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Abstract. We introduce a new family of paraxial asymptotic models that approximate the Vlasov–Maxwell
equations in non-relativistic cases. This formulation is nth order accurate in a parameter η, which denotes
the ratio between the characteristic velocity of the beam and the speed of light. This family of models is
interesting, first because it is simpler than the complete Vlasov–Maxwell equation and then because it allows
us to choose the model complexity according to the expected accuracy.
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Version française abrégée

On considère un faisceau de particules chargées non colisionnelles, qui se déplacent dans un
champ électromagnétique. Ce système peut être modélisé par le système d’équations couplées de
Vlasov–Maxwell. Cependant, sa résolution numérique s’avère souvent assez lourde et coûteuse. Il
est donc important de pouvoir construire, pour des hypothèses physiques données, des modèles
d’équations plus facile à résoudre, qui approchent cependant le modèle initial avec une précision
choisie.

Dans cette Note, nous nous intéressons au cas d’un faisceau de particules non relativistes.
L’exemple typique envisagée ici est le cas d’un faisceau court de particules chargées, se déplaçant
(voir (1)) dans un tube cylindrique parfaitement conducteur. Nous proposons alors une nouvelle
famille de modèles asymptotiques paraxiaux pour approcher le système d’équations de Vlasov–
Maxwell.

Pour dériver cette famille de modèles, on commence par effectuer un changement de variables
dans le système d’équations de Vlasov–Maxwell (1)–(6), en transformant la variable longitudinale
z en la variable ζ = βct − z, où c désigne la vitesse de la lumière, 0 < β < 1 un paramètre
donné, z l’axe du faisceau et t le temps. En décomposant les composantes de toutes les quantités
(position, vitesse, champs, . . . ) en parties transverses et longitudinales, nous obtenons alors le
système (9)–(16).

La seconde étape consiste à introduire une mise à l’échelle des équations, adaptée à la
physique considérée. Pour ce faire, on suppose que le faisceau est court, que sa vitesse vz est
de l’ordre de βc et que sa vitesse transverse v⊥ est petite devant βc. On introduit alors un petit
paramètre η défini par (22) et on déduit le système d’équations adimensionnées (24)–(33).

Ensuite, on considère les développements asymptotiques des quantités f , n, j et E, B, E⊥, F
en fonction de ce petit paramètre η. On montre ainsi que pour obtenir une approximation de la
solution f (x,v, t ) de l’équation de Vlasov en O (ηn),n ∈ N , il suffit de connaître le développement
asymptotique de la force électromagnétique F⊥,Fz à l’ordre n. En utilisant l’expression de ces
forces (35)–(36), on détermine quels sont les termes dans le développement asymptotique des
champs électromagnetiques nécessaires pour fermer le système.

La dernière étape consiste alors à déterminer des équations caractéristiques pour ces champs
électromagnétiques, c’est-à-dire des termes intervenant dans le développement asymptotique.
C’est l’objet des lemmes 4.0.1 à 4.0.5, où sont caracterisés les termes d’ordre n de ces champs.

On dérive ensuite la nouvelle famille de modèles paraxiaux en revenant aux variables
physiques initiales, (cf. équations (53)–(57)). Cette nouvelle famille de modèles, après discréti-
sation, devrait conduire à une méthode numérique, rapide et facile à implémenter, pour laquelle
on peut choisir le degré de complexité du modèle, en fonction de la précison désirée.

1. Introduction

Charged particle beams are very useful in a variety of scientific and technological applications.
After the discovery that both magnetic and electric fields can act as lenses for electron rays, this
field experienced rapid development with industrial applications such as welding [1], microma-
chining and lithography [2], thermonuclear fusion [3], and so on. More recent developments use
intense electron beams as electromagnetic radiation sources such as the gyrotron or the free-
electron laser (see for instance [4, 5]). More details can be found in [6] and [7]. Hence, there is
great interest in mathematical and numerical modeling of these phenomena.

Considering non-collisional beams, a well-accepted method for describing the transport of
bunches of particles is the Vlasov equation [8, 9]. Since the particles are electrically charged,
the force field that governs their movement is the Lorentz force, which in turn depends on both

C. R. Mécanique — 2020, 348, no 12, 969-981



Franck Assous and Yevgeni Furman 971

electric and magnetic fields, which are solutions to the well-known Maxwell equations [10]. This
set of equations coupled together is known as the time-dependent Vlasov–Maxwell system of
equations.

