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Abstract. A porous-solid model based on the grain and pore size distributions of the soil is coupled with
a mechanical model to simulate the soil–water retention curves while the material is deforming. During
the determination of the main drying curve, the soil is subjected to high suctions which induce important
volumetric deformations. These volumetric deformations modify the pore size distribution of the sample
affecting both the drying and the wetting retention curves. Although, most deformation occurs at drying,
the drying curve is only slightly affected by soil deformation. In contrast, the wetting curve shows important
shifting when volume change is considered.

Keywords. Unsaturated soils, Soil–water retention curves, Deforming soils, Coupled models, Effective
stresses, Porous models.
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1. Introduction

Different models have been proposed to account for the density of soils during the determination
of the soil–water retention curves (SWRCs). See for example [1–8], among others. Some of the
more representative models are reviewed here.

From a series of experimental results, Tarantino [4] observed that at high suction range, water
ratio (ew = Vw /Vs ) can be expressed as a power function of suction. In addition, the degree of
saturation in the van Genuchten equation [9] can be written in terms of the water ratio and
void ratio (e = Vv /Vs ). By performing some substitutions in these equations, the SWRC can be
expressed in terms of the void ratio. In addition, with the inclusion of different parameters for
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the drying and wetting curve, the phenomenon of hysteresis can be considered and scanning
behavior can be modeled. Three parameters are required for each branch, two of which are
directly obtained from the data of the corresponding retention curve of the soil. The third is
determined by best fit with the corresponding curve.

The model developed by Hu et al. [6] also considers the van Genuchten equation to simulate
the SWRCs. These authors use a logarithmic relationship between the mean size of pores with
the mean stress. With this relationship, they could assess the variation in the mean size of pores
through the variation in the void ratio of the soil using a proportional parameter. Therefore, the
air entry value for the retention curve is written as a function of the current void ratio. Hysteresis is
included by considering different air entry values for the drying and wetting curves. This equation
of the SWRC dependent on the void ratio shows similarities to the equation proposed by Gallipoli
et al. [1]. However, the last relates the air entry value to void ratio using an empirical power
function while Hu et al. [6] derive their equation from the change in the pore size distribution
(PSD). In addition, all seven parameters required by Hu’s model show a clear physical meaning.
However, two of these parameters are related to the scanning behavior and need to be determined
from hydro-mechanical scanning which represents an important drawback. A correction factor,
similar to that proposed by Fredlund and Xing [10], is included for the high suction range of
the SWRC. This model requires the variation in void ratio of the sample during wetting–drying
cycles to simulate the shift of the retention curves in the axis of suction. Wetting–drying cycles are
simulated following a similar method as proposed by Gallipoli [11] who assumes similar shapes
between the scanning curves and the main curves.

The model proposed by Zhou and Ng [12] departs from the equation proposed by Gallipoli
et al. [1] to simulate the SWRC which already includes the effect of void ratio on the retention
curves. Zhou and Ng [12] argue that the SWRC not only depends on the void ratio but also
on the pore structure which includes the effects of PSD, pore shape and pore orientation. The
pore structure is affected by hydro-mechanical loading as the macropores reduce their volume.
This effect on the pore structure can be included through a microstructural state variable which
depends on the void ratio of both the macro and the microstructure. Using a compressibility
index which depends on the loading case (net stress increase or suction increase), they compute
the volume change of the sample. This volume change is related to a change in the void ratio of
the macropores which in turn affects the value of the microstructural state variable included in
the equation of the SWRC. The model requires six parameters in total, two of which represent the
compression indexes and the remainder can be obtained by fitting the experimental SWRCs with
the numerical SWRCs. Numerical and experimental comparisons show that the model simulates
well the shift of the retention curve with net stress increase.

The model by Della Vecchia et al. [7] includes the evolution of the pore size distribution
of soils during hydro-mechanical loading through the progress of parameters of the soil–water
retention curves. Double structured soils can be considered by introducing the porosity of both
the micro and the macrostructure and adopting a van Genuchten’s equation for each structural
level, resulting in bimodal retention curves. These authors have established some relationships
between the air entry value with the void ratio of the micro and macrostructure. In turn, the
void ratio of the microstructure is related to the water ratio. Because, a normalized relationship
relating the void ratio of the macrostructure with the air entry value could not be established,
they have proposed a general equation. However, this equation requires previous calibration to
define its parameters which represents an important disadvantage. This model requires eight
parameters in total for double structured soils. The influence of pore size distribution on the
retention curves as well as the evolution of water ratio with suction can be fairly simulated with
this model which can even simulate the retention curve as the soil is deforming.

