weak formulation, there are two general classes of meshless methods. The first class is based
on a global weak formulation such as the element-free Galerkin (EFG) method [7], while the
second class is based on a local weak formulation in which the meshless local Petrov—Galerkin
method is the most popular [11,13]. In addition, we distinguish two classes of meshless methods
such as the approximation methods and the interpolation methods. The first class is based on
moving least squares (MLS) approximants to construct the shape function [8, 11, 12]. The second
class deals with interpolation methods, where shape functions have the Kronecker delta func-
tion property, such as the point interpolation method (PIM) and the radial point interpolation
method (RPIM) [9, 10, 14, 15].

Based on the FEM, many applications of high-order continuation (HOC) coupled with homo-
topy transformation show the performance of this technique with respect to computation time,
automatic adaptability of the step length, and the exactness of solutions in structural and fluid
mechanics [16-19]. In addition, the meshless method such as MLS approximation is coupled with
HOC for the resolution of dynamic or static nonlinear problems [20-28]. Meshless methods such
as MLS approximation have some difficulties in the treatment of essential boundary conditions.
Indeed, the use of MLS approximation in two or three dimensions does not give an exact interpo-
lation of unknowns on the boundary even if collocation methods are used. Other meshless meth-
ods, such as the RPIM [10, 14, 15] permit to check exactly the boundary conditions. This method
makes the imposition of boundary conditions much easier than the other meshless methods.

In this work, we propose the investigation of unsteady nonlinear heat conduction by using the
RPIM in HOC coupled with homotopy transformation for the first time. This approach consists
in coupling a temporal implicit Euler scheme and homotopy transformation with the HOC
developed in [29]. To demonstrate the efficiency and accuracy of this algorithm, two examples are
discussed. In the first example, we compare the results obtained by the proposed approach, high-
order homotopic continuation with the radial point interpolation method (HOHC-RPIM), with
those calculated by the Newton-Raphson method [30, 31]. It should be noted that the Newton—
Raphson method is coupled with the RPIM for the first time. In the second example, a comparison
is made among the results obtained by three approaches, HOHC-RPIM, high-order homotopic
continuation with moving least squares (HOHC-MLS), and high-order homotopic continuation
with the finite element method (HOHC-FEM).

This paper is organized as follows. The mathematical formulation of heat conduction prob-
lems with temperature-dependent conductivity is described in Section 2. A short description of
RPIM shape functions is presented in Section 3. Section 4 is devoted to the resolution strategy of
the considered problem by the HOHC-RPIM algorithm. Some discussions of the efficiency and
the ability of the proposed approach in numerical examples are presented in Section 5. A con-
clusion on the analysis of the obtained results is given in Section 6 followed by a bibliography
list.
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2. Mathematical formulation of unsteady nonlinear heat conduction problem with
temperature-dependent conductivity

We consider a thermally isotropic bidimensional domain Q. When the generated and viscous
dissipation are neglected, the transient heat conduction problem is governed by

0T (X, 1) B 0 0T (X, 1) 0 oT(X, 1)
D 3 T T

where T(X,¢) is the temperature on the domain Q surrounded by closed boundaries Qp and
Qp, t is a temporal variable, and X denotes the physical dimensions expressed in Cartesian
coordinates, X = (x, y). The parameters p, Cy, and k(7T) are respectively mass density, specific
heat capacity, and thermal conductivity of the solid occupying the domain Q. It should be noted
that the mass density and the specific heat capacity are considered as constants in this study.
However, the thermal conductivity depends nonlinearly on the temperature as presented in some
works [4, 5,32-34]. The above equation is completed by the initial and boundary conditions as
follows:

) inQ fort=0, (1)

TX,5)=T%X)inQ for t=0,

T(X, 1) = T4(X) over Qp for >0, ©
AT (X, t

—k(T)% =q%X,noverQy fort=0,

where N is the unit outward normal vector to the boundary Qy, T%(X) is the initial condition,
T9(X) is the imposed temperature on the boundary Qp, and g%(X, ) is the applied heat flux
through the boundary Qp. The strong nonlinearity treated in this work regards the conductivity,
which is expressed at point X as k(T) = ko + eT?(X, t), where ky and e are given constants.
Different expressions of k(T) are considered by several works [1,3-6].