However, the numerical solution of this model, which is unavoidable in many situations
[11, 12], requires a large computational effort, usually based on a combination of finite elements
or finite volume discretization with particle-in-cell methods. Therefore, whenever possible, it is
worth taking into account the geometric and physical characteristics of the problem to derive
approximate models with different degrees of accuracy and complexity, leading to cheaper
simulations (see [13–17]).

Hence, in [13], the authors presented a study of a paraxial model as an approximation of the
stationary Vlasov–Maxwell equations. The particles of the beam remain close to its optical axis,
so that the transverse width of the beam is very small compared to a characteristic length, and
have approximately the same kinetic energy. By different assumptions, the authors in [14] used
an asymptotic expansion technique to treat the case of high-energy short beams, considering a
bunch of highly relativistic charged particles. In the same spirit, in [15], the authors considered
a steady-state beam, that is, all partial derivatives with respect to time are a priori set equal to
zero. In addition, the beam is assumed to be sufficiently long so that longitudinal self-consistent
forces can be neglected, and it propagates at a constant velocity along the propagation axis.
In particular, assuming ∂/∂t = 0 allows writing equations in a transverse plane for which the
component z plays the role of time. This gives a system in which only four dimensions are
involved.

In the model we propose here, these last three assumptions—steady state, longitudinal self-
consistent forces, and propagation at a constant velocity along the propagation axis—are no
longer required. Following the principle revealed in [14], our approach relies on the introduction
of a moving frame, which travels along the optical axis at a given velocity. Many noticeable
research works have been conducted in this field. In the case of high-energy, ultra-relativistic
short beams, Laval et al. [14] derived a paraxial approximation of the Vlasov–Maxwell equations
by introducing a moving frame, which travels along the optical axis at the speed of light c.

This idea of changing variables to follow the moving frame is not new; it can be found
elsewhere, for instance in [18, 19]. Similar work was carried out for the case of a laminar beam in
[20]. A different paraxial model was also derived for the case of high-energy short beams [21], and
it was typically related to free-electron lasers or particle accelerators. This work takes into account
the specific geometric features of devices, thus leading to a somewhat different dimensional
analysis. Numerical applications were also proposed in [22], whereas comparison methods of
these models, based on data mining techniques, were proposed in [23].

The aim of this paper is to derive a new family of paraxial asymptotic models that approximate
the Vlasov–Maxwell equations in non-relativistic cases. Section 2 gives a short overview of the
equations and the change of variables for the beam frame. The scaling of the equations is
presented in Section 3, whereas the asymptotic expansion of the relevant parameters to derive
a new family of paraxial models is proposed in Section 4. Finally, the resulting paraxial models,
which allow us to choose the model complexity according to the expected accuracy, are given in
Section 5.

2. Vlasov–Maxwell model

Consider a beam of charged particles with mass m and charge q moving in a perfectly conducting
cylindrical tube, whose axis is constituted by the z-axis. We denote by Ω the transverse section
of boundary Γ, ν = (νx ,νy ,0) denoting the unit exterior normal to the tube. We assume that an
external magnetic field Be confines the beam in a neighborhood of the z-axis, which may be
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972 Franck Assous and Yevgeni Furman

therefore chosen as the optical axis of the beam. Let x = (x, y, z) be the position of the particle and
v = (vx , vy , vz ) be its velocity. We assume that the beam is non-relativistic and non-collisional
so that its distribution function f = f (x,v, t ) in the phase space (x,v) is a solution to the Vlasov
equation

∂ f

∂t
+v ·gradx f + 1

m
F ·gradv f = 0. (1)

Here, F = q(E+v×B) denotes the electromagnetic force acting on the particles. The electric field
E = E(x, t ) and the magnetic field B = B(x, t ) are solutions to the Maxwell equations

1

c2

∂E

∂t
−curl B =−µ0J, (2)

∂B

∂t
+curl E = 0, (3)

divE = ρ

ε0
, (4)

divB = 0, (5)

where the charge ρ(x, t ) and the current density J(x, t ) are obtained from the distribution function
f (x,v, t ) with

ρ(x, t ) = q
∫
R3

v

f dv, J(x, t ) = q
∫
R3

v

v f dv. (6)

Now, we introduce a fixed parameter 0 < β < 1, and we consider that the particle longitudinal
velocity vz satisfies vz ≃ βc for any particle in the beam. Hence, we rewrite the Vlasov–Maxwell
equations in a frame that moves along the z-axis with the velocityβc, that is, a fraction of the light
velocity. For this purpose, we set ζ=βct − z, vζ =βc −vz and we perform the change of variables
(and not a change of reference frame) (x, y, z, vx , vy , vz , t ) → (x, y,ζ, vx , vy , vζ, t ) so that(

