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Abstract. Assessing the harmfulness of defects based on images is becoming more and more common in
industry. At present, these defects can be inserted in digital twins that aim to replicate in a mechanical model
what is observed on a component so that an image-based diagnosis can be further conducted. However, the
variety of defects, the complexity of their shape, and the computational complexity of finite element models
related to their digital twin make this kind of diagnosis too slow for any practical application. We show that
a classification of observed defects enables the definition of a dictionary of digital twins. These digital twins
prove to be representative of model-reduction purposes while preserving an acceptable accuracy for stress
prediction. Nonsupervised machine learning is used for both the classification issue and the construction
of reduced digital twins. The dictionary items are medoids found by a k-medoids clustering algorithm.
Medoids are assumed to be well distributed in the training dataset according to a metric or a dissimilarity
measurement. In this paper, we propose a new dissimilarity measurement between defects. It is theoretically
founded according to approximation errors in hyper-reduced predictions. In doing so, defect classes are
defined according to their mechanical effect and not directly according to their morphology. In practice,
each defect in the training dataset is encoded as a point on a Grassmann manifold. This methodology is
evaluated through a test set of observed defects totally different from the training dataset of defects used to
compute the dictionary of digital twins. The most appropriate item in the dictionary for model reduction
is selected according to an error indicator related to the hyper-reduced prediction of stresses. No plasticity
effect is considered here (merely isotropic elastic materials), which is a strong assumption but which is not
critical for the purpose of this work. In spite of the large variety of defects, we provide accurate predictions of
stresses for most of defects in the test set.

Résumé. Lévaluation de la nocivité des défauts a partir d'images est de plus en plus courante dans I'industrie.
Aujourd’hui, ces défauts peuvent étre insérés dans des jumeaux numériques qui visent a reproduire dans
un modeéle mécanique ce qui est observé sur un composant. Ainsi, un diagnostic a partir d’'image peut
étre mis en place. Mais la variété des défauts, la complexité de leur forme et la complexité de calcul des
modeles d’éléments finis liés a leur jumeau numérique, rendent ce type de diagnostic trop lent pour toute
application pratique. Nous montrons dans cet article qu'une classification des défauts observés permet de
définir un dictionnaire des jumeaux numériques. Ces jumeaux numériques se révelent représentatifs pour
la réduction de modele, tout en conservant une précision acceptable pour la prévision des contraintes. Un
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apprentissage automatique non supervisé est utilisé a la fois pour la question de la classification et pour la
construction de jumeaux numériques réduits. Les éléments du dictionnaire sont des médoides trouvés par
I'algorithme de partitionnement k-médoides. Les médoides sont censés étre bien répartis dans I'ensemble
des données d’entrainement, selon une métrique ou une mesure de dissimilitude. Dans cet article, nous
proposons une nouvelle mesure de dissimilitude entre les défauts. Elle est fondée théoriquement sur les
erreurs d’approximation des prévisions hyperréduites. Ce faisant, les classes de défauts sont définies en
fonction de leur effet mécanique et non directement en fonction de leur morphologie. En pratique, chaque
défaut de 'ensemble de données d’entrainement est encodé comme un point sur une variété de Grassmann.
Cette méthodologie est évaluée au moyen d'un ensemble de défauts tests totalement différents de ’ensemble
de données d’apprentissage utilisé pour calculer le dictionnaire des jumeaux numériques. Lélément le plus
approprié du dictionnaire, pour la réduction du modeéle, est sélectionné en fonction d’'un indicateur d’erreur
lié a la prévision hyperréduite des contraintes. Aucun effet de plasticité n’est considéré ici (simplement des
matériaux élastiques isotropes), ce qui est une hypothése forte mais qui n’est pas critique pour I'objectif de
ce travail. Malgré la grande variété de défauts, nous montrons des prévisions précises des contraintes pour la
plupart des défauts de 'ensemble de test.

Keywords. Data encoding, Hyper-reduction, Reduced order model, ROM-net, Taxonomy of defects, Com-
puter vision.

Mots-clés. Encodage de données, Hyper-réduction, Réduction d’ordre de modeles, ROM-net, Taxonomie de
défauts, Vision par ordinateur.
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1. Introduction

Mechanical modeling based on images is becoming increasingly important in material science
and in industrial applications for the assessment of harmfulness of defects. The early detection of
defects in industrial processes has been studied for more than a decade. In fact, in 2011, scientists
tried to improve the efficiency of early fault detection on gears, which are critical in many
machinery operations [1]. Moreover, nondestructive inspection techniques are able to detect
and locate voids for a wide range of materials and welding processes: resistance seam welding of
aluminum, zinc, and galvanized steel [2]; resistance spot welding of ferritic/martensitic steels [3];
electron beam welding of steel to Fe—Al alloy [4]; laser welding of stainless steels [5] and aluminum
alloys [6].

Here, machine learning enhances the value of data related to defects observed in the past if
these data are available in a memory storage system. In the framework of image-based diagnosis,
machine learning aims to consider the following assertion: if two defects are similar, they have
equivalent harmfulness. Accounting for this similarity should facilitate the prediction of the
harmfulness of new defects by using a training dataset of defects. The purpose of this paper
is to sample a training dataset of defects so that a set of representative defects is defined. The
representative defects are assumed to be well distributed in the training dataset according to
an appropriate metric. This metric classifies defects according to the displacement fluctuations
they cause around them. Here, the sets of both experimental data and simulation data, related
to the representative defects, define a dictionary of digital twins. This dictionary contains the
simulation data for the construction of local reduced order bases [7] in the nonparametric space
of the observed defect. Section 2 presents a schematic view of these ideas.

