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Abstract. The present investigation presents an efficient meshless method based on the weak form of an
element-free-Galerkin method. The formulation of the numerical solution was conducted using an artificial
neural network (ANN) approach to compute the optimal number of nodes in the influence domain for each
point of interest. The numerical results using the ANN model were tested and compared with different
approaches in the literature. Results show a reduction in the computational cost and an enhancement in
an error criterion of up to 11%.
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1. Introduction

Meshless or MFree methods (MMs) are considered numerical alternatives to solve the limitations
of the finite element method (FEM) and the boundary element method (BEM). Meshless methods
have attracted considerable attention over the past decade in solving practical engineering
problems in heat transfer [1], fluid mechanics, and applied mechanics. The use of MMs as
element-free Galerkin (EFG) method becomes essential in the case of mesh distortion. Due to
changes in the shape of the structure, ensuring the accuracy of continually evolving deformed
mesh model is difficult. Consequently, accuracy commonly degrades during the evaluation of the
structural response [2]. MFree Methods generate smooth strain and stress fields. These methods
can treat important deformation fracture [3] and interface problems with more precision than
the FEM [4].

The first MM is the smoothed particle hydrodynamics (SPH) method with application in
astrophysical phenomena [5]. After the diffuse element method (DEM) of Nayroles [6], several
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other categories of MMs have appeared, including the EFG method [4], the meshfree reproducing
kernel particle method (RKPM) [7], the meshless local petrov Galerkin (MLPG) [8], the local radial
point interpolation method (LRPIM) [9], and a point interpolation method (PIM) produced for
stress analysis for two-dimensional solids [10].

The EFG method developed by Belystchko [11] is the standard numerical method for solving
several types of partial differential equations (PDEs). It has been used for multiple practical
engineering problems in heat transfer [1], crack propagation [12], elastoplastic contact problems
[13], boundary problems [14], fluid mechanics, and applied mechanics. The EFG method uses
local weak forms over a local sub-domain and the shape functions are constructed via the
moving least-squares (MLS) approximation [15]. Moreover, in this approximation, each node in
the domain has compact support called the influence domain. A weighting function is employed
to determine the intensity of a node’s effect at different points in its cover. The shape of the
local supports can be arbitrary, such as circle, square, or rectangle (conventional domains) in
2D geometries [16] and circular, square, or rectangular parallelepipeds in 3D geometries.

The size of the influence domain is crucial for the precision, stability, and computation cost
of numerical solution in EFG method, wich defines the degree of continuity between nodes and
the size of the matrix system. In the literature, different methods are available to calculate the
size of the influence domain (for the 2D problem) on the basis of tests and experiences. However,
evaluating the results is necessary to conclude the appropriate size. Belytschko defines the size
of the influence domain as the number of neighboring nodes at the node of interest, allowing a
regular moment matrix [11]. Furthermore, Dolbow and Belytschko propose scale parameter ¢ to
compute the size of the influence domain for static analyses. This constant c is assigned between
2 and 4 and multiplied by the distance necessary for a conventional system [17]. Zhuang et al.
present the parameters that influence the numerical result, especially the discretization error,
and highlight the nodes contained in the support domain without giving a precise solution [18].
Liu and Tu assign a density or scale factor to characterize each point and calculate the radius of
the influence domain by multiplying this factor by constant ¢ [19]. Zhang et al. use the arbitrary
convex polygon shape of the influence domain with their simplified approach on the imposition
and implementation of boundary conditions [20]. Therefore, the boundaries are more precise
than the standard form of the cover, the computation time decreases, and the EFG numerical
result is better with the usual shape of the influence domain. Conversely, Cai et al. [21] employ
an independent cover meshless method (ICMM) with a polynomial approximation for 2D elastic
solids and crack propagation. The authors used the Delaunay triangulation to construct a unique
and independent influence cover. However, Sheng et al. [22] recommend to fix the number of
nodes in the cover in all the structures and then calculate the radius of the influence domain for
each point of interest. Furthermore, the strategy of the authors minimizes the computation time
and improves the result unlike other computation techniques.

A growing concern for this factor emerges (size of the influence domain) in the refinement
step. Naturally, finding the optimal number of nodes in the cover is crucial to minimize the com-
putation time for the added nodes, which requires several tests and experiments, as discussed by
Rossi [23]. A crucial issue is that a large influence cover demands for a high computation time and
the MLS method loses its local character. However, a small number of nodes in the cover causes
a singular moment matrix.