Based on the meshless methods in weak form, the nonlinear problem (1) has been usually
solved by several authors in the literature. Indeed, in [4, 5, 34], the authors have used a radial
integration boundary element method to solve nonlinear heat conduction with temperature-
dependent thermal conductivity in stationary and transient cases. Juan et al. [7] have proposed
an alternative resolution for the heat transfer problem involved in direct-chill casting processes
employing the EFG method. A dual-reciprocity boundary element method was used also in
[30]. This numerical method was proposed to solve a unsteady axisymmetric heat conduction
problem involving a non-homogeneous solid with temperature-dependent properties. On the
other hand, meshless methods in strong form have been employed also for solving this problem
using iterative solvers such as in [6, 35]. Our contribution in this work regards the use of RPIM
in high-order homotopic continuation in strong form for solving this problem. It is preferable to
start by a short description of the RPIM shape function.

3. Description of radial point interpolation method

The RPIM only needs to construct the variable shape function using the nodes that are distributed
in the domain [11]. The variable shape function is a series representation of the unknown
function evaluated at a node using a set of arbitrarily scattered nodes localized in a local support
domain (see Figure 1).

To avoid the dependence between the locations of the nodes in the support domain and the
terms of monomials used in the conventional PIM, the radial basis function (RBF) is used to
construct the RPIM [10, 11, 15]. The coupling of the PIM with the RBF permits us to impose
correctly the boundary conditions. The approximation of the unknown T'(X,f) at a node of
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* Nodei
Neighbors of node i

Figure 1. Local support domains for an arbitrary node i in a two-dimensional hypothesis
domain.

interest of coordinate X using its neighbours X by the RPIM for fixed time ¢ is defined in the
following form:

i=ng

j=m
_Zl RiX)a;i+ ) pj(X)B;
1=

j=1

T(X,t)

(R(X),P(X)){g}, 3)

where (R(X)) = (R1(X),R2(X),...,R,, (X)) is the RBE (P(X)) = (p1(X), p2(X),...,pm(X)) is a
monomial in space coordinates, n; is the number of RBFs, m is the number of polynomial basis
functions, and coefficients ‘{a} = (ay,a,...,apy,) and "B} = (B1,B2,..., Bm) are new unknowns
yet to be determined. However, there are ns+m variables in (3). Itis necessary to add the following
m constraint conditions:

g
Y piXDai=0 forj=1.2,...,m. 4
i=1

In (3), the terms R; (X) are calculated from the Euclidean distance r; = || X — X;|| between the node
of interest X and its neighbours X; as follows:

Ri(X)=(r?+c*7 multiquadrics (MQ),
R;(X) = rl.l In(r;) thin plate spline (TPS), (5)
Ri(X)=e~@d*  Gaussian (EXP),

where MQ, TPS, and EXP are types of RBFs that can be used for calculating the terms R;(X)
[36-38]. The parameters ¢, g, and [/ can be selected from the numerical tests of each function
to stabilize the solution or by using algorithms designed for their determination. In the present
work, the selected values of these parameters are chosen from numerical tests as in [29]. The term
p;(X) in (3) is formulated using Pascal’s triangle, and a complete basis is usually preferred with
m =3, m =6, or m = 10 for the linear, the quadratic or the cubic basis function, respectively. The
details of the RPIM shape function’s construction from (3) are given in [29].

C. R. Mécanique — 2020, 348, n° 8-9, 745-758



Said Mesmoudi et al. 749

4. Resolution strategy

Recall that to solve nonlinear heat conduction with temperature-dependent thermal conductiv-
ity (1), we propose high-order mesh-free homotopic continuation. This approach combines a
temporal implicit Euler scheme, the RPIM method, the homotopy transformation, a Taylor series
expansion, and a continuation procedure.