Pure data-driven approaches have been detailed in the literature for defect diagnosis. Pro-
vided that a wide range of data is available, machine learning methods can eventually detect de-
fects automatically and classify them into different classes given some prescribed criteria. For in-
stance, supervised machine learning is used for defect classification issues related to a freezing
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process in [8]. Convolutional neural networks (CNNSs) [9], which are very helpful in computer vi-
sion [10], have been trained to detect and diagnose defects. In [11], a CNN detects defects on an
automotive damper. Another encouraging study published recently uses CNNs to diagnose de-
fects on freight trains with a precision of approximately 80% [12]. An amazing property of CNNs
is their ability to learn features, or kernels [10], solely by using labeled data and deep learning.
However, in our opinion, using deep learning does not necessarily imply forgetting the available
knowledge about the mechanics of materials when it comes to predicting the harmfulness of de-
fects. The purpose of this paper is to couple machine learning and mechanical modeling so that
transfer learning [13] is achieved.

In the mechanics of materials, image-based meshing methods [14, 15] enable generating com-
plex finite element meshes of digital images obtained via X-ray computed tomography [16].
The finite element models used as digital twins of mechanical components are fed by a huge
knowledge on mechanical behavior for various materials, metals [17], composites [18], and con-
crete [19] for instance. Unfortunately, they cannot be used as a tool to assess the quality of a com-
ponent in a serial production framework. The required fine meshes of defective components gen-
erally lead to prohibitive computational time as explained in [20]. However, the use of mechanical
knowledge in digital twins would ensure data continuity between the component design phase
and the diagnosis of defect harmfulness [20]. Besides, projection-based model order reduction
methods enable reusing knowledge about materials science while using machine learning to gen-
erate approximation spaces for a fast solution of partial differential equations (PDEs) [21, 22].
Therefore, physics principles and material constitutive equations are preserved in weak formu-
lations of partial derivative equations. In this paper, the machine learning task is restricted to the
construction of an approximation space for the purpose of model order reduction. Here, this ap-
proximation space is piecewise constant over the space of all possible defects. Its numerical rep-
resentation is a dictionary of digital twins based on representative defects. Usually, the manifold
containing the solution of a PDE can be accurately depicted as residing in a small vector space.
Therefore, linear machine learning methods, such as proper orthogonal decomposition [23], sin-
gular value decomposition (SVD), and noncentered principal component analysis, aim at learn-
ing this reduced vector space from simulation data. This subspace is then used as a single ap-
proximation space for the projection-based model order reduction of PDE. In practice, the finite
element shape functions are replaced by vectors, or empirical modes, that span the reduced ap-
proximation space. In some situations, the solution of the governing PDEs lies in a manifold that
cannot be covered by a single vector subspace without increasing its dimension, thus degrading
the computational complexity of projection-based model reduction. In these cases, deep learn-
ing algorithms are useful for reducing the complexity of approximation spaces by using simu-
lation data. For instance, in [24], physics-informed neural networks are proposed for solving su-
pervised learning tasks while respecting any given laws of physics described by general nonlinear
PDEs. These networks are no longer used as projection-based model order reduction schemes.
However, such reduced schemes are found in [25] and [22], where a deep classifier recommends a
reduced order model depending on input variables having a tensor format (e.g., images). In [25],
a CNN recommends a reduced order model related to a loading environment seen on the image
of an experimental setup. In [22], a deep classifier using CNN is trained to recommend hyper-
reduced order models for lifetime prediction depending on a three-dimensional (3D) stochastic
temperature field. These two contributions follow the same neural network architecture termed
ROM-net [22]. Such ROM-nets are trained by using simulation data encoded as points on a Grass-
mann manifold, which is a set of vector subspaces of given common dimensions in the same am-
bient space. This data encoding is quite general when considering simulation data in the frame-
work of projection-based model order reduction. In this paper, it is extended for the classification
of voids according to their mechanical effects on mechanical components.
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In the current work, observational data are two-dimensional (2D) slices of experimental 3D
images of voids. These 3D images have been obtained via X-ray computed tomography by
Lacourt [26]. The reduced approximation space for displacements is spanned by two types of
vectors: macroscopic modes of an ideal defect-free medium and fluctuation modes around each
defect. By following the two-scale machine learning approach proposed in [20], the fluctuation
modes are computed by assuming dilution conditions and scale separation for each defect
separately. The volume fraction of the defect is negligible when computing the fluctuation modes.
In linear elasticity, each defect admits an exact reduced basis of fluctuation modes for strains and
displacements. For 2D problems, this ideal reduced basis contains three modes; for 3D problems,
it contains six modes. This reduced basis is said to be ideal because its computation requires
the finite element solution of an elastic problem, which is specific to the defect. In the proposed
approach, such solutions are available only during the training phase of the approximation space.
In the test phase, the ideal reduced basis is not available. The methodology, introduced in [22]
for ROM-nets, aims to take in a dictionary the reduced approximation space related to a similar
defect as a substitute for the ideal reduced basis. Here, this dictionary is called the dictionary of
digital twins. This requires defining the following:

¢ adissimilarity evaluation between defects,

« a dictionary of representative defects containing the related digital twins with a small
number of items,

 a classifier that finds the best item in the dictionary for the construction of an approxi-
mation space dedicated to the target digital twin in a test set or for real application.

In this paper, the representative defects are medoids selected by the k-medoids algorithm [27].
The number of medoids has to be prescribed prior to data clustering via the k-medoids algorithm.
Too many items in the dictionary make the classifier too complex and would eventually entail no
complexity reduction for image-based modeling. In this paper, the best item in the dictionary
is approximately selected via an error indicator and not via a CNN as proposed in [22]. This
error indicator measures the discrepancy between the stresses predicted via hyper-reduction
(HR) for the target digital twin and the equilibrated stresses [28]. A theoretical analysis of the
convergence of the hyper-reduced approximation shows that a partial approximation error
has an upper bound that scales linearly with the sines of the principal angles between the
ideal modes and the modes involved in the approximation space. Identical reduced bases have
principal angles equal to zero as well as sines. The convenient space to measure these angles is a
Grassmann manifold [29, 30]. The sines of these angles are termed chordal distances [31]. Hence,
the proposed dissimilarity criterion accounts for the mechanical effect of the defects via model
reduction of displacement fluctuations around defects. It is not a direct evaluation of morphology
dissimilarity.

