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Abstract. To fight against forest fires, simple and improved models are more searched out due to the fact
they are more easily understandable by the users. This actual model is part of the fire propagation models
within a network. It is simple and easy to implement. However, it depends on several parameters that are
difficult to measure or estimate precisely beforehand. The prediction by this model is therefore insufficient. A
deterministic optimization method is introduced to calibrate its parameters. The optimized model was tested
on several laboratory experiments and on two large-scale experimental fires. The comparison of the model
results with those of the experiment shows a very significant improvement in its prediction with the optimal
parameters.

Résumé. Dans la lutte contre les feux de forêt, les modèles simples et améliorés sont plus recherchés car plus
aisément compréhensibles par les utilisateurs. Le présent modèle fait partie des modèles de propagation de
feu à l’intérieur d’un réseau. Il est simple et facile à mettre en œuvre. Cependant, il dépend de plusieurs
paramètres difficiles à mesurer ou à estimer avec précision au préalable. La prédiction par ce modèle est de
ce fait insuffisante. Par conséquent, une méthode déterministe d’optimisation est introduite pour calibrer ses
paramètres. Le modèle optimisé a été testé sur plusieurs feux de laboratoires et sur deux feux expérimentaux
à grande échelle. La comparaison des résultats du modèle avec ceux de l’expérience montre une amélioration
très significative de sa prédiction avec les paramètres optimaux.
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1. Introduction

Forest fires are complex phenomena, and the difficulties of their modeling comes on the one
hand from the lack of knowledge on the detail of certain processes involved in the physics of
these phenomena and on the other hand the large number of data required by these models.

Several fire propagation models are developed in the literature. Among them, we have the so-
called deterministic models [1–3] based on the physics of the phenomenon. Such models are
detailed, but require a lot of resources and are therefore difficult to implement. We also have
the so-called semi-physical models [4–7] which are less detailed than the first ones, but more
operational in the fight against fires propagation, because they are faster in implementation [8].

Most of these models depend on large number of parameters, and some of them are difficult
to assess. The uncertainties related to the values of these parameters can deteriorate the quality
of prediction of these models. Hence, there is the need to make a good calibration of model
parameters.

Several methods to assess the parameters of fire propagation models exist in the literature.
D. Ascoli et al. [9] used the genetic algorithm to calibrate the fuel input data in the Rothermel
model. The fuel data in this model comes from correlations based on vegetation in North America
and is therefore not suitable for other regions. The execution time remains the constraint for this
method.

T. Artés et al. [10] have developed a calibration method based on the genetic algorithm
and have a shorter execution time. However, the complex implementation and computational
resource requirements are the weaknesses of this method.

In this paper, we present a parametric optimization method, based on the minimization of a
“cost” function coming from the difference between the real pattern of fires and that predicted
by the model.

2. Model

The present model is built from a two-dimensional regular network of equal-size cells (Figure 1).
It is assumed that each combustible cell j has a cylindrical shape with a height H j and a diameter
diam j . A combustible cell j is said to be healthy when its temperature T j is equal to the ambient
temperature T∞. The energy absorbed by the combustible cell when it is exposed to the fire front
is used to raise the temperature of wet fine fuel elements to the boiling temperature of water,
373 K, evaporate the moisture, and raise the temperature of dry fine fuel elements to the ignition
temperature Tign. The combustible cell then continues to burn with a flame, while transferring
heat to the neighboring cells by means of convection and radiation. In the solid flame model, the
visible flame is regarded as a uniformly radiating solid body with a cylindrical shape and with
thermal radiation emitted from its surface.

The total energy q j absorbed by cell j is used on the one hand to raise the temperature of fine
fuel elements and on the other hand to evaporate moisture at the boiling temperature of water.

q j =


ρ j Cp jφ j

dT j

dt
, for T j ̸= 373 K

−ρ j hvapφ j
dW j

dt
, for T j = 373 K,

(1)

where T j and W j are respectively the mean temperature and the mass fraction of water of cell j ,
ρ j is the fuel particle density, Cp j is the specific heat capacity, hvap is the specific enthalpy change
of water to vapor at 373 K, and φ j is the packing ratio.
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Figure 1. Solid flame model and schematic of the network showing a burning cell i and a
healthy cell j .