∂

∂z
,
∂

∂vz
,
∂

∂t

)
→

(
− ∂

∂ζ
,− ∂

∂vζ
,
∂

∂t
+βc

∂

∂ζ

)
. (7)

Remark 1. Note that the parameter β can be understood as a “degree of freedom” that allows us
to choose the most appropriate change of variables according to the average particle longitudinal
velocity. In practical applications, it could be taken equal (for instance) to 0.25, 0.5, but in any
case, neither close to 0 nor close to 1. Indeed, following the arbitrary classification,β up to a value
of 0.4 is non-relativistic, whereas it is semi-relativistic from 0.4 to 0.8. Under these conditions, we
cannot have β≪ 1. In addition, as β is a fixed parameter, we do not consider here the transition
from the relativistic to the non-relativistic case.

It is also convenient to introduce the transverse quantities

x⊥ = (x, y), v⊥ = (vx , vy )

and to define the transverse operators

grad⊥ϕ=
(
∂ϕ

∂x
,
∂ϕ

∂y

)
, curl⊥ϕ=

(
∂ϕ

∂y
,−∂ϕ

∂x

)
, ∆⊥ϕ= ∂2ϕ

∂x2 + ∂2ϕ

∂y2 ,

where ϕ = ϕ(x, y) is a scalar function. Similarly, for A⊥ = (Ax , Ay ) denoting a transverse vector
field, we set

div⊥A⊥ = ∂Ax

∂x
+ ∂Ay

∂y
, curl⊥A⊥ = ∂Ay

∂x
− ∂Ax

∂y
.

We define A⊥×ez = (Ay ,−Ax ), and we readily obtain the following identities:

div⊥(A⊥×ez ) = curl⊥A, curl⊥(A⊥×ez ) =−div⊥A, curl⊥curl⊥ϕ=−∆⊥ϕ. (8)

Moreover, denoting by τ= (−νy ,νx ) the unit tangent along Γ, we have the relation curl⊥ϕ ·τ=
−(∂ϕ/∂ν).

C. R. Mécanique — 2020, 348, no 12, 969-981



Franck Assous and Yevgeni Furman 973

Using the above notations, the Vlasov equation in the new variables can be written as

∂ f

∂t
+v⊥ ·grad⊥ f + vζ

∂ f

∂ζ
+ 1

m
F⊥ ·gradv⊥ f − Fz

m

∂ f

∂vζ
= 0. (9)

Additionally, setting E⊥ = (Ex−βcBy ,Ey +βcBx ) and Jζ = ρβc− Jz = q
∫
R3

v
vζ f dv, we obtain the

following expressions for the Maxwell equations. First, we consider the Gauss law, which takes the
form

div⊥E⊥− ∂Ez

∂ζ
= ρ

ε0
, (10)

and the Gauss law for magnetism is expressed as

div⊥B⊥− ∂Bz

∂ζ
= 0. (11)

In the same way, the Ampere law can be written as

⊥:
1

c2

∂E⊥
∂t

+ 1

βc

∂

∂ζ
(E⊥− (1−β2)E⊥)−curl⊥Bz =−µ0J⊥, (12)

ζ :
1

c2

∂Ez

∂t
+ 1

βc
div⊥(E⊥− (1−β2)E⊥) =µ0 Jζ, (13)

and the Faraday law becomes

⊥:
∂B⊥
∂t

+ ∂

∂ζ
(E⊥× êz )+curl⊥Ez = 0, (14)

ζ :
∂Bz

∂t
+curl⊥E⊥ = 0. (15)

Finally, the electromagnetic force becomes

F⊥ = q(E⊥+ (Bz v⊥+ vζB⊥)× êz ), (16)

Fz = q(Ez +v⊥ · (B⊥× êz )). (17)

Let us formulate now the boundary conditions. Assuming that the particles, which drift in the
direction ζ > 0, remain inside a fixed domain Ω× (0, Z ) during the time interval (0,T ) when we
study the behavior of the beam, we assume that no particle is emitted at the boundary of the
domain. Hence, for f , we can write

f = 0 for


(x⊥,ζ) ∈ Γ× ]0, Z [, v ·ν< 0,
x⊥ ∈Ω,ζ= 0, vζ > 0,
x⊥ ∈Ω,ζ= Z , vζ < 0.

For the initial conditions, we simply assume that the initial distribution of particles is a known
function that satisfies the boundary conditions f|t=0 = f0.