In the present investigation, the EFG meshless method is used to investigate the number
of nodes in the influence domain. Due to the noncompliance of the Kronecker delta property
by the MLS shape functions [24], the Lagrange multipliers are used to enforce the essential
boundary conditions. An ANN model is proposed and gives the appropriate number of nodes in
the influence domain for each interest point with a minimal global error. This approach considers
the node discretization, the order of basis function, and the number of Gauss quadrature.
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Table 1. Approaches computing the size of the influence domain (dm)

Authors Years Doi Designation

[11] 1998 dm The size of the influence domain must be sufficient for a
regular system.

(17] 1998 dm=dnaC; dmax: the scaling parameters; C;: the nodal spacing be-
tween the node of interest (X) and the nearest node (x;).

[19] 2002 r;=cSy Each node has nodal density S; = v/2/m) ;-1 a;; Cisa
constant.

[26] 2005 ds=ad, d. distance between two neighbor nodes for a uniform

distribution; d,. = (v/A,/ v/71a,)—1{or anon-uniformly dis-
tributed node; A;: area of the estimated support domain;
n4,: the number of nodes covered by the estimated do-
main with the area of A;.

[22] 2015 dm The number of nodes contained in all supports is constant.

The rest of this paper is organized as follows: Section 2 describes the MLS approximation;
Section 3 discusses the proposed method with an ANN; Section 4 presents the application
of the ANN model; Section 5 presents the obtained results; and Section 6 concludes the

paper.

2. Moving least square approximation

For the computation of the shape function and the approximation of displacement u/(x), the
MLS method is used [15, 25] and written as follows:

ul = p’walx) = Zli¢i(x)ui, (n)
¢i(x)=c’(x) p(;_i)wi ), 2)
c(x)= A" () p), 3)
Alx) = flwi(x)p(xi)pT(xi), @)

where p(x) is the basis function and w; (x) is the weight function centered at x and a is a known
coefficient. Here, ¢b;(x) is the shape function defined at particle x, A(x) is the moment matrix,
and N is the number of nodes contained in the influence domain.

In this article, the 3th-order spline weight function is used for all the examples and is written

as follows:

2 1
Z_4r? + 458 if|r| < -,
3 2

-1 4 4 1
BI=92 _griar2- 21342 <r| =1,
3 3 2

0 if[r|>1,
where r = ||X—x||/dm and dm is the size of the influence domain surrounding the node i. Table 1
describes some approaches to calculate the size of the influence domain.
In the present study, the error between the EFG numerical solution method and the exact
solution is written as follows:

of(x)=0o(x) — ™™ (x). 5)
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Figure 1. Approaches to compute the size of the influence domain.

Here, o(x) is the exact stress, and c™"™(x) is the EFG numerical stress. The exact local error is
calculated per cell or Gauss point [27]. The energy norm for the EFG method | e, | g:

1/2
legll s = (f ae(x)TD‘lae(x)dQ) , 6)

Qe

for the local error at a Gauss point:

1 1/2
es (x| = (Ea(xg)TDflo(xg)) : )

3. Optimization of the number of nodes in the cover
3.1. Problem description

As outlined in the introduction section, two approaches exist in the literature to compute the
size of the influence domain. In the first one, a variable number of nodes is in the influence
domain [11, 17, 26], and in the second one is a fixed number of nodes for each point of interest
in the entire domain [22]. Figure 1 illustrates that the two approaches have a variable size of
the influence domain. Each strategy has its own advantages and disadvantages. The objective
of this work is to determine the technique for calculating the influence domain that allows a
minimum global error and an optimal CPU. For this purpose, a study is carried out on a linear
elastic problem with a circular hole plate (see paragraph 3.1.1). The number of nodes contained
in all covers is initially fixed in the given meshing, and then the global and local error energy norm
is calculated. This process is made for multiple fixed nodes in the range of 5-16 (see Section 3.2).
Furthermore, for the interpretation of the obtained results, we calculate the minimum global
error |Ieg(xg)|| obtained this time from the local minimum errors of each Gauss point for the
12 scenarios (fixed number of nodes in the influence domain 5-16). Table 2 presents an example
of the results obtained for 203 nodes, the minimum global energy norm || e}i||, = 0,00753011
enhances the result obtained with 11 nodes fixed in the cover by [ el = 0,00819991 which is
8.2%. Thus, a variable number of nodes in the cover improves the numerical result comparing
to a fixed number of nodes. Moreover, Table 3 exhibits that the minimum global error [e}i"| .
constantly enhances the result for several mesh steps.
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Table 2. Computation of the minimum global error for a variable size of the influence cover