Let N j be the number of burning cells that interact with cell j , we have

q j =
N j∑
i=1

qi j , (2)

where qi j is the total heat flux emitted from the burning cell i which is received by cell j . It is
the sum of all possible heat transfer mechanisms: radiation on the top surface of cell j , internal
radiation from the ember zone, convection on the top surface of cell j , internal convection inside
the fuel bed, radiation loss to the ambient on the top surface of cell j , and is given by the following
relation.

qi j = afbεflσT 4
fl

H j
Fi j︸ ︷︷ ︸

surface
radiation

+0.25AfbεbσT 4
b exp(−0.25Afbdi j )︸ ︷︷ ︸
internal

radiation

+
0.565kflRe1/2

di j
Pr 1/2

di j H j
(Tfl −T j )exp(−0.3di j /Lfl)βi j︸ ︷︷ ︸

surface
convection

+ 0.911AfbkbRe0.385
D Pr 1/3

diam j
(Tb −T j )exp(−0.25Afbdi j )βi j︸ ︷︷ ︸
internal

convection

−
εfbσ(T 4

j −T 4∞)

H j︸ ︷︷ ︸
radiative

loss

. (3)

The flame emissivity εfl = 1− exp(−0.6Lfl), where Lfl is the flame length, afb is the fuel bed
absorptivity, and σ (= 5.67 × 10−8 W/m2/K) is the Stefan–Boltzmann constant. Fi j is the view
factor, εb is the ember emissivity, and Tb its temperature. Afb is the total fuel particle surface area
per fuel bed volume. εfb is the fuel bed emissivity and di j is the distance between cell i and cell
j . Pr is the Prandtl number and Redi j is the Reynolds number based on the length scale di j . kfl
and Tfl are respectively the thermal conductivity and the flame temperature. ReD j is the Reynolds
number based on the branch diameter diam j as length scale. βi j is a coefficient which is equal to
unity when the straight line connecting cells i and j is aligned with the wind direction, and zero
otherwise.

The reader who is interested by the model will find more details in Adou et al. [11].
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The model allows to describe the rate of spread and the fire contour through the evolution
of temperature T j of cells j given by (1). Taking relation (2) into account, this equation can, for
T j ̸= 373 K, be rewritten as 

dT j

dt
=

N j∑
i=1

Si j (T j (t ))

T j (0) = T∞,

(4)

where

Si j = 1

ρ j Cp jφ j
qi j , (5)

with qi j is given by (3).

3. Description of the parametric optimization method

Scrutinizing the expression of Si j in (5), we notice that it depends not only on the temperature T j ,
but also on a set of parameters. We can classify these parameters into two types. We have on the
one hand the parameters whose values are assumed to be known with relative exactness which
we will call input data, and on the other hand those which are known with uncertainty. Let θ be
the vector whose components are the parameters of the second type. For our model, we have

θ = (afb,Tfl,εb ,εfb,kfl,kb ,Tb)T . (6)

According to several authors in the literature (see for example [12–15]), the components θl

(l = 1, . . . ,7) generally vary in the following intervals.{
afb ∈ [0.3;1];Tfl ∈ [700;1200];εb ∈ [0.1;1];εfb ∈ [0.1;1]

kfl ∈ [0.0371;0.225];kb ∈ [0.0205;0.105];Tb ∈ [500;700].
(7)

We can therefore define a so-called physically admissible setΩ⊂R7in which θ varies. This set
is the Cartesian product of the above intervals namely,

Ω= [0.3;1]× [700;1200]× [0.1;1]× [0.1;1]× [0.0371;0.225]× [0.0205;0.105]× [500;700]. (8)

Finally, the term Si j in (5) can be rewritten using the components of θ as follows:

Si j (θ,T j ) = Ai jθ1θ
4
2︸ ︷︷ ︸

surface
radiation

+Bi jθ3θ
4
7︸ ︷︷ ︸

internal
radiation

+Di jθ5(θ2 −T j )︸ ︷︷ ︸
surface

convection

+Ei jθ6(θ7 −T j )︸ ︷︷ ︸
internal

convection

−Ci jθ4(T 4
j −T 4

∞)︸ ︷︷ ︸
radiative

loss

, (9)

where
Ai j = εflσ

ρ j Cp jφ j H j
Fi j ; Bi j =

0.25Afbσexp(−0.25Afbdi j )

ρ j Cp jφ j
; Ci j = σ

ρ j Cp jφ j H j

Di j =
0.565Re

1
2
di j

Pr
1
2

ρ j Cp jφ j di j H j
exp

(
−0.3di j

Lfl

)
βi j ; Ei j =

0.911AfbRe0.385
D Pr 1/3

ρ j Cp jφ j diam j
exp(−0.25Afbdi j )βi j .

(10)

The system (4) giving the evolution of temperature T j can be rewritten in the following form.
dT j

dt
=

N j∑
i=1

Si j (θ,T j )

T j (0) = T∞.