For the sake of simplicity, the target problem used for defect diagnosis is similar to the
micromechanical problem that defines the fluctuation modes. The reader can find in [20, 32, 33]
more complex target mechanical problems that are solved by the HR method used in this paper.
As the finite element approximation space is specific to each defect, we need to design a common
ambient space for the computation of Grassmann distances. This is performed through an
encoding mesh. We have paid particular attention to the compromise to be made between the
accuracy of numerical approximations and the memory space required to save the simulation
data related to the encoding mesh.

The present paper is structured as follows. Section 2 is a commented graphical abstract.
Section 3 presents the projection-based model-reduction method, an upper bound for partial
errors on displacement predictions, and the encoding mesh associated with the Grassmann
manifold. Section 4 details the training dataset of defects, the partition of these data by using the
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Figure 1. (a) Raw data in their original ambient space, (b) the proposed ambient space for
dissimilarity measurement between defects according to a Grassmann distance related to
the subspace spanned by fluctuation modes around each defect.

k-medoids algorithm in the Grassmann manifold, and some validation results. Section 5 presents
the stress prediction results for the test set of defects and the classifier used to select an item from
the dictionary of digital twins. Section 6 draws the conclusion of this paper.

2. Commented graphical abstract

Assume that a training dataset of defects is available with detailed digital twins and all related
data. A schematic view of the training dataset is plotted in Figure 1. Training data are plotted as
blue points in this figure.

We propose to select representative defects and their data to form a dictionary of digital twins
for the purpose of model reduction. Representative defects are assumed to be well distributed
in the training dataset according to a dissimilarity measurement. Two representative defects
are plotted in red and green in Figure 1. The main novelty is a proper dissimilarity definition
between defects so that the representative defects are medoids selected by using the k-medoids
algorithm [27].

The original ambient space (Figure 1(a)) that contains the predictions of fluctuations around
defects in the training dataset does not account for the linearity of elastic balance equations. We
know that displacement fluctuations belong to a small vector subspace spanned by fluctuation
modes, which is denoted by V* for each defect individually. These vector subspaces are points
in a manifold termed Grassmannian. As a result, prior to dissimilarity computation between
defects, the training data are placed in a proper ambient space: a Grassmannian. A sketch of the
Grassmannian ambient space is shown in Figure 1(b).

Displacement fluctuations or stress fluctuations around defects have magnitudes directly re-
lated to the loading magnitude defined in the mechanical target problem. They can be easily
computed. This is the reason why fluctuation magnitudes do not matter in similar linear predic-
tions. Then the Grassmannian ambient space is plotted as a unit circle. The geodesic distance on
this circle is the angle 8 shown in Figure 1(b). One can also consider in Figure 1 the chordal dis-
tance, which is the length of the straight line between two points on this circle for small values of
6. This chordal distance is closely related to an upper bound of partial approximation errors.
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Figure 2. On the left, an experimental defect and its close-up. On the right, the horizontal
component of Au*") for two traction modes related to E'' and E® and one shear mode
related to E®,

In what follows, the simulation data of the representative defects are the training data used for
the HR of digital twins.

Data in the test set cannot be plotted in Figure 1 because their related fluctuation fields have
to be predicted via the proposed dictionary-based model-reduction method.

3. Theoretical results on elastic fluctuation modes
3.1. Projection-based hyper-reduction of the target mechanical problem

This section describes the target mechanical problem used as a digital twin of a target defect. In
the mechanics of materials, the harmfulness of defects is evaluated through the magnification of
the Cauchy stress around each defect. We restrict our attention to the prediction of the Cauchy
stress via the approximate solution of PDEs in linear elasticity of isotropic materials. The principal
variable of these equations is the displacement field.

The domain occupied by the material, denoted by Q*, is a surrounding box around each de-
fect. We give an example in Figure 2. Formally, Q* has no parameter. Its morphology totally de-
pends on the observation of a defect through a digital image. In the following, the superscript *
refers to mathematical objects that are specific to the digital image of a defect. This notation em-
phasizes the variability due to the input image. All mathematical objects with the superscript x
can be seen as the output of an implicit function depending on Q* without introducing any pa-
rameter for Q*. We avoid giving a morphological definition of an input space that contains all
possible values of Q*. Hence, the proposed setting is a nonparametric mechanical modeling for
digital twins.

The outer boundary of the surrounding box is denoted by dgQ*. The boundary of the defect,
which is modeled as a void, is denoted by dyQ*. The local frame follows the principal axes of the
second-order moments of the volume distribution in the defect. These principal axes are denoted
by e; and e,. All defects have a circumscribed circle of diameter equal to D. The length of Q*
is 30D. The displacement field and the Cauchy stress are denoted by u* and o*, respectively.
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The fluctuation of the displacement field is denoted by Au*. It is defined as the counterpart of
the homogeneous displacement field such that

' ®=E-x+Au* X, VxeQ* Au*e??*, 1)

where E is the macroscopic strain tensor imposed on dgQ*. It is a given symmetric second-order
tensor. Here, E-x is the defect-free macroscopic mode for displacements; 7 * is the usual finite
element approximation space that accounts for the defect geometry and Dirichlet boundary
conditions (2) on 0gQ*.