In a similar way, the model by Gao and Sun [8] simulates the effect of the void ratio on the
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retention curves through the air entry value. These authors use the Fredlund and Xing [10] equa-
tion to represent the retention curves and write the air entry value as a function of the saturated
water content (or saturated void ratio) through a semilogarithmic relationship requiring two pa-
rameters. These parameters are determined using the retention curves in terms of both water
content and degree of saturation. They include the saturated water content, the residual suction,
the main slope of the curve, and the value of suction at the inflexion point. The model predicts
well the shift of the retention curve for different densities of soil.

The main drawback of the above methods is that none of them consider full hydro-mechanical
coupling. When an increment in suction is applied, the soil deforms and the SWRC modifies. This
in turn affects the value of the effective stress parameter χ used to calculate the next volumetric
strain. As Della Vecchia [7] points out, the resulting SWRC is not the same when the retention
curve is simulated using the final PSD. In addition, none of these models includes simultaneously
the case for double structured soils along with the simulation of scanning curves during wetting–
drying cycles.

In this paper, a porous-solid model based on the grain size distribution (GSD) and current
PSD of the soil is used to simulate the evolution of retention curves while the soil is deforming.
This porous-solid model is coupled with an effective stress mechanical model to determine
the volumetric strains with suction. The results of the proposed model are compared with
some experimental results and some conclusions are withdrawn. These results show important
differences with previously published models.

2. The porous-solid model

In order to correctly simulate the retention curves of deforming materials, hydro-mechanical
coupling is required. A simple way to generate coupled models for unsaturated soils is to build
up a hydraulic model based on the current PSD of the material. In this section, a porous-solid
model able to simulate the retention curves during wetting–drying cycles is briefly presented.
This model considers two types of pores: the cavities (C) and the throats or bonds (B). The
former are those elements containing most of the volume of water of the soil and are represented
by circles or spheres in two or three-dimensional networks, respectively. The bonds are those
pores interconnecting the cavities and are represented by rectangles or cylinders in two or three-
dimensional models, respectively.

Figure 1(a) shows a proposed bimodal PSD for cavities and bonds. In this case and for
simplicity, a natural scale is used in the horizontal axis representing the sizes of pores. Instead,
real soils require a logarithmic scale to account for the large variation in sizes of pores and
solids. Figure 1(a) also shows the direction followed during wetting (i.e., smallest pores saturate
first) and the proposed critical size (i.e., the maximum size of pores that can be saturated at the
current suction) reached at a certain moment during wetting, in this case represented by size 6.
This PSD has been used to represent the porous-solid model shown in Figure 1(b). This figure
includes the solids (S) in addition to the cavities and bonds. All these elements have been placed
at random in a regular two-dimensional network. The random distribution of pores of different
sizes guarantees the correct simulation of the phenomenon of hysteresis where the extension
of the overlap between the PSDs of cavities and bonds plays a fundamental role. However,
during the setup of the network, a construction principle needs to be verified. This construction
principle states that two bonds converging at 90° at a cavity should not intersect each other. In
the nodes where the construction principle is not verified, a redistribution of cavities and bonds
is performed until the principle is fulfilled everywhere in the network. The representation of the
network in Figure 1(b) is only schematic as the length of bonds in the porous-solid model is only
a fraction of their diameter. This means that in fact, the resulting network is highly irregular. Each

C. R. Mécanique — 2020, 348, no 12, 983-1001



986 Eduardo Rojas et al.

Figure 1. (a) Proposed PSD for a double structured material. (b) Porous-solid network.
(c) Main SWRCs obtained from the model.

pore in Figure 1(b) has been named according to its size. For example, Cavity C11 shows size 11
and is located in the fourth row and fourth column. During the processes of wetting and drying,
all pores will be referred according to their coordinates. For example, cavity C11 is referred as
C(4,4), where the first and second number in brackets represent the horizontal and the vertical
coordinate, respectively. In contrast, solids show a continuous numbering with no relation to
their size.

Suppose that the network in Figure 1(b) is initially subjected to a large suction and water
is available at the boundaries. For the modeling, it can be considered that all boundaries are
connected to the bulk of water although other conditions can be imposed. Assume also that all
pores are initially dry and suction progressively reduces. Then, some pores at the boundaries start
saturating. During wetting, the first pores to saturate are the smallest [13]. The sizes of pores that
can saturate are obtained from the Young–Laplace equation

rc = 2Ts cosα/s, (1)

where rc represents the critical radius (i.e., the radius of the largest pores that can be saturated
with suction s), Ts is the air–water interface tensional force, and α is the contact angle between
water and soil particles (usually considered as zero).