Regarding the electromagnetic fields, as the surface of the tube is a perfect conductor, the
tangential components of the electric field vanish for x⊥ ∈ Γ, ζ ∈ (0, Z ). Then, we have

E⊥ ·τ= 0, Ez = 0.

For the artificial boundary ζ= 0, assuming that there is no external electric field and that the static
electromagnetic fields that exist ahead of the beam cannot be modified by the electromagnetic
waves generated by the beam, we have for x⊥ ∈Ω, ζ= 0

E = 0, B = Be , where Be denotes a given external field.

We also assume given initial conditions E|t=0 = E0, B|t=0 = B0, where E0 and B0 satisfy both the
Maxwell equations and the boundary conditions specified above.

For what follows, let us note some important consequences of these boundary conditions.
Taking the inner product of E⊥ and τ for x⊥ ∈ Γ, ζ ∈ (0, Z ), we obtain

E⊥ ·τ=βcB⊥ ·ν. (18)
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Next, taking the dot product of (14) by ν and using the definition of curl⊥, for x⊥ ∈ Γ,ζ ∈ (0, Z ), we
obtain (

∂

∂t
+βc

∂

∂ζ

)
(B⊥ ·ν) = 0. (19)

Similarly, integrating (15) overΩ and applying the Green theorem for ζ ∈ (0, Z ), we obtain∫
Ω

∂Bz

∂t
dx⊥+βc

∮
Γ

B⊥ ·νdl = 0. (20)

In the same spirit as above, we obtain using (11), for ζ ∈ (0, Z ),∫
Ω

(
∂

∂t
+βc

∂

∂ζ

)
Bz dx⊥ = 0. (21)

3. Scaling of equations

The second step to derive the paraxial model is to introduce an ad hoc scaling of the equations.
Assuming that we deal with a short beam, we introduce a scaling of the equations by considering
the following properties of the beam:

(i) The beam dimension is small compared to the longitudinal length L of the device.
(ii) The transverse particle velocities v⊥ are comparable to vζ; so we have vζ ≃ v⊥ ≪ vz ≃βc.

Thus, by following a classical approach in dimensional analysis (see for instance [24, 25]),
we introduce two characteristic quantities that “reflect” the geometry and the physics of our
problem:

(i) l , the characteristic dimension of the beam;
(ii) v , the characteristic velocity of the particles.

Note that in contrast to the case described in [14], [22], or [26], we do not require here the
longitudinal particle velocities vz to be close to the light velocity c since we consider a non-
relativistic case. For this reason, we set vz ≃ βc,0 < β < 1, which allows us to play with the value
of the parameter β.

Now, defining a small parameter η and a characteristic time T with

η≡ v

c
≪ 1, T = l

v̄
, (22)

we can write

x = l x ′, y = l y ′, ζ= lζ′, t = T t ′, vx = v̄ v ′
x , vy = v̄ v ′

y , vζ = v̄ v ′
ζ, (23)

where the primes represent dimensionless quantities. Using the physical units of the physical
quantities and based on the Vlasov–Maxwell equations, we can introduce the following scaling
factors. For the electric field, we can define Ē = mv̄2/ql so that from the Gauss law we can set
ρ̄ = ε0mv̄2/ql 2. From the definition of ρ, we obtain f̄ = ε0m/q2l 2v̄ . Similarly, using the physical
units of the other quantities, we obtain that J̄ = ε0mcv̄2/ql 2, F̄ = mv̄2/l , and B̄ = mv̄2/qcl . This
allows us to write f (x⊥,ζ,v⊥, vζ, t ) = f̄ f ′(x′⊥,ζ′,v′⊥, v ′

ζ
, t ′), E(x⊥,ζ, t ) = ĒE′(x′⊥,ζ′, t ′), B(x⊥,ζ, t ) =

B̄B′(x′⊥,ζ′, t ′), and F(x⊥,ζ,v⊥, vζ, t ) = F̄ F′(x′⊥,ζ′,v′⊥, v ′
ζ
, t ′).

Now, defining ρ′ = ∫
R3

v
f ′ dv′ and J′ = ∫

R3
v

v′ f ′ dv′, it is convenient to introduce ρ = ρ̄ρ′ for the
charge density and J⊥ = J̄ηJ′⊥, Jζ = J̄ηJ ′

ζ
for the current density.