N° of nodes Local error for the integration Gauss point for the whole problem Global error in
in the cover energy norm
leo X[ Tleo X2l Tleo Xl Teo Xgn)[ eo Kgs)[ o Keo)| o0 (Xen] lles Xgw ] leolle
5 1,21E-07 1,17E-07 1,29E-07 1,23E-07 9,58E-08 1,08E-07 2,71E-08 1,64E-08 0,01064767
6 1,11E-07 1,39E-07 1,34E-07 9,83E-08 9,01E-08 1,08E-07 2,87E-08 1,58E-08 0,00941966
7 1,11E-07 1,50E-07 1,54E-07 7,98E-08 8,67E-08 1,13E-07 2,78E-08 1,50E-08 0,00890441
8 1,06E-07 1,55E-07 1,59E-07 7,48E-08 8,30E-08 1,14E-07 2,58E-08 1,56E-08 0,00849299
9 1,10E-07 1,66E-07 1,59E-07 7,09E-08 8,40E-08 1,17E-07 2,23E-08 1,79E-08 0,00825805
10 1,12E-07 1,71E-07 1,59E-07 7,04E-08 8,47E-08 1,17E-07 2,08E-08 1,85E-08 0,00820654
11 1,12E-07 1,76E-07 1,59E-07 6,99E-08 8,55E-08 1,16E-07 1,66E-08 1,91E-08 0,00819991
12 1,14E-07 1,79E-07 1,57E-07 7,01E-08 8,71E-08 1,15E-07 1,57E-08 1,91E-08 0,00825908
13 1,16E-07 1,79E-07 1,56E-07 7,03E-08 8,76E-08 1,13E-07 1,31E-08 1,90E-08 0,00828553
14 1,19E-07 1,80E-07 1,53E-07 7,15E-08 8,78E-08 1,13E-07 1,21E-08 1,84E-08 0,00833634
15 1,19E-07 1,81E-07 1,43E-07 7,35E-08 8,79E-08 1,10E-07 9,84E-09 1,84E-08 0,0084239
16 1,20E-07 1,81E-07 1,40E-07 7,80E-08 8,87E-08 1,10E-07 8,39E-09 1,83E-08 0,00850297
Min 1,06E-07 1,17E-07 1,29E-07 6,99E-08 8,30E-08 1,08E-07 8,39E-09 1,50E-08 =Yiz1n
lestxg)|| = Min [leq () |
0,00753011
Goal 8 5 5 11 8 5 16 e 7
Table 3. Observations
Meshing 007 008 009 010 011 012 013 014 015 018 020
step
lleg g 0,008255 0,008239 0,008239 0,008222 0,008146 0,008156 0,008025 0,008232 0,00830 0,008199 0,008842
" e(‘?i“ ’E 0,007838 0,007794 0,007737 0,007706 0,007613 0,007592 0,007435 0,007575 0,007584 0,007530 0,007937
the gainin% 5,05% 5,41% 6,10% 6,28% 6,55% 6,92% 7,35% 7,98% 8,72% 8,17% 10,23%
350
300
250
200 % 3
" 150 A
100 M
50 !
0 | I [ I [ - '

5 6 7 8 9 10 11 12 13 14 15 16

Nodal number in the support

(a)

Figure 2. Position of the optimal number of nodes in the cover at the Gauss point, (a) [5;16],
(b) [7;12], (c) [9;11].

Figure 2 displays the distribution of the optimal number of nodes in the cover for each Gauss
point. Unfortunately, the arrangement of the nodes in the cover is arbitrary and non-linear, which
means that some regions need more nodes than others for approximation. Figure 2 also depicts
that the choice of the cover size for each area is not evident; specifically, the number of nodes in
the cover varies between 5 and 16 (T is the sum of the Gauss point number for r; = 5:16 where the
local error is minimal). Consequently, an ANN model is used to define the number of nodes in the
cover, allowing a minimal local error (see Table 2). The ANN model is used for classification. The
classes are the outputs of the ANN model, which represent the number of nodes in the influence
domain, and the point of interest against to each class.