As indicated in Figure 1(a), the critical size obtained from (1) at this stage is size 6, meaning
that all pores from sizes 1 to 6 can saturate at this stage. However, pores only saturate if they are
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Table 1. Saturated pores during wetting

Critical size Saturated pores
2 B(9,6)

3 B(6,9), B(8,9)

4 B(9,8)

5 B(8,5), C(8,6), B(7,6), B(8,7), B(8,1)

6 B(1,8), B(2,9), B(4,9), B(5,8), C(6,6), B(5,6), B(6,5), B(6,7), C(6,8), B(7,8), C(8,8),
7 B(1,2), B(1,4), B(1,6), B(3,8), B(4,7), C(4,8), B(5,4), B(6,1), B(6,3), C(6,4), B(7,4), B(9,2), B(9.4)

8 B(2,5), C(2,6), B(2,7), B(3,6), B(4,1), B(5,2), C(6,2), B(7,2), C(8,2), B(8,3), C(8,4)

9 B(2,1), B(2,3), C(2,4), C(2,8), B(3,4), B(4,5), C(4,6)

10 C(2,2), B(3,2), C(4,2), B(4,3)

11 C(4,4)

Table 2. Drained pores during drying

Critical size Drained pores
9 B(2,1), C(2,2)

8 B(2,3), C(2,4), B(3,2), B(3,4), B(4,1), C(4,2), B(4,3), C(4,4),
7 B(1,2), B(1,4), B(1,6), B(2,5), C(2,6), B(6,1), C(6,2), C(8,2), C(8,4), B(9,2), B(9,4)

6 B(1,8), B(2,7), C(2,8), B(2,9), B(3,6), C(4,6), B(4,7), C(4,8), B(4,9), B(5,2), B(5,4), C(6,4), B(7,2)

5 B(3,8), B(4,5), B(5,6), B(6,3), C(6,6), B(7,4), B(8,1), B(8,3)

4 B(5,8), B(6,5), C(6,8), C(8,8), B(9,8)

3 B(6,7), B(6,9), B(7,8), B(8,5), C(8,6), B(8,9)

2 B(8,7), B(9,6)

1 B(7,6)

connected to the wetting boundaries by a continuous path of saturated elements. In Figure 1(b),
saturated pores are shown in black while dry pores are shown in white. Additionally, solids
are represented in gray tones. Notice that some pores showing sizes 6 or smaller are still not
saturated. Using these rules, it is possible to determine which pores saturate or dry during a
wetting or drying process and thus, obtain the main SWRCs as shown in Figure 1(c).

Tables 1 and 2 show the pores that saturate or drain at each suction step when a full wetting or
drying path is simulated, respectively. The change in the degree of saturation after each suction
step is calculated from the volume of pores involved. With this same procedure, it is possible to
simulate the scanning curves during wetting–drying cycles, as the process can be reversed at any
moment. For example, if at a certain stage of wetting the soil starts drying, the only possible pores
to dry are those already saturated, starting with the largest [14].

Mercury intrusion porosimetry tests (MIPTs) indicate that real soils show PSDs that can be
approximated to logarithmic normal distributions. This means that only two parameters, the
mean size (R) and standard deviation (ς), are required to describe these distributions. One
distribution is used for bonds and the other for cavities. Therefore, four parameters are required
to describe a single structured soil and simulate both retention curves. For double structured
soils, two different logarithmic distributions are required for both elements (bonds and cavities):
one for the macro and the other for the micropores. In addition, a parameter relating the relative
volume (ϱ) between macro and micropores is required.

Because there is a one to one relationship between PSD and main SWRCs, when the former
is not available, use is made of the last. In such a case, by successively modifying an initially
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proposed PSD, it is possible to fit the numerical with the experimental SWRCs and, finally obtain
a theoretical PSD of the material. Both the wetting and the drying curves are required in this
process, in order to determine all parameters of the model. Because the shape of pores and
solids in real soils is not spherical, it can be said that the theoretical PSD obtained after the
fitting process represents an equivalent PSD of the real soil. Therefore, comparisons between
experimental and numerical PSDs may show some differences.

Usually, porous networks with at least 1 million nodes are required to avoid the influence of the
size of the network on the SWRCs. However, as the size of the network increases, the computing
time and storage requirements represent two main concerns. In order to avoid these problems,
probabilistic porous-solid models have been developed. These type of models are based on the
same principles of the network models with the advantage of simulating infinite porous-solid
networks. Probabilistic models greatly reduce the computing time and storage requirements and
simplify the fitting process of the experimental SWRCs [15].

The effect of volumetric strains on the PSD can be included in the porous-solid model. Accord-
ing to the experimental results reported by Simms and Yanful [16], only the volume of macrop-
ores reduces when a soil shows plastic volumetric strains during compression. Therefore, these
plastic volumetric strains represent the reduction in the volume of macrocavities as the volume
of macrobonds is negligible, as stated before. This reduction in the volume of macrocavities can
be included into the model in three different ways: by a reduction in the number of macrocavi-
ties, by a reduction in the mean size of macrocavities, or by a combination of both. The experi-
mental results reported by Simms and Yanful [16] indicate that soils subjected to suction increase
show mainly a reduction in the mean size of macrocavities of approximately of one order of mag-
nitude (i.e., a reduction of 10 times the mean size) from the saturated to the fully dry condition.
Thus, this same approach has been included in the porous-solid model for the case of suction
increase. Therefore, by computing the initial volume of macrocavities for the case of a network of
dimension D and pores showing a logarithmic normal distribution, it results in the equation