Hence, we are able to write the Vlasov–Maxwell equations using these dimensionless variables.
Dropping the primes for simplicity, the Vlasov equation in dimensionless variables is

∂ f

∂t
+v⊥ ·grad⊥ f + vζ

∂ f

∂ζ
+F⊥ ·gradv⊥ f −Fz

∂ f

∂vζ
= 0. (24)
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Next, defining the quantity E ′
⊥ = (E ′

x −βB ′
y ,E ′

y +βB ′
x ), we easily verify that E⊥ = ĒE ′

⊥. Ac-
cordingly, applying these dimensionless variables and still dropping the primes, the Ampere law
(Equations (12)–(13)) and the Poisson equation (10) give

η
∂E⊥
∂t

+ 1

β

∂

∂ζ
(E⊥− (1−β2)E⊥)−curl⊥Bz =−ηJ⊥, (25)

η
∂Ez

∂t
+ 1

β
div⊥(E⊥− (1−β2)E⊥) = ηJζ, (26)

div⊥E⊥− ∂Ez

∂ζ
= ρ, (27)

whereas the Faraday law (Equations (14)–(15)) and the absence of monopole equation (11) are
written as

η
∂B⊥
∂t

+ ∂

∂ζ
(E⊥× êz )+curl⊥Ez = 0, (28)

η
∂Bz

∂t
+curl⊥E⊥ = 0, (29)

div⊥B⊥− ∂Bz

∂ζ
= 0. (30)

In the above equations, the right-hand sides ρ and (J⊥, Jζ) fulfill the charge conservation equation

η

(
∂ρ

∂t
+div⊥J⊥+ ∂Jζ

∂ζ

)
= 0. (31)

Finally, the electromagnetic force F = (F⊥,Fz ) takes the form

F⊥ = E⊥+η(Bz v⊥+ vζB⊥)× êz , (32)

Fz = Ez +η(vx By − vy Bx ). (33)

We turn to the boundary conditions. The scaled electric field E obeys the same boundary
conditions on the perfectly conducting boundary of the tube together with the analogous to (18),
that is, E⊥ ·τ=βB⊥ ·ν. Regarding the scaled magnetic field (B⊥,Bz ), we obtain from (19)–(21)(

η
∂

∂t
+β ∂

∂ζ

)
B⊥ ·ν= 0, η

∫
Ω

∂Bz

∂t
dx⊥+β

∮
Γ

B⊥ ·νdl = 0,
∫
Ω

(
η
∂

∂t
+ 1

η

∂

∂ζ

)
Bz dx⊥ = 0,

whereas, for x⊥ ∈Ω,ζ= 0, we obtain E = 0,B = Be and for x⊥ ∈Ω,ζ= Z , we obtain E⊥ = 0.

4. Asymptotic expansion

To derive a paraxial model, let us now rewrite the scaled Vlasov–Maxwell equations using expan-
sions of the quantities f , ρ, J, E, B, E⊥, and F in powers of the small parameter η, namely,

f = f 0 +η f 1 +η2 f 2 +·· · , ρ = ρ0 +ηρ1 +η2ρ2 +·· · , J = J0 +ηJ1 +η2J2 +·· · ,

E = E0 +ηE1 +η2E2 +·· · , B = B0 +ηB1 +η2B2 +·· · , E⊥ = E 0
⊥+ηE 1

⊥+η2E 2
⊥+·· · ,

F = F0 +ηF1 +η2F2 +·· · .

Then, in the scaled Vlasov–Maxwell equations, we replace formally the functions by their
asymptotic expansions; we identify the coefficients of η0, η1, and so on. We begin by applying
these expansions to the Vlasov equation (24). We obtain

– at the zeroth order

∂ f 0

∂t
+v⊥ ·grad⊥ f 0 + vζ

∂ f 0

∂ζ
+F0

⊥ ·gradv⊥ f 0 +F 0
z
∂ f 0

∂vζ
= 0

or
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– at the first order
∂ f 1

∂t
+v⊥ ·grad⊥ f 1 + vζ

∂ f 1

∂ζ
+F0

⊥ ·gradv⊥ f 1 +F1
⊥ ·gradv⊥ f 0 +F 0

z
∂ f 1

∂vζ
+F 1

z
∂ f 0

∂vζ
= 0.

More generally, we can expand this equation for powers of η, that is, for the nth order:

∂ f n

∂t
+v⊥ ·grad⊥ f n + vζ

∂ f n

∂ζ
+

n∑
i=0

Fi
⊥ ·gradv⊥ f n−i +

n∑
i=0

F i
z
∂ f n−i

∂vζ
= 0. (34)

In (34), we use the convention that the negative superscripts vanish.
Hence, for determining the asymptotic expansion of the distribution function f up to a

given order n in η, it is sufficient to know the expansion of the transverse and longitudinal
electromagnetic forces F⊥ and Fz , respectively, up to their nth order. Then, using expressions
(32) and (33) for the forces, we obtain, with the same convention on the negative superscript,

Fn
⊥ = E n

⊥+ (B n−1
z v⊥+ vζBn−1

⊥ )× êz , (35)

F n
z = E n

z +v⊥ · (Bn−1
⊥ × êz ). (36)

Under these conditions, the asymptotic expressions of these forces are entirely determined if
we know the expansions of E⊥ and Ez up to the nth order and E⊥,1 B⊥, and Bz up to the (n−1)th
order. Our aim now is to determine equations that characterize these “required” electromagnetic
asymptotic fields.