4.1. Temporal implicit Euler scheme

In this section, for solving the nonlinear unsteady problem (1), we apply the temporal implicit
Euler scheme widely used in the resolution of transient problems [21,23,27] as
TI’H—I —_Tn
PCy—F,— = G (k™1 ™Y for "' = (n+ 1At 6)
where Gj(e,¢) = 0/0x(e0e/0x) + 0/0y(e0/0y). By evaluating the unknown between the current
time step and the next time step, we introduce new unknowns AT = T"*!—T" and Ak = k"1 - k"
in the above equation as follows:

L(AT) + Q(Ak,AT) = F" inQ,

Ak=2eT"AT +eAT? inQ,

AT=0 over Qp, @)
OAT aT" OAT

k"—— + Ak =-Ak— Qn,
oON oON on Ve

where L(AT) = pCpAT — AtGy(k",AT) — AtG1(Ak, T™) and Q(Ak,AT) = —AtGy(Ak,AT) are re-
spectively the linear and quadratic operators and F" = AtG; (k", T") is a known second member
evaluated at t"" = nAt.

4.2. High-order continuation with homotopy transformation

In the second method, the RPIM approximation of the new principal unknown AT is used.
Therefore, by using the shape functions defined in [29], this unknown is approximated at a node
of coordinate X as follows:

AT(X) =(PX)IATS}, 8)

where (®(X)) is the vector of shape functions corresponding to s nodes in the support domain
of the node X and {A T} is the vector that collects the nodal unknowns for all nodes in the support
domain. Taking into account (8) and following an assembly technique, problem (7) verified by a
new unknown can be written as

{ [KPHATY +{Q(AT,AT)} = {F"},

Ak(X) =eT™) (XNPXOHATsH + AATHP(XIHP(X)HATS,

where [K7] is the tangent matrix that depends on the solution at time t", {AT} is the global
vector containing N, components with N, being the total number of nodes in the domain (,
{Q(AT,AT)} is a vectorial nonlinear quadratic form, and {F""} is the second member that depends
on the solution at time #”.

To avoid the decomposition of the tangent matrix at each time step by the iterative solvers as
presented in [4, 5], we use homotopy transformation by introducing an arbitrary matrix [K*] and
an artificial parameter a in the following form:

[K*1{A0} + a([K7] - [K*]{AG} +{Q(A8, AD)} = a{F"}, (10)

9)
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where a is a parameter that permits us to transform problem (9) into problem (10) whose solution
{AB8} coincides with that of (9) when a = 1. The solution of problem (10) is sought from the Taylor
series expansion truncated at order P as follows:

AO(@)} = aiAO,} + a®{AOs} + -+ + aP {AOp}. (11)

By introducing Taylor series (11) in the artificial problem (10) and by regrouping the terms taking
into account the power of a, we obtain the following linear problems:

Orderi=1: [K*]{AO;}={F",

(12
Order2<i<P: [K*'{AO;}=(K*]-[K}D{AO;-1}+ {Fl.”l},

where {Fl."l } is the second member at order i that depends on the previous orders. Using a
continuation procedure, Taylor series (11) has a validity range [0, dmax]. The parameter a should
be greater than or equal to one for computing solution (11). The validity range amax is described
in [16,23,27,39] as

1861} )(P'J

[{AOR}
where x is a given tolerance and || ¢ || is the classical norm Ly. If amax(£,+1) = 1, then we can deduce

the solution at time #;,1; = (n+ 1)A¢ of problem (6) in the following form:

{T"™ Y ={T"} +1A0(a= 1)} (14)

Amax(t) = (K ) (13)

5. Numerical applications and discussion

To illustrate the efficiency and the reliability of the proposed approach, two numerical examples
of nonlinear transient heat conduction with different boundary conditions are investigated in
this section. Both the examples deal with two-dimensional (2D) heat conduction over a square
plate and over a perforated circular plate. The obtained results are presented by a comparison
with those results calculated by using the Newton-Raphson method coupled with the radial point
interpolation method (NR-RPIM) and with the finite element method (NR-FEM) and also by the
same proposed approach using the MLS and FEM approximations. The numerical analysis of the
following examples was carried out using a computer with an Intel(R) Core(TM) i3-4160 CPU,
3.60 GHz, with 4 GB of memory.