VMC =
√
π

2

ϱMC

logδMC

∞∑
RMCi=0

e

1
2

 log

(
RMCi
RMC

)
logδMC


2

RD
MCi FD log(∆RMC), (2)

where ϱMC is the relative volume between meso and macrocavities, RMC and ∆RMC represents
the initial mean size of macrocavities and its increment, δMC is the standard deviation of macro-
cavities, FD = (D+1)/3 is a dimension factor to properly compute the volume (or area) of cavities
dependent on the dimension of the network. Additionally, the mean size of cavities after shrink-
age RMCd can be written as a function of the volumetric plastic strain ε

p
v , the total volume of the

sample V and the initial volume and mean size of macrocavities VMC and RMC, respectively, in
the form

RMCd = D

√
1− V εp

v

VMC
RMC. (3)

By substituting (2) in (3), it is possible to determine the updated size of macrocavities that
accounts for the current volume of the sample. For macrobonds, the same relative variation in
their size is considered. This procedure neither requires any additional parameter for the model
nor previous calibration.

Once the updated PSD of the soil has been established, the next point of the SWRC is obtained
by simulating the SWRC from the initial suction to the current value of suction. This is so because
the water in the soil redistributes with each variation in the size of pores. In other words, each
point of the SWRC is obtained from the updated PSD of the material generated by the current
suction. This procedure allows determining the SWRCs while the material is deforming.
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3. The mechanical model

The elastoplastic framework used to model the volumetric behavior of unsaturated soils is based
on the effective stress concept [17]. This framework uses the effective mean stress (p ′) defined by
Bishop’s equation

p ′ = p +χs, (4)

where p is the net stress and χs is the suction stress. Bishop’s parameter χ is obtained from the
relationship [18]

χ= f s +Su
w f u , (5)

where f s and f u represent the saturated and unsaturated fractions of the soil, respectively, while
Su

w is the degree of saturation of the unsaturated fraction. The saturated fraction is obtained by
adding the volume of all solids exclusively surrounded by saturated pores (V s

s ) with the volume of
these pores (V s

v ) and divided by the total volume of the soil (V ), in the form f s = (V s
s +V s

v )/V . The
unsaturated fraction represents the volume of solids surrounded by a combination of saturated
and dry pores (V u

s ) added by the volume of these pores (V u
v ) and divided by the total volume

of the soil, in the form f u = (V u
s +V u

v )/V . Finally, the degree of saturation of the unsaturated
fraction is the volume of saturated pores (V us

v ) divided by the total volume of pores appertaining
to the unsaturated fraction of the sample, in the form Su

w = V us
v /V u

v . For fully coupled models,
these three parameters depend on the current value of suction and the whole wetting–drying
and loading–unloading paths applied to the sample. Eventually, a dry fraction ( f d ) may appear
at large suctions. The dry fraction is represented by the volume of solids exclusively surrounded
by dry pores (V d

s ) added by the volume of these pores (V d
v ) and divided by the total volume of

the soil, in the form f d = (V d
s +V d

v )/V . With these definitions, the relationship f s + f u + f d = 1 is
fulfilled. In order to avoid ambiguity in the determinations for pores appertaining to the different
fractions, first the saturated and dry fraction are determined, as they show no ambiguity for their
determination, while the unsaturated fraction is obtained from the condition f u = 1− f s − f d . All
these parameters ( f s , f u , f d , Su

w ) can be obtained from the porous-solid model described in the
previous section.

In fact, parameter χ, as defined by (5), represents a weighted degree of saturation as each
fraction of the soil ( f s , f u , and f d ) is multiplied by their respective degree of saturation: 1 for
the saturated fraction, 0 for the dry fraction, and Su

w for the unsaturated fraction. Therefore, χ
varies from 1 to 0 when the soil moves from the saturated to the dry condition, respectively, and
is related to the global degree of saturation of the soil (Sw ) [14].

The physical meaning of parameters f s , f u , and Su
w can be better understood by inspecting