(11)

In Figure 2, we have at a given time tn , a schematic representation of the fire contour predicted
by the model and the real fire contour. In the model, the cells defined on the fire contour have a
temperature T j (tn) obtained from (10), different from the ignition temperature Tign. For a good
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Figure 2. Schematic representation of the optimization method.

prediction, one should have T j (tn) = Tign at tn . The aim of the method is to determine the
vector θ ∈ Ω which carries out at this instant, the predicted fire contour that matches the best
to the experimental contour. That comes to determining for all the cells of the contour, the set of
parameters that minimize the difference between two temperatures

min
θ∈Ω

Mc∑
j=1

(T j (θ, tn)−Tign)2, (12)

where Mc is the number of cells aligned on the real fire contour.
The temperature T j (θ, tn) is approximated by T (n)

j (θ) obtained from (11) by solving the follow-
ing fourth order Runge–Kutta scheme

T (n−1,2)
j = T (n−1)

j + ∆t

2

N j∑
i=1

Si j (θ,T (n−1)
j )

T (n−1,3)
j = T (n−1)

j + ∆t

2

N j∑
i=1

Si j (θ,T (n−1,2)
j )

T (n−1,4)
j = T (n−1)

j +∆t
N j∑
i=1

Si j (θ,T (n−1,3)
j )

T (n)
j = T (n−1)

j + ∆t

6

N j∑
i=1

(Si j (θ,T (n−1)
j )+2Si j (θ,T (n−1,2)

j )+2Si j (θ,T (n−1,3)
j )+Si j (θ,T (n−1,4)

j )).

(13)

In (13), T (n−1)
j is the approximation of the temperature of cell j at times tn−1 and ∆t is the

constant time step of discretization.
From (13), we can by induction express the temperature T (n)

j with respect to the initial
temperature T∞, that is,

T (n)
j = T∞+ ∆t

6

n−1∑
l=1

N j∑
i=1

(Si j (θ,T (l )
j )+2Si j (θ,T (l ,2)

j )+2Si j (θ,T (l ,3)
j )+Si j (θ,T (l ,4)

j )). (14)

Finally, the optimization problem is

min
θ∈Ω

Mc∑
j=1

(
T∞+ ∆t

6

n−1∑
l=1

N j∑
i=1

(Si j (θ,T (l )
j )+2Si j (θ,T (l ,2)

j )+2Si j (θ,T (l ,3)
j )+Si j (θ,T (l ,4)

j ))−Tign

)2

. (15)

The resolution of (15) is performed using the Scilab-6.0.1 software [16].
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Table 1. Model parameters used for F19 fire prediction

Parameters Before calibration After calibration
Fuel bed absorptivity afb (-) 0.6 0.998
Flame temperature Tfl (K) 1083 1106.66

Ember emissivity εb (-) 1 1
Fuel bed emissivity εfb (-) 0.6 0.1

Thermal conductivity of flame kfl (W/mK) 0.0707 0.225
Thermal conductivity of ember kb (W/mK) 0.0454 0.105

Ember temperature Tb (K) 561 561.41

4. Results

In this section, three experiments simulated by the optimized model are presented. The time is
set at t1, that is to say the calculations are limited to the first fire contour.

First, the model predictions of fire contours from two large-scale experimental fires are pre-
sented. These fire experiments were carried out in the savanna of the Northern Australia by N.
Cheney et al. [17, 18]. The first experiment is called F19 and the second C064. These experiences
have already been used in our previous work [11]. The fire F19 was incorrectly predicted by the
initial model. Therefore, we reassess the prediction of this fire with the calibrated parameters.

Second, we also show the results of the laboratory-scale experiments that were used to test
the initial model [11]. This is the experiences of D.R. Weise and G.S. Biging [19, 20]. The fuel
characteristics and the test conditions of these wind tunnel experiments were well-controlled
and well-documented.

These three experiments have been used to test several models in the literature [3, 4].

4.1. Prediction of F19 fire experiment

The optimization method described above is applied to F19 fire.
The fuel in F19 fire experiment is Themeda grass with a mean surface-area-to-volume ratio of

12,240 m−1 and a mean fuel load equal to 0.313 kg/m2. The size of the grassland plots is 200 m
× 200 m and the ignition line fire is 175 m long and created in a duration of 56 s in opposite
directions. The other input data are: wind speed Uw = 4.8 m/s, height of fuel bed H = 0.51 m,
mass fraction of water W = 0.058, fuel particle density ρ = 512 kg/m3, specific heat capacity
Cp = 1480 J/kgK, flame length Lfl = 2.7 m, and ambient temperature T∞ = 307 K. Fuel properties
that are not provided by the authors are obtained from the literature.

The initial parameters of the model and the optimal parameters used to simulate F19 experi-
ment are given in Table 1.