For this purpose, we apply these expansions to the Maxwell equations. We remark that all the
terms where a time derivative is involved are multiplied by η; so they do not appear at the zeroth
order. Hence, we obtain

– for the Ampere law and the Poisson equation (Equations (25)–(27))

∂

∂ζ
(E 0

⊥− (1−β2)E0
⊥)−βcurl⊥B 0

z = 0,

div⊥(E 0
⊥− (1−β2)E0

⊥) = 0,

div⊥E0
⊥− ∂E 0

z

∂ζ
= ρ0,

whereas the Faraday law and the absence of monopole equation (Equations (28)–(30))
yield

∂

∂ζ
(E 0

⊥× êz )+curl⊥E 0
z = 0,

curl⊥E 0
⊥ = 0,

div⊥B0
⊥− ∂B 0

z

∂ζ
= 0.

Finally, the charge conservation equation (31) leads to

∂ρ0

∂t
+div⊥J0

⊥+
∂J 0

ζ

∂ζ
= 0.

On the contrary, at the first order, the terms with a time derivative do appear with an index 0.
More precisely, we have, for the Ampere law,

∂E0
⊥

∂t
+ 1

β

∂

∂ζ
(E 1

⊥− (1−β2)E1
⊥)−curl⊥B 1

z =−J0
⊥,

∂E 0
z

∂t
+ 1

β
div⊥(E 1

⊥− (1−β2)E1
⊥) = J 0

ζ ,

1E⊥ does not appear explicitly in forces (Equations (35)–(36)), but it is required to compute Bz .
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and for the Faraday law,

∂B0
⊥

∂t
+ ∂

∂ζ
(E 1

⊥× êz )+curl⊥E 1
z = 0,

∂B 0
z

∂t
+curl⊥E 1

⊥ = 0.

The other equations have the same expression simply by replacing index 0 with index 1. More
generally, these expansions can be written by general expressions for the nth order. For the
electric field, we obtain, still using the convention on the negative superscript,

∂En−1
⊥
∂t

+ 1

β

∂

∂ζ
(E n

⊥− (1−β2)En
⊥)−curl⊥B n

z =−Jn−1
⊥ , (37)

∂E n−1
z

∂t
+ 1

β
div⊥(E n

⊥− (1−β2)En
⊥) = J n−1

ζ , (38)

div⊥En
⊥− ∂E n

z

∂ζ
= ρn , (39)

whereas, for the magnetic field, we obtain

∂Bn−1
⊥
∂t

+ ∂

∂ζ
(E n

⊥× êz )+curl⊥E n
z = 0, (40)

∂B n−1
z

∂t
+curl⊥E n

⊥ = 0, (41)

div⊥Bn
⊥− ∂B n

z

∂ζ
= 0, (42)

and the charge conservation equation is expressed as

∂ρn

∂t
+div⊥Jn

⊥+
∂J n

ζ

∂ζ
= 0. (43)

For the sake of completeness, we finally present the boundary conditions for x⊥ ∈ Γ,ζ ∈ (0, Z ),
which are written as

En
⊥ ·τ= 0, E n

z = 0, E n
⊥ ·τ=βBn

⊥ ·ν, (44)(
∂Bn−1

⊥
∂t

+β∂Bn
⊥

∂ζ

)
·ν= 0,

∫
Ω

∂B n−1
z

∂t
dx⊥+β

∮
Γ

Bn
⊥ ·νdl = 0,

∫
Ω

(
∂B n−1

z

∂t
+β∂B n

z

∂ζ

)
dx⊥ = 0. (45)

As a consequence, we can obtain the following lemmas that characterize different field com-
ponents at a given order n. First, for the longitudinal electric component E n

z , we have the lemma
that follows.

Lemma 4.0.1. The nth order component E n
z is the unique solution to

∆⊥E n
z + (1−β2)

∂2E n
z

∂ζ2 =

∂

∂t

(
β
∂E n−1

z

∂ζ
+curl⊥Bn−1

⊥

)
− ∂

∂ζ
(βJ n−1

ζ + (1−β2)ρn) inΩ,

E n
z = 0 on Γ.