Here, Q* is sufficiently large to fulfill a dilution assumption and the following boundary
condition on Au*:

Au*(x) =0, VYxedpQ*. )
The Hooke tensor for elasticity is denoted by C. Hence, the elastic constitutive equation reads as
o> =C:e(u”), (3)

where £(u*) is the deformation tensor, that is, the symmetric part of the displacement gradient.
The weak form of the elastic equilibrium equation reads as follows: find Au* € ¥ * such that
</V*
Au ) =) @rXgq;, VYxeQ* 4)
i=1

f e(@)):C:(E+&(Au*)dQ=0 Vie{l,..., A"}, (5)
Q*

where (¢7);¥ 1* are the finite element shape functions that span 7* such that ¢} = 0 on dpQ*.
Here, E is a symmetric second-order tensor; it has only three components for 2D problems.
Therefore, as the elastic equations are linear, there exists an ideal reduced basis containing three
fluctuation modes denoted by (1[/’,:) k=1,.,3 such that
N
Au*(x):k Yy, VxeQ*, wieV*, k=1,..,N (6)
=1
where ¥* € R? is a vector of exact reduced coordinates. As the fluctuation modes are vectors of
the approximation space, one can introduce the reduction matrix V*, which contains the finite
element coordinates of the fluctuation modes:
</V*
Yi® =) @r®Vi, k=123 VxeQ*. @
i=1
In what follows, approximate reduced bases for fluctuation modes are denoted by V. In Fig-
ure 1(b), V* is represented by the blue arrow and V is represented by the red arrow. The parameter
V may not be totally specific to Q*. The approximate continuous modes are
W*
Y=Y @r®Vir, k=123, vxeQ*. ®)
i=1
For a given reduced matrix V, the approximate displacement fluctuation reads as
N
Aux) =) ¥ ®yr VYxeQ*. )
k=1
The two reduced bases span two vector spaces of the same dimension N in the same ambient
*
space R”", N < A*. Each of these vector spaces is a point in a Grassmann manifold, which is
denoted by Gr(N, 4 *). This manifold is a huge space as it contains all the vector subspaces of
dimension N in R*". For instance, it contains also the vector subspaces spanned by all sets of N
vibration modes. Such vibration modes are not relevant here. However, the Grassmann manifold
is equipped with geodesic metrics, which is very convenient for the definition of the dissimilarity
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between defects, as explained in Section 3.2, when considering approximation errors due to the
HR method.

The HR method [34] aims at computing reduced coordinates y introduced in (9) by projecting
the equilibrium equation on V via a restriction of the domain Q* to a reduced integration
domain (RID) denoted by Q7. By following the empirical interpolation method [35], interpolation
points are computed for column vectors in V. We choose the RID Q} such that it contains the
interpolation points related to both the reduced basis for displacement and a reduced basis for
stresses. We give more details about the construction of Q% in Appendix. We define a set of test
reduced functions denoted by ¥y ;:

F = {ie{l,...,ﬂ*},f (<pi*)2dQ=o} (10)
Q*\Qp*
'/V*
Yp(x) = Y @r®V;j, VxeQ, j=1,2,3. 1n
ieF

As explained in [34], these test functions are null on the interface between QF and the counterpart
of the domain as if Dirichlet boundary conditions were imposed. On this interface, the displace-
ment follows the shape of the modes y . The HR method gives access to reduced coordinates y
that fulfill the following balance equations:

N
Au® =) Y Xy YxeQj (12)
k=1
f e(yr):C: (B+e(Aw)dQ=0, Vj=1,..,N. (13)
Qi
The matrix form of the hyper-reduced balance equations reads as follows: find y € RY such that
L/V*
Aux = Y @F®qs, vxeQf 14)
i=1
q® =vy (15)
KRy = viZz,1TF* 7] (16)
KR = vz, 17K (7, v (17)
Kl.*j = f e(@)) :C:e(q)]*.)dQ, Lj=1,.., 4" (18)
Q*
F} = —f e(@;):C:EdQ, i=1,..., /7%, (19)
Q*

where V[&,:] denotes a row restriction of matrix V to indices in &%. We assume that the matrix
K'R is of full rank. This assumption is always checked in numerical solutions of hyper-reduced
equations. Rank deficiency may appear when the RID construction does not account for the
contribution of a reduced basis dedicated to stresses.

In this paper, the hyper-reduced prediction is supplemented by the following equilibrium step
over the RID: find du* such that

Su () =) @r®dq, YxeQp (20)
ieF

f e(@)):C: (E+e(Au+6u*)dQ=0 VieZ, 1)

Q*

R
where Z is the set of all degrees of freedom in Q% except those belonging to elements connected
to the interface between Q% and its counterpart. During this correction step, displacements
are frozen on elements connected to the interface between Q% and its counterpart. There is
no natural boundary condition on this interface. Here, they are forecast by the hyper-reduced
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prediction. This correction step has been proposed in [36] for the evaluation of contact forces.
This is a local correction step over Q%. The solution u®d = Ex+ Au + §u”* is a hybrid solution
that weakly couples HR and a finite element approximation over the RID. We refer the reader
to [36-38] for more details about hybrid HR schemes. The equilibrated stress is quite accurate
compared to the stress computed via HR solely. The hyper-reduced stress prediction is denoted
by o"R while the equilibrated stress is denoted by 6°9. Here, ¢ * is the correction term for stress
predictions:

o™ = C: (E+e(Aw) (22)
do* = C:e(bu™) (23)
0% = g™ 5g*. (24)

Property 1. IfK'R s of full rank, then the hyper-reduced balance equations are equivalent to an
oblique projection of the finite element prediction:

qHR:V(l—ITV)—IHT * 25)
whereIl = K*[;, FIV[.Z,:]. Hence, the hyper-reduced prediction of the reduced coordinate vectory
is a minimizer for f(p):

BeRY, f(B=IIM"VB-q"I3. (26)

Here, 11 is a projector for elastic stresses in Q% according to the reduced test functions:

</V*
M (Vy—qhi= | eyg): (@™ -0")dQ, @7
Q*
i=1 R

where o is the finite element stress prediction.

The proof is straightforward. Here, K''® = I17V. The Jacobian matrix for f reads as J =
vitm?v = K TKHR 1f KHR jg of full rank, then J is symmetric definite positive and J71 =
(KPR =1 (KHR)=T Then, both the minimization problem and the hyper-reduced equation have
a unique solution. The solution of the minimization problem is

o =vo v’ q* (28)
= v nTq*. (29)

Since 1" q* = V[Z,:|"F*[#], q/ = q''R.