3.1.1. Plate with a circular hole

A plate with a circular hole subjected at its extremities to a simple state of tension (o = 1 N/m)
is studied. Figure 3 illustrates the model and its quarter (symmetry problems), where L = 5 m,
a=1m, E=10% MPa, and v = 0.3. The shape of the influence domain is circular in this example,

C. R. Mécanique, 2020, 348, n° 1, 63-76
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Figure 3. Plate with a circular hole and the quadrant studied.

and the Delaunay algorithm is used to generate the coordinate of the Gauss point and the node
field. The problem is solved in 2D with the plane stress hypothesis. Timoshenko and Goodier give
the analytical solutions [28].

3.2. Determination of the number of nodes in the cover with an ANN

3.2.1. Artificial neural network

ANN is a computation process, developed by neurologist Frank Rosenblatt in 1950, and
became a dominant algorithm in 2012. The artificial neural network also refers to the biological
neurons and is inspired by the human brain [29]. This system is based on learning by training
and then generating results and is used in various fields like facial recognition domains and
image processing. The ANN process has several models: multi-layer perceptron (MLP), adaptive
neuro-fuzzy inference system (ANFIS) [30], Support Vector Machine (SVM) [31]. Moreover, ANN
is generally composed of three types of layers: input, hidden, and output. The principle of this
structure is that each layer is composed of several neurons (IV;), and their input comes from
the previous layer. An activation function is required for the hidden and output layers. Each
neuron has a weight value, which is estimated in the training step and constitutes the memory
of the network. In this study, the MLP with feed-forward neural network training by the back-
propagation (BP) algorithm is used. In the MLP model, a hidden layer neuron is connected at the
input to each neuron of the next layer and the output to each neuron of the previous layer. The
principle of the BP model consists of transforming input data forward by a non-linear activation
function toward the output layer and then back-propagating the prediction error to adjust the
weighting used [32]. The MLP realizes a transformation forward from the i layer to the j layer
given by the following:

p
yi'm=f ((k; wf;(n) yf(n)) + b’“), ®

where y;."(n) is the output value of the m™ neuron of the j® layer, f(x) is the activation function,
p is the total number of nodes in the cover of the i layer and wfj (n) and b* are the weight and

the bias from the k™ node of the i™ layer at the n'™ iteration respectively. Figure 4 illustrates the
architecture of the four-layer BP model.

C. R. Mécanique, 2020, 348, n° 1, 63-76
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Input Hidden Hidden Output
layer layer 1 layer 2 layer

Figure 4. MLP architecture.

3.2.2. Data preparation

The literature has confirmed that scale parameters are required to limit the number of nodes in
the support. Therefore, an interval must be fixed beforehand to learn the ANN model. The lower
limit is the number of nodes that allows a regular moment matrix. However, a study is performed
to define the higher limit. The present study confirms that even a sizeable number of nodes in the
support in some regions gives a minimum error. However, the generated computational time is
more critical. Thus, a parameter (the profit) is used (see (9)) to determine the maximum number
of nodes in the support. The technique employed is to fix the number of nodes (r;,i =5,6...,20)
in the support for all Gauss points and is performed 15 times for the number of nodes from 5 to
20. In each step, the profit is calculated which is the percentage between the global minimum
error energy norm in the range 5-20 and the global error energy norm calculated by the number
of nodes r; in all the supports of the domain, which is presented as follows:

||e41\r/ﬁn||[5-20] —llea iy
Profit(%) = =
les™ | (5:20]

The objective for fixing the upper limit of the interval is to maximize the profit. Figure 5 shows
the average of the profit variation between r; and r; at different mesh sizes. The curve decreases
slightly between 16 and 20 points, and their profits vary between 9% and 9.6% respectively. we
conclude from that 16 is the upper limit of the nodes number in the influence domain. The
difference in profit at this upper limit is small, but the computational cost is more optimal
compared with 20 points. This number (16) respects the size range of the influence domain which
is described by Doblow and Belystchko [17] and Sheng [22].