(46)

Proof. Inserting (39) into (38) gives

div⊥E n
⊥− (1−β2)

∂E n
z

∂ζ
= (1−β2)ρn +βJ n−1

ζ −β∂E n−1
z

∂t
. (47)

Then, differentiating this relation with respect to ζ and adding the curl⊥ of (40) give the desired
result. □
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Then, E n
z and quantities of the previous order n −1 are used to compute the pseudo-field E n

⊥.

Lemma 4.0.2. The nth-order component E n
⊥ is the unique solution to

curl⊥E n
⊥ =−∂B n−1

z

∂t
,

div⊥E n
⊥ = (1−β2)

(
∂E n

z

∂ζ
+ρn

)
+β

(
J n−1
ζ − ∂E n−1

z

∂t

)
inΩ,∮

Γ
E n
⊥ ·τdl =−

∫
Ω

∂B n−1
z

∂t
dx⊥.

(48)

Proof. Since E n
z is known from (46), obtaining the equations from (41) and (47) is straightfor-

ward. The boundary conditions are easily obtained from their expressions above. □

Similarly, we obtain the system that solves the transverse electric field En
⊥, which is required to

obtain the transverse magnetic field Bn
⊥ (see Lemma 4.0.4).

Lemma 4.0.3. The nth-order component En
⊥ is the solution to

curl⊥(curl⊥En
⊥)− (1−β2)

∂2En
⊥

∂ζ2

=−∂
2E n

⊥
∂ζ2 −curl⊥

(
∂B n−1

z

∂t

)
−β ∂

∂ζ

(
∂En−1

⊥
∂t

+ Jn−1
⊥

)
inΩ,

div⊥En
⊥ = ∂E n

z

∂ζ
+ρn inΩ,

En
⊥ ·τ= 0 on Γ.

(49)

Proof. Computing curl⊥E n
⊥ := curl⊥(En

⊥−βBn
⊥× êz ) and using (41) and (42) give

∂B n
z

∂ζ
=− 1

β

∂B n−1
z

∂t
− 1

β
curl⊥En

⊥. (50)

Combining (50) with the derivative of (37) with respect to ζ gives the result, where E n
⊥ is known

from (48). □

The last two results deal with the magnetic field. First, we have for the transverse component
the following lemma.

Lemma 4.0.4. The nth-order component Bn
⊥ is the unique solution to

curl⊥Bn
⊥ = ∂E n−1

z

∂t
+βdiv⊥En

⊥− J n−1
ζ ,

div⊥Bn
⊥ =− 1

β

(
curl⊥En

⊥+ ∂B n−1
z

∂t

)
inΩ,∮

Γ
Bn
⊥ ·νdl =− 1

β

∫
Ω

∂B n−1
z

∂t
dx⊥ on Γ.

(51)

Proof. Computing div⊥E n
⊥ := div⊥(En

⊥−βBn
⊥×êz ) in combination with (38) gives one of the equa-

tions. The second is obtained by combining curl⊥E n
⊥ with (41), where the boundary condition

is (45). □

Finally, the longitudinal component B n
z is entirely determined by the magnetic field and is

characterized by the following lemma.

C. R. Mécanique — 2020, 348, no 12, 969-981



Franck Assous and Yevgeni Furman 979

Lemma 4.0.5. The nth-order component B n
z is the unique solution to

∂B n
z

∂ζ
= div⊥Bn

⊥ inΩ,∫
Ω

∂B n
z

∂ζ
dx⊥ =− 1

β

∫
Ω

∂B n−1
z

∂t
dx⊥.

(52)

Proof. As Bn
⊥ is known from (51), the equation is given by (42). The boundary condition is

straightforward to obtain. □

5. Paraxial model

We are now ready to introduce the paraxial model, which provides an approximation of the
distribution function f , which is formally nth order accurate in η. This means that the asymptotic
expansions of f in the Vlasov–Maxwell model and in the paraxial model coincide up to the order
n in η. We derive this model by going back to the physical variables by using the scaling factors as
introduced in Section 3.2

To begin with, let us derive the equations satisfied by E n
z . Assuming the knowledge of the data

(ρ,J) and of the fields up to the order n −1, from Lemma 4.0.1, we obtain
∆⊥2E n

z + (1−β2)
∂2E n

z

∂ζ2 = 1

c

[
∂

∂t

(
β
∂E n−1

z

∂ζ
+curl⊥cBn−1

⊥

)
− 1

ε0

∂

∂ζ
(βJ n−1

ζ + (1−β2)cρn)

]
inΩ,

E n
z = 0 on Γ.