We can note that if Q% = Q*, Z contains all degrees of freedom indices and u* = Au* — Au.
However, the correction step has the same computational complexity as the full finite element
model. In this case, the size of Q* has been carefully chosen so that the reduction in complexity
is not trivial. Here, the most complex operations are indeed the computation of K"R and the
solution of the reduced linear system of equations. They scale linearly with card(%)N? and
N3, respectively. Hence, N° has to be sufficiently small compared to .#* if we consider the
computational complexity for the solution of sparse linear systems in the finite element method.

3.2. Approximation errors

Let us introduce three canonical macroscopic strains, E®V, E?, and E®:

EY = e(xjep) (30)

E? = g(x2e2) 31
@) _ X1€2 + Xo€e1

E® = 8(—2 ) (32)
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In what follows, the three finite element solutions obtained for each of the three canonical
macroscopic strains EV, E?, and E® are saved in a matrix Q* such that the three displacement
fields read as

wWx = EY x+ AP (x) vxeQ*, j=1,2,3 33)

) N
AV ) = Y @rQy, vxeQr, j=1,23. 34)
i=1
All mechanical simulations are run with the Z-set software suite. One can find more information
on the software website (http://www.zset-software.com/). The reduced basis V* is obtained by
using a truncated SVD of Q*:

Q* ='W, Vv er?"3 vTvr=i, (35)

where I is the 3 x 3 identity matrix. Because of the linearity of the elastic problem above, C
is proportional to the Young modulus. Hence, V* does not depend on the value of the Young
modulus thanks to the normalization of the modes. Regarding the Poisson coefficient, for the
sake of simplicity, we restrict our attention to isotropic materials having a Poisson coeflicient
equal to 0.3. An example of displacement fluctuations is shown in Figure 2.

Similarly to Céa’s lemma, but in the finite dimension, there exists an upper bound for the
approximation error observed through the projector II. The best projection of the exact solution
in the approximation space via the 2-norm is denoted by y p:

¥ p = argming_y,lq* - qll3, (36)
where ¢* = V*¥* and K*q* = F*. Hence, y» = VI V*y™.

Property 2. There exists a stability coefficient c*, which does not depend on F* (the loading
condition), such that the partial approximation error has the following upper bound:

I’ (@* -yl < c*lig* - Vypla, 37)

where IIHT(q* —Vy)ll2 is the partial approximation error that does not account for errors in stress
predictions outside Q%. Hence, the smaller the Euclidean distance between the subspace spanned
byV and the finite element prediction, the better the prediction of the stress in QO according to the
projector I1. It is therefore relevant to train V by using a training dataset of defects. When the RID
covers the full domain, a certification of the reduced projection can be achieved, where all errors
admit an upper bound, by following the constitutive relation error proposed in [39, 40].

The proof of the previous property is straightforward in the finite dimension. Let us denote by
a* an upper bound of the highest singular value of I1. Then,

I’ q* -gl3 < @?lq* - ql5 Vvq.
Moreover, as y is a minimizer for f(-), we obtain

I’ @* - vp)l5 < " (q* - Vyp)li3 (38)
and

1" (@* - vp)l3 < (@®)2llq* = Vypli3. (39)

Property 3. IfV* € RN and Ve RN are two orthonormal matrices of the same ambient
space R ", then they span subspaces that belong to the same Grassmann manifold. The partial
approximation error has an upper bound depending on the chordal distance [31], denoted by
d®P(V*,V), between the subspaces spanned byV* andV, respectively:

I’ @* -vy)llo < a*d"v*, V)VNIF* ;. (40)
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Here, the chordal distance [31] uses the principal angles @ € RN, 0 € [0,7t/2[ for k = 1,...N
computed via the following SVD:

VvIV* = Ucos@U*?, uTu=u*Tu*=1 41)
A"V, V) = |Isin@) ¢ (42)
lU*|% = N, (43)

where | - | is the Frobenius norm. Here, cos(@) and sin(@) are the cosine and sine diagonal
matrices, respectively. In addition, the following property holds when a full SVD is computed:

U’ =1L (44)

The proof is the following:
"q* _VYP ”5 —_ ?*T(V* —VVTV*) T(V* —VVTV*))_/* — ?*T(I —V*TVVTV*)7*. (45)

Hence,

lg* = Vypl3 = ¥ - U*cos@)*U*)y* (46)
Iq* = Vypl3 = ¥*TU* A - cos@HU*Ty* A7)
lq* = Vypl3 = ¥ U*sin@)*0* Ty* (48)
= |Isin@)U* "y 3. (49)

For all matrices A € R”*" and B € R™*", the following property holds:
IABlF < [AllFIIBllF,

and forae R": |la| g = |lall».
Thus,
Ig* = Vy pll3 < IIsin@U* T 11517 113 < Isin@) 15Ny ™ 113 (50)
and
I (@ ~Vp)lz < a*Isin@ s VNIT - @)
Property 3 is a convergence property for hyper-reduced predictions. If 8 = 0, then VU = V*U*
and

0 ='Wy -Vvy) (52)
=n'vuw*Ty*-uly) (53)
_ KHRU(U*TY* _ UTY) (54)
> y=U0*Ty* (55)

HR

=qur=q" and o " =0" (56)

Hence, the hyper-reduced prediction is the same as the finite element prediction. However, it
uses fewer floating-point operations.

In what follows, we assume that there is a correlation between the approximation error
oM _g*in Q% and the upper bound in (40). This correlation is evaluated through a numerical

experiment in Section 4.1.