Figure 1(b). According to the definitions adopted for the saturated fraction ( f s ), solids S19, S20,
S24, and S25 as well as pores C(6,6), B(6,7), C(6,8), B(6,9), B(7,6), B(7,8), C(8,6), B(8,7), C(8,8), B(8,9),
B(9,6) and B(9,8), belong to this fraction. Therefore, the addition of the volume (or area for a bi-
dimensional model) of these solids and pores divided by the total volume (or area) of solids and
pores in the model, represents the saturated fraction of the soil. Similarly, solids S7, S8, S9, S12,
and S17 as well as pores C(2,2), B(2,3), C(2,4), B(2,5), C(2,6), B(2,7), C(2,8), B(3,2), B(3,4), B(3,6), B(3,8) C(4,2),
B(4,3), C(4,4), B(4,5), C(4,6), B(4,7), C(4,8), B(5,2), B(5,4), C(6,2), B(6,3), C(6,4), B(7,2), B(7,4), C(8,2), B(8,3), and
C(8,4) belong to the dry fraction. Finally, the unsaturated fraction is obtained from the relationship
f u = 1− ( f s + f d ) and represents the volume of the remainder pores and solids of the saturated
and dry fractions (S1, S2, S3, S4, S5, S6, S10, S11, S13, S14, S15, S16, S18, S21, S22, S23, B(1,2), B(1,4),
B(1,6), B(1,8), B(2,1), B(2,9) B(4,1), B(4,9), B(5,6), B(5,8), B(6,1), B(6,5), B(8,1), B(8,5), B(9,2) and B(9,4)) divided
by the total volume of solids and pores. Finally, parameter Su

w is obtained by dividing the volume

C. R. Mécanique — 2020, 348, no 12, 983-1001
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of saturated pores (B(1,8), B(2,9), B(4,9), B(5,6), B(5,8), B(6,5), B(8,1) and B(8,5)) by the total volume of
pores (B(1,2), B(1,4), B(1,6), B(1,8), B(2,1), B(2,9), B(4,1), B(4,9), B(5,6), B(5,8), B(6,1), B(6,5), B(8,1), B(8,5), B(9,2)

and B(9,4)) both appertaining to the unsaturated fraction. By quantifying these parameters during
a wetting or drying path, the effective stress applied to the soil sample for any value of suction and
net stress can be computed using (4) and (5).

4. The elastoplastic framework

The elastoplastic volumetric behavior of the soil is determined from the following equation [17]

de

e
=λe

dp ′

p ′ , (6)

where e and de represent the current void ratio and its variation, respectively, dp ′ is the increment
of the mean effective stress while λe is the compression index in a logarithmic plane formed by
the void ratio and the mean effective stress. Because the void ratio of the sample reduces with
increments on the effective mean stress, λe shows negative values. To account for the elastic
behavior, parameter λe is substituted by the unloading–reloading index κe . These parameters
are single valued for any stress path and suction applied to the soil including loading–unloading
and wetting–drying cycles.

Figure 2 shows the elastoplastic framework for the volumetric behavior of soils in the planes
of the logarithm of effective mean stress versus logarithm of void ratio (Figure 2(a)) and effective
mean stress versus suction (Figure 2(b)). Consider a saturated normally consolidated soil sample
subjected to a net stress pi (point A). The soil can follow a drying or loading path, but in any case,
the slope of the compression line is given by the same parameter λe in Figure 2(a).

Suppose that in this case, the sample follows a drying path up to suction s0 reaching the
saturated preconsolidation stress p∗′

0 (point B). Figure 2(b) shows the position of both the suction
increase yield surface (SIYS) and the loading collapse yield surface (LCYS) at the end of drying.
Observe that the LCYS is horizontally displaced from the drying path a quantity equal to the
suction stress χ0s0. This displacement is generated by the suction hardening phenomenon and
is simulated by coupling the SIYS with the LCYS. This means that when loading is preceded by
drying, at the beginning of the loading stage, the sample shows an initial elastic behavior up to
the apparent preconsolidation stress p ′

0 as shown in Figure 2(a) (path BC). Once the apparent
preconsolidation stress is surpassed, the sample shows elastoplastic strains as indicated in the
same figure.

In brief, the following assumptions are made to build up the coupled model: (a) circular or
spherical geometry for pores and solids for 2D or 3D networks; (b) Connectivity equal to 4 or
6 for 2D and 3D networks; (c) Isolated clusters are considered in the network; (d) Double log-
arithmic normal distributions for pores and solids; (e) Only macropores shrink; (f) The shrink-
age of macropores from a saturated to a dry condition for the sample is ten times their size;
(g) Elastoplastic volumetric behavior; (h) Suction hardening phenomenon is considered; (i) Bish-
ops equation applies; (j) Bishop’s parameter is given by the relationship χ = f s +Su

w f u ; (k) Void
ratio changes are given by the relationship de/e =λe (dp ′/p ′).

5. Modeling the SWRC

When the drying SWRCs is being determined, the soil sample is subjected to a continuous
increase in suction. When the maximum previous suction of the sample is surpassed, volumetric
plastic strains occur and the macropores of the soil reduce in size. Consequently, the SWRC is
affected as well as the effective stress according to (4) and (5). In order to assess the influence of
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Figure 2. Elastoplastic framework for volumetric behavior of unsaturated soils.

the volumetric strains on the SWRCs, the porous-solid model can be used advantageously as it is
based on the current pore size distribution of the material.