5.1. 2D heat conduction over a square plate

In the first example, we consider thermal nonlinear conduction in a square plate of side L = 1 m,
mass density p = 100 kg/ m?, and specific heat C, = 100]/(kg-K) [4,5,34,40]. Dirichlet conditions
are imposed on sides AD and BC at T% = 100 and T = 200 K, respectively, while sides AB and DC
are thermally insulated. These boundary conditions are depicted in Figure 2. The initial condition
is taken as T° = 100 K.

The continuous domain occupied by the plate is replaced by 121 nodes. Moreover, the support
domain is considered as a circle of radius & = 2dr (see Figure 1), where dr is the smallest
distance between nodes. For the NR-FEM algorithm taken as the reference method, the domain
is discretized into 16599 finite elements of type T3. The proposed approach permits us to
reduce the number of matrix decompositions used by the iterative solvers. Indeed, the pre-
conditioner matrix [K*] is taken equal to the tangent matrix [K;] evaluated at the starting time
of each continuation step. Then, we retain the same tangent matrix [K*] for the subsequent time
steps if a(t,) = 1; if not, then we take the tangent matrix [K*] = [K}:™®] for restarting the next
continuation step. Here, nmax is the maximal number of time steps at each continuation step.

C. R. Mécanique — 2020, 348, n° 8-9, 745-758
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T= 100K
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(a) Continuous domain (b) Discrete domain

Figure 2. A square plate under boundary conditions and a discrete domain.

Table 1. Influence of time steps and tolerance parameter on the parameter apax(¢,) for a
truncation order P =15

Tolerance x At=1s At=01s At=001s Ar=0.001s

107! Amax(ty) <1 5.4294 203.6295 5935.9680
1072 Amax(tn) <1 3.0531 114.5093 3338.0401
1074 Amax(fn) <1 amax(ty) <1 36.2110 1055.5809
106 Amax(tn) <1  amax(tp) <1 11.4509 333.8040
1078 Amax(tn) <1 amax(ty) <1 3.6211 105.5580

The parameters and the types of RBFs used in this proposed approach are listed in [29].
Computation is carried out in the time interval [0,100s] for different time steps so that the
influence of each step on the continuation step can be tested. For a truncation order P = 15 and
for different tolerances, we report in Table 1 the values of the parameter amax(#,). From this table,
we remark that when the time step decreases for each tolerance parameter, the value of amax(#,)
increases. From the obtained values of the parameter aya«(,), we adopt the time step Ar=0.1s
for the following process.

To show the performance and the correctness of the proposed approach HOHC-RPIM, we
report in Table 2 the solution quality measured by the Euclidean norm of the residual and
the CPU time compared with those of the HOHC-MLS and HOHC-FEM algorithms. In this
table, the computation is performed in the interval [0, 30 s], where the temperature reaches the
steady state (see Figure 3). From this table, we remark that when the truncation order increases
and the tolerance decreases, the solution quality is better, but it is obtained with considerable
CPU time. In addition, the approach followed makes it possible to obtain the solution even
for a small truncation order P = 3 and for a tolerance parameter ¥ = 10~! with an acceptable
solution quality and a relatively small computation time compared with the other approaches
HOHC-MLS and HOHC-FEM. We also note that for order P = 3 and for a tolerance parameter
x = 1071, all the algorithms converge but with different solution qualities. Beyond x = 107}, the
algorithms diverge because the parameter ap,,x is lower than 1. From a comparison among the
three algorithms, both the algorithms HOHC-RPIM and HOHC-MLS require less computation