3.3. Grassmannian ambient space

As explained in [29, 30], Grassmann manifolds are the adequate concept when considering
interpolation of reduced order models. Property 3 shows that it is also relevant for data encoding
in a proper ambient space and for the classification of voids according to their mechanical effects.
We state that the target defect Q* is similar to a defect having V for the ideal reduced basis if
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Figure 3. Encoding mesh with four elements on each half-side of the middle square having
a regular mesh. From left to right: the surrounding box, a close-up, and the same close-up
of a defect.

the chordal distance dM(V*,V) is sufficiently small. In what follows, each defect in the training
dataset is encoded by using its ideal reduced basis V* as shown in Figure 1(b).

A common Grassmann manifold is defined for all defects by using a common encoding mesh.
Each finite element prediction related to the training dataset of defects is transferred on this
encoding mesh prior to any machine learning including SVD and dissimilarity computations.
To facilitate the transfer of simulation data, the prediction Au*/) is extended inside the defect by
introducing a very small Young modulus in the void (103 E). Figure 3 shows the encoding mesh.

This data encoding from the reduced mechanical response of the input, has the huge advan-
tage to be universal. This encoding may be applied in other fields. Each data in the dataset is
supplemented by a reduced basis V*(), where i is the defect index.

Several geodesic distances are available between points in Grassmann manifolds. The chordal
distance is one of them. The Grassmann distance is another one, which is more common in the
literature. The Grassmann distance between the subspaces spanned by V* and V, respectively, is
denoted by d"(V*,V). It reads as

S, vy = 1902 57)
/2
In the following numerical experiment, the Grassmann distance magnifies the distance between
subspaces compared to the chordal distance similarly to the one-dimensional equation 6 = sin(8)
for 0 € [0,71/2]. As a result, we choose d°" for the partition of the training dataset of defects into
classes of defects.
The encoding mesh must have the number of degrees of freedom .4 as small as possible to
lower the memory use in a storage system, but it must be sufficiently fine to

» lower the norm of transfer errors from the original mesh to the encoding mesh;
» detect dissimilarities between defects up to a given accuracy.

To highlight the influence of the encoding mesh on transfer errors, we varied the number
of elements on each half-side of the middle square that has a regular mesh. Figure 4 presents
the convergence of the Grassmann distance between a perfect circle and an isotropic defect or
an anisotropic defect. Both isotropic and anisotropic defects are shown in Figure 5. Grassmann
distances are calculated for several encoding meshes. The ideal reduced basis for the fluctuation
modes around the circular defect is denoted by v*©@ Here, V¥V and V*@ denote the reduced
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—e— d1: anisotropic defect
0.30 {1 —®— d2:isotropic defect

Normalized Grassmann distance
o
N
S

0.10 ’_/_,___40—-—‘—_'

1(1;5) 2(1‘6 1) 3(3‘49) 4(6‘09) 5(9‘41) 6(1345) 7(1é21)
Nodes on each half-side of the middle square of the storage mesh (total of nodes)

Figure 4. Convergence of Grassmann distances with respect to the encoding mesh for
the evaluation of dissimilarity between a circular and an anisotropic (d;) or an isotropic
defect (dy).

Figure 5. Examples of defects (defect in blue, steel in red). The isotropic defect (left) and
the anisotropic defect (right).

bases related to the anisotropic and isotropic defects, respectively. The two Grassmann distances
are
dy = d v v (58)
dy = dS" (V@ v+ ), (59
In Figure 4, the Grassmann distances and the encoding mesh successfully distinguish the two
defects, and we observe a convergence of the distances when the mesh exceeds four elements on
each half-side of the middle square. A difference of 20% in the Grassmann distance between the
two defects is consistent as the pilot circular defect and the anisotropic defect are mechanically
very different. The gap may be sufficient to distinguish them during the partition of training data.
Therefore, we suggest keeping the encoding mesh with 609 nodes (four elements on each half-
side).

4. Numerical results on the training dataset of defects

Three-dimensional images of voids have been obtained by Laurent Lacourt [20] via X-ray com-
puted tomography of welded joints. These 3D images have been cut into slices so that we have
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more 2D samples. The dataset contains n; = 2,745 samples of 2D images with only one defect per
image. However, one defect may involve several voids that have a high mechanical interaction.
Eighty percent of these data have been randomly selected as training data. The remaining data
belong to the test set.

4.1. Data clustering

Clustering methods have been already used for the construction of local reduced order bases
in parametric spaces. We refer the reader to [41,42], for instance, and for more recent examples
to [43]. Local reduced order bases are known to be more accurate over a global reduced basis [41].
Here, the set of possible defects is not a parametric space. For this reason, k-means is useless be-
cause no barycentric coordinates are available here. The k-medoids algorithm [27] circumvents
this difficulty in the case of nonparametric modeling via the selection of representative defects.
All available images in the dataset have been converted into finite element predictions via
image-based digital twins. Displacement fluctuations have been transferred to the encoding
mesh prior to the computation of the related reduced basis v*® (j =1,...,np). Then, a dissimi-
larity matrix has been computed, accounting for all the Grassmann distances between defects in
the training dataset:
D =d WOV, i jefl,...,ng. (60)
A k-medoids clustering algorithm [27] has been used for the partition of data according to their
Grassmann distance. The k-medoids algorithm proposed in [27] can be summarized as follows:

 Initialization step: select K rows in D" as indices of initial medoids (mq,...,mg).
* Repeat the following two steps until convergence:
- Data assignment step: assign each point of the dataset to the cluster corresponding
to its closest medoid:

fiGr = argminke{lwm (DGI[[ml,..., myg,...],i]1) i€ training dataset. (61)

- Medoid update step: for each cluster, update the medoid by finding the point that
minimizes the sum of distances to all the points in the cluster:

6} = {i € training date1se‘[|§£l.c”r =k}, k=1,....K (62)
my = argmin | Y DY}, i]). (63)
iEcgk

We arbitrarily set the number of clusters to K = 5. The set 6} contains the indices of defects
in the cluster number k. Hence, the sizes of the clusters are card(%;) = 554, card(%6>) = 200,
card(€3) = 202, card(4,) = 901, and card(%65) = 339.