The following procedure to simulate the SWRCs while the soil is deforming has been applied in
this research. First, the initial conditions of the sample are established: the GSD, the initial PSD,
and void ratio, as well as the maximum and current net stress and suction applied to the sam-
ple. Then the elastic and elastoplastic compression indexes are determined from compression
tests. Finally, the porous-solid model coupled with the mechanical model is used to simulate the
SWRCs. The volumetric strains produced by suction increases are computed using the elastoplas-
tic framework shown in Figure 2 along with (6). The pore size distribution of the soil is continu-
ously updated for each plastic volumetric strain. This means that each point of the SWRC is ob-
tained from a different PSD when the soil exhibits plastic deformations. Each time the retention
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Table 3. Parameters for compacted Pearl Clay for different void ratios

e0 Parameter MC MB

1.32 R 2.05 0.7
1.24 R 2.0 0.68
1.1 R 1.9 0.6

Notes: MC = macrocavities, MB = macrobonds.

curve is updated, so is the value of parameter χ. In this way, it is possible to correctly compute the
value of the increment of suction stress (∆(χs)) and the associated volumetric strain for the next
increment in suction. In this manner, a fully coupled modeling of the SWRCs can be performed.

5.1. Tests by Gao et al. [8]

These authors, reported the SWRCs of a clayey silt (called Pearl clay) at three different initial void
ratios. The soil is composed of 26% of clay and 74% of silt. This material shows a liquid limit of
43%, a plasticity index of 17.5%, and specific gravity of 2.71. The samples were formed by static
compaction at a water content of about 26%. The initial void ratios of compacted samples were
1.36, 1.24, and 1.1. Figure 3(a) shows the experimental (Ex) GSD of this material. Also in this figure,
a fitted numerical (N) GSD used to build up the porous-solid model is presented. This numerical
GSD was obtained from two logarithmic normal distributions: one for large grains (MS) and the
other for small particles (mS). These distributions adopted the following values for the mean
size (R) and standard deviation (δ) for the large and small particles, respectively: R(MS) = 2.3,
δ(MS) = 2.5, R(mS) = 0.2, δ(mS) = 2.0 while the relative volume of large solids takes the value
ϱ= 0.02. These parameters keep the same value for all soil samples and remain constant during
the compression of the sample during suction increase.

For the determination of the SWRC, suction was controlled using both the axis translation
and the vapor equilibrium technique. The axis translation technique was used for suctions up to
1.5 MPa while the vapor equilibrium for suctions up to 450 MPa. The volume of samples was
measured using the fluid paraffin replacement technique. The experimental retention drying
curves for the samples prepared at void ratios of 1.1 and 1.3 are shown in Figure 3(b).

For the simulation of the retention curves similar to GSD, two logarithmic normal distribu-
tions with their respective mean size, standard deviation, and relative volume of macropores were
used for both cavities and bonds. Prefixes macro (M) and micro (m) are used for the large and
small elements of each type, respectively. By fitting the numerical with the experimental SWRCs
for samples with initial void ratios of 1.1, 1.24, and 1.3, the same parameters for the mean size and
standard deviation for both the microcavities and microbonds as well as for the relative volume
of large pores were obtained for all three different void ratios. These values are R(mC ) = 0.02 µm,
R(mB) = 0.007 µm, δ(mC ) = δ(mB) = 3.2 µm, ϱ(MC ) = 0.00025, ϱ(MB) = 0.01. This means that
only the mean size of macrocavities and macrobonds change for each sample. These values are
shown in Table 3. This finding agrees with the experimental results included in Figure 3(c) where
only the volume of macropores for samples compacted at two different void ratios show varia-
tions.

Even if samples compacted at the same water content show different PSDs, this difference can
be accounted for solely with the mean size of macropores. This is why the mean size and standard
deviations for both microcavities and microbonds maintain a constant value for all samples. It is
possible that a relationship between the size of macrocavities and the void ratio of compacted
samples exists. This possibility is explored in the next section.
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Figure 3. (a) Numerical (N) and experimental (Ex) GSD. (b) Drying SWRCs. (c) Results of
MIPTs for samples with e0 = 1.1 and 1.32. (d) Initial (I) and final (F) relative volume for
cavities (C) and bonds (B) for the sample with e0 = 1.32. Experimental data after [8].
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The relative volume of pores obtained from MIPTs for samples at void ratios of 1.15 and 1.35
are shown in Figure 3(c). Also in this figure, the numerical PSDs obtained from the parameters
indicated in Table 3 are plotted. It can be observed that the experimental and numerical mean
sizes for macro and micropores show more or less similar values. In contrast, the numerical
maximum relative volume for macro and micropores show smaller and larger values with respect
to experimental results, respectively. Moreover, the experimental distributions show sharper
curves than the numerical ones. This last characteristic is regulated by the standard deviation
of macro and micropores. This means that this parameter should take smaller values than those
indicated in Table 3 to ensure a better correlation with the experimental results. However, if
the standard deviation is reduced, the SWRC may show a step, clearly indicating the presence
of a double structured material which is not the case for the experimental results reported in
Figure 3(b).