C. R. Mécanique — 2020, 348, n° 8-9, 745-758
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Figure 3. Temporal evolution of temperature at point P1(0.5,0.5).
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Table 2. Numerical results about the effect of algorithm parameters on the solution, the
residual norm, and the CPU time for At=0.1s

Order Tolerance HOHC-FEM HOHC-MLS HOHC-RPIM

log,, (Il Rell) CPU (s) log,, (Il Rell) CPU (s) log;, (I Rel)) CPU (s)
3 1071 —6.1578 68.4319 —-0.5154 1.1297 —4.5596 0.7619
1072 Amax(tn) <1  Gmax(tn) <1 0.9283 1.2260 -0.9015 0.8688

1074 Amax(tn) <1 Gmax(tp) <1 Gmax(tp) <1 Gmax(fn) <1 Gmax(p) <1 Gmax(fn) <1

1078 Amax(1n) <1 Gmax(tp) <1 Gmax(tn) <1 Gmax(fn) <1 Gmax(fn) <1 Gmax(fn) <1
5 107! —6.0707 142.2670 —4.4917 1.2517 —2.6669 1.0111
1072 —6.4740 143.3143 -0.8229 1.1113 —4.5594 1.0759

1074 Amax(tn) <1 Gmax(tp) <1 Gmax(tn) <1 Gmax(fn) <1 Gmax(tn) <1 Gmax(tn) <1

1078 Amax(tn) <1 Gmax(tp) <1 Gmax(tp) <1 Gmax(fn) <1 Gmax(n) <1 Gmax(fn) <1
10 107! -5.6307 508.5643 —4.5248 1.4802 -3.6825 1.4577
1072 —4.7718 508.1754 -3.2235 1.7201 —4.5594 1.5638
1074 —6.4808 511.1265 —4.5255 1.5332 —4.1548 1.7381
1076 Amax(tn) <1 amax(tp) <1 —4.5255 1.6749 —4.5594 1.8848
15 1071 —6.4806 1138.4 —4.5255 1.9245 —4.3178 1.9437
1072 —6.4804 1150.2 —4.5255 1.9017 —4.4443 1.9593
1074 —6.4807 1146.01 —3.1743 1.9600 —4.5594 2.0781
1078 —6.4808 1144.3 —4.5254 1.8854 —4.4564 2.0389

time than that of the HOHC-FEM algorithm. Hence, the algorithm HOHC-RPIM seems to be a
competitive approach to solve nonlinear problems.

To investigate the temporal evolution of temperature, we choose the point P1located at x = 0.5
and y = 0.5 represented in Figure 2. The temporal evolution of temperature at this point obtained
by three algorithms is shown in Figure 3. This comparison of temperature evolution regards
the results obtained by HOHC-RPIM, NR-RPIM, and NR-FEM algorithms in cases of linear and
nonlinear heat conduction. From this figure, it can be seen that the obtained results coincide
well with those calculated by the NR-RPIM and the NR-FEM. This shows the correctness and the
ability of the proposed approach. It can also be seen that the evolution of temperature in the
linear case where e = 0 does not even reach the steady state in the interval time [0, 100s] contrary
to the nonlinear effects.

C. R. Mécanique — 2020, 348, n° 8-9, 745-758
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Figure 4. Temperature distribution along the line y = 0.5 at times ¢ = 1,2,5, and 100 s
obtained by the three algorithms.

Figure 4 shows the temperature distribution along the line y = 0.5 at times ¢ = 1,2,5, and 100 s.
The comparison among the obtained results shows that they are in good agreement.