The input data of the MLP model (see paragraph 1.) are: X, the coordinates of Gauss
points (support center), X; the coordinates of the 16 points surrounded Xg, and the weights
assigned to each point W;(Xg). Therefore, the output data for the optimization problem are
the number of nodes in the influence domain {5,7,12,16} (see paragraph 2.). After the selec-
tion and definition of the inputs and outputs of the MLP model, files are generated (1 file per
mesh step), and the input vector with the optimal class is attributed in the following form:
[Xgs; V&5 X1 V15 X2; V25 V25 - - -3 X165 W1; Wo; ... Wie, Csl, Table 6 summarizes the content of these files.

9)
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Figure 5. Profit variation versus number of nodes in the support.

1. Input data selection:

The input vector plays a crucial role in the learning process of a classification problem
in the optimization algorithm. The model converges with a high accuracy rate with high
vectors of information. In the training process, several input vectors must be used for
each class. Therefore, the mesh step of the Delaunay algorithm has been varied to have
several input vectors {Xg; Xis Wi (Xg)}

2. Output data selection:

The class number plays a critical role in the accuracy and complexity of the classifica-
tion problem; several classes make a complex architecture and increase the converging
process. For that purpose, a study is done to minimize this number without impacting
the result.

The output choice is defined according to several tests. Table 5 reveals the selection
process for the output data. As mentioned earlier, the maximum number of nodes in the
influence cover is 16. Initially, the output size of 12 classes 5-16 is examined. The number
of nodes in the cover with the lowest impact on goal profit for each given mesh size is
determined. Subsequently, it is removed from the output list and so on until two classes,
as shown in Table 5. By deleting the outputs one by one; the final results are minimally
influenced, in the meantime, convergence, and precision of the system are much better.
However, four classes are selected when the impact on profit is yielded by 1%.

3.2.3. ANN configuration

Several algorithm optimizations are available, and the Adam algorithm is used in this study
[33]. Moreover, the evaluation is made by the mean square error (MSE). The MSE is defined as

follows:
n

PG (10)

1T& o, 1
MSE=—=3 (Xi-X))*=—

ni=i iz
Here, n, )/(\, , and Xj, present the number of input data, numerical result, and the calculated value
respectively from ANN model. The data vector (Xg, X;, W;) is defined for several mesh sizes
and used as an input to the MLP system. These data sets are divided into three parts: training,
validation, and testing. Training routine is an essential learning step for the model to determine
the appropriate weight functions. In this step input and output data are used. Therefore, 70%
of the data are employed for the training and validation step and 30% for the testing. Figure 6
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Figure 6. Flowchart optimization process with ANN.

Table 4. Some MLP model scenarios

N° Epoches Activity function Architecture Convergence Test Mean improvement

1 5000 Relu 2000 89% 73%  3,08%
2 30000 Sigmoid 2000 87% 2% 2,67%
3 10000 Relu 3000 92% 2% 3,071%
4 30000 Sigmoid 150(150 94% 7% 2,94%
5 10000 Tanh 150/ 150 96% 77% 3,06%
6 5000 Relu 350 150 99% 76% 2,80%
7 5000 Tanh 150/ 150 90% 76% 2,81%
8 5000 Relu 250(150]150  99% 7% 2,88%
9 5000 Relu 3501 150[50  99% 8% 2,17%
10 5000 Relu 150 50150 92% 74% 2,38%

presents the flowchart of the optimization algorithm process. The program is implemented with
the Python software.

3.2.4. ANN construction

The hidden layer number, the neuron number, and the activation functions are changed
to produce the perfect ANN model with maximum accuracy, and given in the flowchart 6.
Consequently, several scenarios are performed to provide the best model. Table 4 shows some

C. R. Mécanique, 2020, 348, n° 1, 63-76
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Table 5. Output data analysis

goal profit
-11,167% -8,895% —9,543% —7,440%
Step meshing
N° of classes  0.20 0.18 0.15 0.12
12 7,94E-03  7,53E-03 7,58E-03 7,59E-03
11 0,001% 0,002% 0,004% 0,001%
10 0,023% 0,018%  0,010%  0,005%

0,088% 0,055%  0,039% 0,020%
0,235% 0,147%  0,499% 0,076%
0,342% 0,246%  0,574% 0,140%
0,639% 0,308%  0,647% 0,206%
0,661% 0,337%  0,669% 0,221%
1,029% 1,269% 0,885% 0,412%
2,986% 2,817% 1,949% 1,336%
7,896% 7,389% 7,293% 5,812%

N WhR G N X ©

Table 6. Constructed files and classes for the MLP model

Vector number / Class
Mesh step Total vector number C;(5) C(7) C3(12) C4(16)