In Figure 3(d), the initial (I) and final (F) PSDs for cavities (C) and bonds (B) are shown. These
distributions correspond to the sample with an initial void ratio of 1.32. The initial PSD was
obtained from the parameters indicated in Table 3, while the final was obtained at the end of
drying. This figure also includes the GSD of the sample. Observe that, because large cavities and
bonds reduce in size, the smaller cavities and bonds show an apparent increase in their relative
volume [16]. Each time that the increase in suction produces plastic volumetric strains, the PSD
slightly modifies from its initial condition. The next point in the SWRC is then obtained from
the updated PSD. Then, parameter χ is also updated in order to correctly determine the current
suction stress and, finally, the decrease in void ratio for the next increase in suction is computed
from (6).

During the experimental determination of the drying curves, the volumetric strains of soil
samples were measured for each increment in suction as reported by Gao et al. [8]. The exper-
imental volumetric strains for the three different samples are shown in Figure 4(a) along with the
numerical simulation. Observe that when suction increases beyond 1 MPa, soil samples show a
rebound on their volumetric strain. This behavior is generated by the reduction in the suction
stress (χs) which takes place when suction surpasses 1 MPa, as shown in Figure 4(b). This fig-
ure shows the variation in suction stress for samples with initial void ratios of 1.1 and 1.32 dur-
ing drying. Observe that numerical and experimental variations in void ratio with suction adjusts
well for all three samples as shown in Figure 4(a). Notice that experimental results show an er-
ratic behavior when suction surpasses 1.5 MPa. This could be attributed to the vapor exchange
technique used for suctions beyond this value.

In order to assess the influence of coupling the hydro-mechanical behavior of soils during
the determination of the SWRCs, Figure 5 has been prepared. This figure shows the numerical
modeling of the main retention curves at wetting (W) and drying (D) using the coupled (Cu) and
the uncoupled (Un) model. For the correct interpretation of these curves, it must be considered
that bonds control mainly the drying curve while cavities control mainly the wetting curve [13]. In
addition, macrobonds and macrocavities control the drying and wetting curves at low ranges of
suction, respectively, while microbonds and microcavities control the drying and wetting curves
at large ranges of suction, respectively. Also, it must be considered that only macropores change
their size during compression while the size of micropores remains constant. Moreover, it must
be acknowledged that during drying, the PSD is changing with each plastic volumetric strain.
This change in PSD only arrest when the suction stress reaches its maximum value as afterward,
it reduces. Instead, during wetting, the PSD remains constant as only elastic strains occur.
Finally, the shift of the retention curves on the suction axis, depends on the plastic volumetric
strain experienced by the soil during drying. In this way, it can be observed in Figure 5 that
the coupled and uncoupled drying curves initially superpose. However, when suction increases
beyond 0.02 MPa (maximum previous suction of the soil samples), plastic volumetric strains
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Figure 4. (a) Numerical and experimental volumetric strains. (b) Suction stress evolution
during drying for samples with different initial void ratios. Experimental data after [8].

appear and the coupled drying curve displaces to the right hand side on the suction axis. Finally,
when the degree of saturation reduces below 0.2, both curves appear close together again. This
is so because the last bit of the curve is regulated by the small bonds which do not change
in size during compression. With respect to the wetting curve, it can be observed that the
reduction in size of macrocavities after drying produces the displacement of this curve from the
beginning, although this displacement reduces as the degree of saturation increases. In this case,
the displacement of both the coupled wetting and drying retention curves is small, because the
maximum plastic volumetric strain is also small. Larger volumetric strains and. therefore, larger
displacements on the SWRCs are observed in the next set of tests.

5.2. Tests by Salager et al. [19]

For these tests, samples of a clayey sand (CS) statically compacted at densities ranging from 13.5
to 19.5 kN/m3 and water contents from 18 to 12% were prepared. The soil is constituted by 72%
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Figure 5. Comparison for the drying (D) and wetting (W) retention curves considering
coupled (Cu) and uncoupled (Un) modeling.

Table 4. Initial conditions for samples after saturation

Series e0 ρ (kN/m3) w (%)
1 1.01 13.19 38.1
2 0.86 14.27 32.3
3 0.68 15.75 25.7
4 0.55 17.08 21.0
5 0.44 18.45 16.5

sand, 18% silt, and 10% clay. Compacted samples of this material show an optimum water content
of 14.5% and a maximum density of 18.6 kN/m3. The liquid and plasticity limits for this soil are 25
and 14.5%, respectively. After compaction, the samples were placed in a pressure plate chamber
and saturated by imbibition. At the end of saturation, each sample reached the initial void ratio
(e0), density (ρ), and water content (w) indicated in Table 4. Volume changes were monitored
with a fluid displacement technique that uses pycnometers filled with Kerdane.