The defects located in the medoids are shown in Figure 6. These defects have different
anisotropies. The most isotropic defect is 4. The most anisotropic defects are my and ms. These
last defects are rather symmetric. In future work, this symmetry should be removed from the
dataset.

Defects my and ms3 contain two voids. They are so close to each other that fluctuation modes
account for the local interactions between these voids.

4.2. Validation of hyper-reduced predictions for the training dataset

The meta-parameters of HR are set up by using the simulation data available in the training
dataset.

For each medoid m® and for each target image number i, we define an image-specific hyper-
reduced model denoted by HR(k, i) without using the encoding mesh here. The hyper-reduced
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m, m;

Figure 6. Defects located in the medoids.

model incorporates a reduced basis for displacement fluctuations and a reduced basis for stresses
(V(k'i), V"(k’i)). These reduced bases are computed after the transfer of simulation data from the
mesh of the medoid onto the mesh of the target problem, which is defect-dependent. The matrix
of macroscopic modes related to a defect-free mechanical problem is denoted by Vacro ¢ R4 *3,
The column number j in V™3 js related to the macroscopic displacement E/)x. The complete
reduced basis for displacement reads as

‘—,(k,i) _ [Vmacroyv(k,i)] € RJV*XG_

The hyper-reduced equilibrium equation is (13) with empirical modes obtained by substituting
VED for Vin (8). A zone of interest is designed automatically around each defect. It contains four
layers of elements from the border of the defect 3y Q*. The construction of the RID follows the
procedure explained in Appendix so that Q} contains the zone of interest.

For each image #i in the training dataset, a hyper-reduced model is built. It is denoted by
HR(k, i) for each medoid (k = 1,...,5). Hyper-reduction predictions are performed for the three
macroscopic strains ED ( j=1,...,3). The predicted stresses on the RID are denoted by gHRWKL])
The finite element prediction of this stress is denoted by o*("/). The exact error on the stress
prediction in sz(i)’ ie{l,..., ns}, reads as

Z;’gzl ||0.*(l',j) — gHR(K,i,)) ”éR
NN L
where || - g, = fQR' :-dQ for stress tensors. Figure 7 reports the correlation between the exact
error e"R%D and the chordal distance to the medoid. This plot contains 5 x n; points. The
coordinates of these points are (D%ol., eMRD) The average chordal distance is 0.7. The average

error is 29%.

The correlation between ™! and is not perfect, but it is sufficient here for the clustering
of simulation data. In some situations, e'™® and d°" may not be correlated. A good correlation
requires that the target mechanical problem activate all the modes in V*) and V%9, which
means that the related reduced coordinates have no null component. This is the case here.
If one of the reduced components is null, the upper bound can be obviously simplified without
using all the principal angles in 4P (v*® vy,

eHR(k,i) =100

) (64)

dCh
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Figure 7. Correlation plot between e''®%:) and ¢ for all points in the training dataset and
for all hyper-reduced models. The red dot is the average point (x = 0.7, y =29%).
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Figure 8. Density distribution for eHRLD (92 in cluster #1 for i € 6.

For each cluster of data, we have reported in Figures 8-12 the histograms of the density
distribution of e"™®(&9 for i € 4, inside each cluster separately.

The clustering results are interesting because most of the errors are below 29% (the average
error on the whole dataset). However, many points have an error e"® bigger than 20%. The
clustering may not perform well for clusters where there is a lack of similar data. Here, clusters
%> and 63 have few points with an error lower than 20%.

Some clusters could be rejected for HR in a sense that a full finite element prediction may be
preferable for the defects in these clusters. In what follows, we do not reject any cluster, and we
include simulation data related to all the medoids in the dictionary of digital twins.

5. Results on the test set of defects
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Figure 9. Density distribution for e (%) in cluster #2 for i € 6.

20 40 60 80 100

Figure 10. Density distribution for e'®39 (%) in cluster #3 for i € 6;.

5.1. Selection of a reduced digital twin in the dictionary

In this section, we restrict our attention to simulation data in the test set. This test set aims to eval-
uate the full modeling procedure for the fast prediction of stresses around defects. The average
speedup for the solution of linear systems is 0.03/0.003 = 10 for hyper-reduced predictions. The
average speedup for the computation of the stresses in this equation is 0.01/0.005 = 2. Speedups
of approximately 1000 are obtained for similar 3D problems [20].

An error indicator has been developed for the selection in the dictionary of the medoid that
is expected to give the best stress prediction via HR. This error indicator is similar to the error
eMRKD where the exact stress o* is replaced by the equilibrated stress a9, The error indicator
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Figure 11. Density distribution for e"®%? (%) in cluster #4 for i € €.
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Figure 12. Density distribution for e"®? (%) in cluster #5 for i € 6s.

reads as

3 (k,i,7) |12
¥ 16okiD|Z,

(k,i) _
n =100 —
Y3, loeatn, |2,

(65)

where §o®"J) is the stress correction in (23), which is computed by the equilibrium step related
to HR(k, 1).
For each defect in the test set, we select a medoid k* for stress prediction such that

k* = argmin, n*?. (66)
The best medoid selection aims to lower the error in the prediction of stresses:

—%* (i) . i
K :argmlnkeHR(k'l). (67)
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Figure 13. Correlation plot between e ®(%9 and n®9 for points in the test set. The color
dots are related to the cluster index k.

Then, we obtain an automatic labeling of the defects in the test set. The estimated labels are
denoted by £/: £ = argmin;n*". The perfect labels are denoted by £;: £; = argmine™R(*:D.,
Figure 13 reports the correlation between e"R(6) and the error indicator 759,

There is a strong correlation between e®%9 and n®*9 for low errors: Rk = pkd for
eMRED < 40%. This correlation exists for every cluster. As a result, this indicator helps us to find
the medoid as if we have the exact finite element prediction.