In Figure 5, we illustrate the isothermal solutions at ¢ = 1,5, and 100 s obtained by the HOHC-
RPIM and NR-FEM algorithms. These solutions are identical and similar to those presented in
the literature [4] with CPU times 0.7619 s for the HOHC-RPIM and 220.083 s for the NR-FEM. It is
noted that the heat flux and the temperature gradient dynamically change when the temperature
increases with time. Solving this problem needs two inversions of the pre-conditioner [K*] by
the proposed approach HOHC-RPIM with P = 3 and x = 10~ !. However, by the NR-RPIM and
NR-FEM algorithms, this resolution requires 1428 and 1299 inversions of the tangent matrix
respectively with tolerance £ = 1075,

5.2. Heat conduction over a perforated circular plate with a circular hole

As the second example, we consider the heat conduction in a perforated circular plate of internal
and external radii r; = 0.3 m and r» = 1 m, respectively [41] (see Figure 6). The domain occupied
by the plate is replaced by 636 nodes for the HOHC-RPIM algorithm and discretized by 1157
finite elements of type 7'3 for the HOHC-FEM algorithm. The same parameters of the proposed
approach in the first example are adopted in this study (i.e., truncation order P = 3 and a
tolerance parameter x = 10~!). The boundary and initial conditions associated with this problem
are given as follows:

T(X,1) =200K atx®+y*=r? Vit
Case 14 T(X,1) = 100K atx*+y*=r2 12
T(X,t) = 100K atri<x*+y*<ri t=0
T(X,1) = 200K atx?+y? = r? Vi (15)

oT
Case 24 —k(T)=—
ase 24 ()aN

0 atx2+y2:r22 Vi

T(X,t) = 100K atr12<x2+y2<r22 t=0.

The temperature evolution with respect to time at the node located at (x =, +r1/2,y = 0) is
presented in Figure 7 for both cases of boundary conditions, which are defined by (15). This figure

C. R. Mécanique — 2020, 348, n° 8-9, 745-758
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(a) Isothermal distribution at r = 1s using HOHC- (b) Isothermal distribution at ¢ = 1s using NR-FEM

RPIM
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(c) Isothermal distribution at t+ = 55 using HOHC- (d) Isothermal distribution at # = 5s using NR-FEM
RPIM
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(e) Isothermal distribution at t = 100s using HOHC- (f) Isothermal distribution at + = 100s using NR-
RPIM FEM

Figure 5. Isothermal distribution in the plate: comparison between HOHC-RPIM and NR-
FEM algorithms.

shows a comparison of temperature evolution among the three algorithms HOHC-RPIM, HOHC-
MLS, and HOHC-FEM. The obtained results are in good agreement. In addition, the effects of
boundary conditions on the temperature can be easily observed.

To investigate the temperature evolution with respect to time and the line x = 0 or y = 0, we
proceed to construct the considered sections of the components of the temperature on the line
y = 0for x € [-r2, 2] (see Figure 6b). In Figure 8, we represent the temperature evolution along the
line x for y = 0 for times ¢ =0.1,1,3,5,10, and 15 s for cases 1 and 2. In this example, we observe
that in case 1, at the steady state, the temperature reaches an average of both temperatures
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(a) Continuous domain (b) Discrete domain

Figure 6. Continuous and discrete domains.
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Figure 8. Temperature evolution along the line x for y = 0 obtained by the three algorithms.

imposed at inner and outer boundaries. However, the insulated boundary in case 2 indicates that
the temperature of the plate increases without exceeding the temperature imposed on the inner
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Figure 9. Isothermal distribution: comparison between both cases at different moments.
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boundary due to the thermal insulation imposed on the outer boundary.

In Figure 9, we illustrate the comparison of the isothermal distributions between both cases
at different moments ¢ = 0.1,3,10, and 15 s. This figure follows the same remarks from previous
statements.

6. Conclusion

In this paper, the RPIM is implemented in high-order homotopic continuation to solve nonlinear
transient inverse heat conduction problems. The introduction of the homotopy technique makes
it possible to reduce computation time in terms of tangent matrix inversions. The proposed ap-
proach is used for identifying temperature-dependent thermal conductivity. The obtained results
are compared with those calculated by the solvers NR-RPIM, NR-FEM, HOHC-FEM, and HOHC-
MLS. This comparison has demonstrated the correctness and the reliability of the proposed ap-
proaches NR-RPIM and HOHC-RPIM. This is a competitive approach that is an alternative solver
for nonlinear heat conduction problems with any kind of temperature-dependent conductivity.
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