0.07 7257 1573 845 1625 1589
0.08 5631 1541 871 1621 1598
0.09 4422 1177 713 1236 1296
0.1 3576 923 570 984 1099
0.11 2828 688 462 719 959
0.12 2436 577 412 636 811
0.13 1991 457 354 465 715
0.14 1790 385 287 451 667
0.15 1497 296 246 391 564
0.18 1047 181 192 273 401
0.2 825 135 121 233 336

Table 7. Dimension of the plate with an elliptic hole considered for the study

Length, height L=70mm,D =50 mm

Crack a=20mm,b=5mm
Poisson’s ratio v=03

Young's modulus E =2ell Pa

Loading P=100N

studied examples and that the convergence training reaches 99% and that the test process
achieves an outstanding value of 78%.

Approximately thirty tests have been conducted, and the selected model contains one hidden
layer with 2000 neurons. The relu activation function is used for the hidden layer, whereas
softmax is used for the output layer of all scenarios. Figure 9 presents the software interface
with the input, output data, and the configuration of the model (optimization algorithm, % of

C. R. Mécanique, 2020, 348, n° 1, 63-76
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Figure 7. VM stresses for the plate with an elliptic hole. (a) Elastic plate with an elliptic hole.
(b) U{:[E/IM. (c) The use of ANN model in the approximation. (d) Fixed node in the influence
domain (8 nodes).

training). The selected architecture to build the model in the data network and train rubrics are
also presented in the same figure.

4. Application

An elastic square plate similar to the previous example is always present in the geometries of
complex mechanical parts. In the present case, the elliptical crack is studied to validate the
developed ANN model. It is subjected to uniform stress at two different ends and is depicted
in Figure 7a.

The FEM simulation is performed by ANSYS, the results are shown in Figure 7b, and the ANN
model is used to test its performance. Figure 7b illustrates that the maximum VM stresses reaches
26 MPa. The closest result is shown in Figure 7c, which uses the ANN model in the solution
approximation.

5. Results and discussion

Several MLP architectures were tested, and the best scenarios with the minimum MSE are
mentioned in Table 4. Figure 8 depicts the global error in the energy norm against the mesh
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Table 8. Computing time for the formulation of the EFG solution with the ANN model

Time (s)
Gauss point Node ANN [22] [11]
1047 203 3.97 281 11.59
Memory (Mo) 520 517 523

step used in the MLP model and the desired goal (minimum global error). The results of the
developed MLP model are identical to the goal (as shown in Figure 8) that signifies the efficiency,
precision, and generics of the ANN model. Moreover, in comparison with other approaches, the
MLP model is given the number of nodes directly in the cover for each interest point. Thus,
the only computation needed is to select the number of nodes from the interest point. The
performance of the ANN approach in the CPU is shown in Table 8, with the application on the
plate with a circular hole. The example is run on the following hardware: Core i5-2430M CPU
2.4 GHz and 8 Go RAM, within MATLAB R2015 a in x64 Windows 10.

6. Conclusion

The present research mainly aims to improve the EFG meshless method through an interest in
the influence domain. Most of the existing methods in the literature use equations to compute
the size of the influence domain, but the proposed method transforms a calculation problem
into a classification problem, and each point of interest is assigned to a class. Four different
classes at 5, 7, 12, and 16, are represented by the number of nodes in the influence domain, and a
practical approach is developed to determine the size of the influence domain on the basis of an
optimal number of nodes in the cover. Thus, an ANN system is trained to optimize between the
accuracy and the computation cost of the numerical results. The ANN model is provided a matrix
system witch assigns to each interest point an optimal number of node in the influence domain.
The method is applied to a 2D elastic problem (plates with circular and elliptical holes) and is
founded that the results are accurate compared to other existing methods. The performance
in the formulation of the EFG numerical solution in terms of CPU in the proposed method is
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Figure 9. Python software interfaces for the MLP model. (a) Network construction.
(b) Training data configuration. (c) Input and output configurations. (d) MSE. (e) Model
accuracy.

slightly above the approach by fixing the number of nodes in all supports and also better than
Belystchko’s approach. In terms of accuracy, the ANN model is more precise as it is trained by the
size of the influence domain, which results in a minimum error. The system is trained by more
than thirty-three thousand (33,000) interest points, which makes it generic for the application on
different meshing sizes and geometries.
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