The predicted (bold lines) and real (symbol lines) contours are shown in Figure 3 at times
56 s, 86 s, and 138 s. On Figure 3(a) the prediction is made with the initial parameters, and on
Figure 3(b) with the calibrated parameters. The predicted fire contour with the initial parameters
is less advanced than the real contour at 56 s, 86 s, and 138 s (Figure 3(a)). The relative error on
the rate of spread of the fire is 25%.

The predicted contour with optimal parameters and the real contour are in relatively good
agreement at 56 s and 86 s (Figure 3(b)). The relative error made on the rate of spread is 8%.
Prediction is therefore better at the optimal parameters.

C. R. Mécanique — 2020, 348, no 8-9, 759-768



M. H. Tchiekre et al. 765

Figure 3. Comparison between predicted (bold lines) and real (symbol lines) fire contours:
(a) prediction with initial parameters; (b) prediction with calibrated parameters.

Table 2. Model parameters used for C064 fire prediction

Parameters Before calibration After calibration
Fuel bed absorptivity afb (-) 0.6 0.69
Flame temperature Tfl (K) 1083 1083

Ember emissivity εb (-) 1 1
Fuel bed emissivity εfb (-) 0.6 1

Thermal conductivity of flame kfl (W/mK) 0.0707 0.0371
Thermal conductivity of ember kb (W/mK) 0.0454 0.0205

Ember temperature Tb (K) 561 561

4.2. C064 fire prediction

In this section, the results of the simulation of the C064 experiment with the optimized model are
presented. The fuel in C064 fire experiment is Eriachne grass with a mean surface-area-to-volume
ratio of 9770 m−1 and a mean fuel load equal to 0.283 kg/m2. The size of the grassland plots is 104
m × 108 m and the ignition line fire is 50 m long and created in a duration of 26 s in opposite
directions. The other input data are: wind speed Uw = 4.6 m/s, height of fuel bed H = 0.21 m,
mass fraction of water W = 0.063, fuel particle density ρ = 512 kg/m3, flame length Lfl = 4 m, and
ambient temperature T∞ = 305 K.

Figure 4 presents the comparison of the predicted contours before and after calibration of
the parameters with the real fire contours. The results predicted with the initial parameters are in
good agreement with the experimental results (Figure 4(a)). These results are practically the same
with the optimized model (Figure 4(b)). The initial and the optimal parameters used to simulate
C064 experiment are given in Table 2.

At 100 s, the model overpredicts the spread rate of the flank fires in both cases. The propa-
gation mechanism in a flank fire is complex and is the subject of research within the scientific
community [3].
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Figure 4. Prediction of the C064 experiment with (a) initial parameters; (b) optimal param-
eters. Bold lines are predicted fire contours and symbol lines are real fire contours.

Table 3. Model input data used for Laboratory-scale fire prediction

Experiment Weise (white birch)
Flame length (m) 0.08–1.69

Ambient wind speed (m/s) 0–1.15
Fuel bed slope (°) −15–+15

Initial water mass fraction (-) 0.11
Fuel bed thickness (m) 0.114

Ambient temperature (K) 303
Flame temperature (K) 1083

Ignition temperature (K) 500
Fuel density (kg/m3) 609

Surface-to-volume ratio of fuel particles (m−1) 17.5
Fuel bed absorptivity (-) 0.6
Fuel bed emissivity (-) 0.9

4.3. Laboratory-scale experimental data

Weise’s experimental data for flame propagation on very porous white birch fuel beds in a
laboratory wind tunnel are compared to this model. The purpose of these experiments was
to examine wind and slope interaction effects on flame properties. A tilting wind tunnel with
an adjustable roof and 2.5 m long by 0.9 m wide test section was used. The data used for the
simulations are summarized in Table 3.

In Figure 5, the predicted flame spreads are depicted according to the experimental flame
spreads. The circular symbols are the flame spreads predicted with the calibrated parameters.
The distance to the linear line, measures the error of the model. As can be seen in the figure, all
of the symbols in circle are on this line unlike the others symbols. So, we have a better prediction
with the calibrated parameters.
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Figure 5. Comparison of predicted and real flame spread. Circular symbols are prediction
with optimal parameters and the other symbols are prediction with initial parameters.

5. Conclusion

A mathematical optimization method was applied to the parametric model of fire propagation.
The optimization problem is obtained after a formulation adapted to the propagation model. The
seven parameters linked to the model have been optimized.

The prediction of the optimized model was tested on laboratory experiments and two large-
scale experimental fires. Good agreement has been shown with the experimental data.

Even if the tests presented have confirmed the quality of the proposed method, additional
large-scale experiments are necessary to evaluate and validate the model.
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