The better the o9 approximates the ¢*, the more accurate the error indicator. The error on
equilibrated stresses reads as

Z§=1 lo*@D) — geatk,i,j) ||?)R
3 *(i,7)2
23 oGP,

Figure 14 shows the correlation between e®4%% and n*?. Such a correlation is sufficient to
select the same hyper-reduced order model for the predictions with or without an equilibrium
step. The range of errors on equilibrated stresses is much smaller than that on o'}, Therefore,
the equilibrated stresses are the simulation outputs of interest for the reduced digital twin.

In Figures 15-19, for each cluster of data, we have reported the histograms of the density
distribution of e®4%:) for jfl." = k, inside each cluster separately.

Most of the errors on equilibrated stresses are lower than 5%. The modeling procedure is very
accurate. Errors related to medoids m;, my, and ms are more concentrated below 5% than those
for medoids my and ms. Hyper-reduced predictions attached to medoids m, and mj3 are less
accurate. Such results have been anticipated during the clustering procedure.

e®1kD =100

(68)

5.2. Detailed numerical results on hyper-reduced predictions

In this section, we report local numerical results for defects in the test set. The index of the first
image is i = 1664. Its label via the error indicator is .ffln = 3. This label is the optimal: .Efln =Y.
It is intentionally related to a medoid of the small cluster €63 for which there is certainly a lack
of observed defects. Related numerical results are shown in Figure 20. The prediction is globally
accurate (431664 — 5oz
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Figure 14. Correlation plot between 4% and &9 for points in the test set. The color
dots are related to the cluster index k.
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Figure 15. Density distribution for e®4? (%) in cluster #1 for £ = 1.

Better results are obtained for the test data attached to my, the medoid of the largest cluster.
The index of the second image is i = 1987. The global error is e®4*1987) = 0 2%, Local predictions
of the shear stress for E®) are reported in Figure 21.

Local predictions are very accurate for this defect certainly because cluster €, involves a large
number of observed defects.

6. Conclusion

In this paper, local defects are compared according to a mechanical metric using model order
reduction techniques and a Grassmann manifold. Each simulation data related to a defect in a
training set is encoded as a point on a Grassmann manifold by using an ideal reduced basis of
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Figure 16. Density distribution for e®4®? (%) in cluster #2 for &£ = 2.
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Figure 17. Density distribution for ¢4 (%) in cluster #3 for &' = 3.

displacement fluctuations around each defect. This approach can be easily extended to many
types of local defects in homogeneous or locally homogeneous materials.

Five categories of defects are proposed by using a k-medoids algorithm via the Grassmann
distance between the reduced bases attached to each defect. Each category of defect (also called a
“cluster”) has a representative defect in the training set, which is a medoid. It turns out that most
defects in the proposed training set are almost spherical. However, some have a very complex
shape, including several voids in interactions. The hyper-reduced predictions of the stresses
around the defects in a given cluster are compared to the true simulation data. This pertains
to the training data only as a validation of the modeling process. Most of the errors are below
29%. More training data would have probably improved the stress prediction by increasing the
number of defect categories.
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Figure 18. Density distribution for e®4*? (%) in cluster #4 for £ = 4.
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Figure 19. Density distribution for e®4®9 (%) in cluster #5 for 21." =5,
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Figure 20. Test defect #1664. From left to right: finite element prediction of the shear stress
related to E®, the related equilibrated stress 0 on the RID around the defect, and the
error map for this stress component.
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Figure 21. Test defect #1987. From left to right: finite element prediction of the shear stress
related to E®, the related equilibrated stress 0@ on the RID around the defect, and the
error map for this stress component.

The distances to all the representative defects, for data in the test set or for newly observed
defects, are evaluated by a fast error estimator on the hyper-reduced prediction of stress. The fact
that the closest representative defect is a defect in the training set facilitates the interpretation of
its selection.

The error estimation is restricted to an RID around the input defect. The equilibrated stresses
involved in this error estimation are very accurate, with global errors on stress below 5% for data
in the test set, when using the best representative defect. Such excellent results can be explained
by the following facts: (i) the Grassmann metric is theoretically founded for hyper-reduced
predictions as shown in this paper; (ii) both the simulation data of selected representative
defects and the hyper-reduced equations enable the prediction of accurate Dirichlet boundary
conditions on the boundary of the RID for the computation of equilibrated stresses. The larger
the extent of this reduced domain, the more accurate the boundary conditions because they tend
toward a given macroscopic value. However, the larger the RID, the higher the computational
complexity of the error estimator. This complexity limits the number of defect categories when
selecting the best representative defect for stress predictions.

To develop this promising approach to defect classification, more data are needed. Both data
acquisition and data augmentation techniques are in development. In the future, more defect
categories must be defined. In such a case, the selection of the best representative defect could
be carried out by a deep classifier as in ROM-nets.

Appendix. Details about RID construction

Let us introduce two mathematical operators. The first mathematical operator collects the de-
grees of freedom of a subdomain Qg:

%(Qa):{ie{l,...,/t/},f ¢p§d9>o}.
Qq

The second mathematical operator aggregates the support of finite element shape functions
having their index in a set ¢4:
Z(9) =Ujegsupp(@;), ZL(E)cQ.
The extension of this subdomain by adding » layers of connected elements reads as
(LoB) o L(94).

The operator £ is suitable for displacement fields because they are approximated by finite
element shape functions. A similar operator is also introduced for stresses. When collecting
simulation data related to stresses, in the matrix Q“, we store all the stress components at all
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Gauss points for all elements. Each row of Q7 is related to one component of the stress tensor
at a Gauss point in an element. Then, the DEIM algorithm applied to V? gives a set of indices of
components of the stress tensor at some Gauss points in some elements. This set is denoted by
227, We denote by £7(27) the support of the elements related to set 229. Here, £7(2?) is a
subdomain of Q.

In this paper, the RID construction is the following:

Qr=(L0o6) o (L(P) UL (P?))uQz01,

where Q0 is the zone of interest.
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