For the determination of the SWRCs, the axis translation technique was employed in the range
of 0.001 to 1 MPa, while the vapor equilibrium technique was used in the range from 4 to 326
MPa. The numerical and experimental main retention curves at drying for samples indicated in
Table 4 are plotted in Figure 6(a). The fitting parameters for the simulations of the SWRCs for each
sample are presented in Table 5. Notice that the mean size of microcavities mC = 0.00025 µm
and microbonds mB = 0.00015 µm as well as the standard deviation for both cavities and bonds
δ= 5.0 remains constant for all samples. Therefore, Table 5 only shows the values of the mean size
of macrocavities and macrobonds as well as the relative volume between large and small cavities
(ϱ). Notice that in these tests, both the void ratio and water content change for each sample. The
PSDs obtained from the data on this table are depicted in Figure 6(b). Observe how the mean size
and relative volume of macrocavities reduce with the void ratio while the microcavities show an
apparent increase in relative volume. The experimental GSD reported by the authors was fitted
using the following parameters: R(MP ) = 130 µm, δ(MP ) = 3.5, R(mP ) = 0.2 µm, δ(mP ) = 3.0
and ϱ= 0.0000055. These parameters remained constant during the simulations.

For the sample with a void ratio of 1.01, the initial and final PSDs for both cavities and
bonds are shown in Figure 6(c). These variations in the initial and final PSDs are generated by
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Figure 6. (a) Numerical and experimental SWRCs. (b) PSDs for samples with different
initial void ratios. (c) Initial and final PSD’s for cavities and bonds for the sample with
e0 = 1.01. Experimental data after [19].
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Table 5. Parameters of the porous-solid model for samples at different void ratios

e0 Parameter MC MB

1.01
R 1.0 0.5
ϱ 0.00000008 0.001

0.86
R 0.95 0.45
ϱ 0.00000009 0.001

0.68
R 0.7 0.29
ϱ 0.0000002 0.00042

0.55
R 0.15 0.13
ϱ 0.000003 0.001

0.44
R 0.07 0.05
ϱ 0.000007 0.0012

Notes: MC = macrocavities, MB = macrobonds.

the volumetric strains of the sample as suction increases. In Figure 7(a), both the experimental
and the numerical volumetric strains for samples with different initial void ratios are indicated.
Figure 7(b) shows the values of suction stress during drying. Observe that a maximum value
of suction stress occurs for all samples at around 30 MPa of suction. Therefore, when suction
surpasses this value, a small rebound on volumetric strains occurs as observed in Figure 7(a).

In order to explore the possible relationship between the size of macrocavities and the void
ratio of compacted samples, Figure 8 has been prepared. It shows the variation of the radius of
the mean size of macrocavities and macrobonds for both Pearl clay and the clayey sand samples
compacted at various void ratios. It can be observed that the mean radius of these elements
increase with the void ratio following an approximately parabolic shape. However, in order to
establish a general equation for this trend, more experimental results are needed. Also notice
that Pearl Clay samples were prepared at the same water content for all different void ratios, while
clayey sand samples were prepared at different water contents for different void ratios.

Figure 9 shows the comparisons of the main SWRCs for a sample with initial void ratio of
1.01, when simulations are made with coupled and uncoupled models. Observe again that the
displacement of the drying curve is only partial while the wetting curve shows a considerable
displacement from the beginning, although it reduces as saturation is approached. These results
differ from other hydro-mechanical coupled models where the air entry value of the SWRCs is the
only parameter affected by volumetric strains resulting in parallel retention curves.

6. Conclusions

A coupled hydro-mechanical model is used to simulate the SWRCs of soils. The hydraulic model
is based on the current PSD of the material which is continuously updated as the soil deforms.
Also, parameter χ and the mean effective stress are continuously updated to correctly determine
the volumetric strain for the next increment in suction.

The numerical and experimental comparisons show the appropriateness of the proposed
model. Numerical results show that the drying retention curve suffers a partial shift on the suc-
tion axis when compared with non-deforming simulations, even if large plastic volumetric strains
occur at this stage. In contrast, the wetting branch shows an important shift from the beginning
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Figure 7. (a) Numerical and experimental void ratio. (b) Suction stress evolution during
drying for samples with different initial void ratios. Experimental data after [19].

Figure 8. Radius of mean size for macrocavities and macrobonds as a function of void ratio
for Pearl clay (PC) and a clayey sand (CS).
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Figure 9. Comparisons between coupled (Cu) and uncoupled (Un) simulations of the main
drying (D) and wetting (W) retention curves for the sample with e0 = 1.01.

as it initiates with a modified PSD. However, this shift reduces as the saturated condition is ap-
proached. These results differ from other models where the air entry value is the only variable
affecting both curves during hydro-mechanical coupling.
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