(53)

Let us now deal with the transverse electric field. From E n
z , we can compute E n

⊥ by solving a quasi-
static model, following Lemma 4.0.2, which is written as

curl⊥E n
⊥ =−∂B n−1

z

∂t
,

div⊥E n
⊥ = (1−β2)

(
∂E n

z

∂ζ
+ ρn

ε0

)
+ β

ε0c
J n−1
ζ − β

c

∂E n−1
z

∂t
inΩ,∮

Γ
E n
⊥ ·τdl =−

∫
Ω

∂B n−1
z

∂t
dx⊥.

(54)

In our paraxial model, even if En
⊥ does not appear explicitly in the expression of the forces, there

is yet a need to compute it as it is required to obtain Bz . Following Lemma 4.0.3, we have

curl⊥(curl⊥En
⊥)− (1−β2)

∂2En
⊥

∂ζ2

=−∂
2E n

⊥
∂ζ2 −curl⊥

(
∂B n−1

z

∂t

)
− β

c

∂

∂ζ

(
∂En−1

⊥
∂t

+ Jn−1
⊥
ε0

)
inΩ,

div⊥En
⊥ = ∂E n

z

∂ζ
+ ρn

ε0
inΩ,

En
⊥ ·τ= 0 on Γ.

(55)

2Recall that we dropped ′ in Section 3.
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This allows us to compute now the transverse magnetic field Bn
⊥, following Lemma 4.0.4, by

solving the quasi-static system of equations

curl⊥Bn
⊥ = 1

c2

∂E n−1
z

∂t
+ β

c
div⊥En

⊥−µ0 J n−1
ζ inΩ,

div⊥Bn
⊥ =− 1

βc

(
curl⊥En

⊥+ ∂B n−1
z

∂t

)
inΩ,∮

Γ
Bn
⊥ ·νdl =− 1

βc

∫
Ω

∂B n−1
z

∂t
dx⊥ on Γ.

(56)

Finally, we can obtain the longitudinal magnetic field of order n by solving the simple equation
deduced from Lemma 4.0.5: 

∂B n
z

∂ζ
= div⊥Bn

⊥ inΩ,∫
Ω

∂B n
z

∂ζ
dx⊥ =− 1

β

∫
Ω

∂B n−1
z

∂t
dx⊥.

(57)

We can summarize our main result in the following theorem.

Theorem 5.1. Equations (53)–(57) determine the triple (En ,Bn ,E n
⊥) from the data (ρ,J) and

(El ,Bl ,E l
⊥) for 0 ≤ l ≤ n − 1 in a unique way. Moreover, the paraxial model provides an approx-

imation of the distribution function f , which is formally nth order accurate in η. Namely, the as-
ymptotic expansions of f in the Vlasov–Maxwell model and in the paraxial model coincide up to
the nth order in η.

The paraxial model proposed here is hierarchical and closed for each order: The zeroth-order
fields allow us to solve the first order and so on. In addition, the nth-order fields are required
only for E⊥ and Ez , whereas it is sufficient to know the other fields up to the (n − 1)th order.
Last but not least, note that as the time derivatives are only on the right-hand side, the model
is quasi-static and not explicitly time-dependent. From a computational point of view, this
point is very important. Indeed, the underlying idea is to use a particle-in-cell method, which
means solving the Vlasov equation by a particle method and the electromagnetic fields by a grid
method (finite differences, finite element, etc.). In this context, it is well known that the difficult
point from a computational point of view is the time-dependent aspect of the equations, which
is sometimes unavoidable. In other words, solving the full system of time-dependent Vlasov–
Maxwell equations can be extremely expensive in terms of computation time. One advantage of
the proposed model is that it is not time-dependent even if it approximates the time-dependent
system of equations at a given order n.

6. Conclusion

In this note, we proposed a new family of paraxial asymptotic models that approximate the
non-relativistic Vlasov–Maxwell equations. It has been derived by introducing a small parameter
η = v/c, and it is nth order accurate for n ∈N. Under these conditions, we can easily choose the
complexity of the model we need to use according to the expected accuracy. In addition, this
family of models is simpler than the Vlasov–Maxwell equations—for instance, they are not time-
dependent but only static or quasi-static—which allows us to implement simple and efficient
numerical schemes such as particle-in-cell techniques. Hence, this approach would be very
powerful in its ability to obtain fast and easy-to-implement algorithms.
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