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Abstract. Polymers are known to degrade in their use conditions, with the risk that their properties reach
unacceptable level. This paper reviews the modeling of modifications occurring at molecular and architec-
tural changes occurring during their chemical ageing, with the aim of predicting the physical (mechanical)
properties, all values being linked by structure properties relationships.
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1. Introduction

Polymers and composites become increasingly used because weight and costs saving but also
improved specific mechanical properties such as ratio of stiffness or failure stress over density
or fatigue resistance. For many industrial applications, long lasting properties are needed which
arises the issue of interaction between polymer and its environment. One can usually distinguish

• physical ageing where the polymer skeleton remains unchanged but the distance be-
tween polymer chains is modified for example in case of water diffusion in an epoxy-
diamine thermoset networks [1, 2], or physical ageing by structural relaxation for glassy
polymers aged under their glass transition temperature [3]. Diffusion of penetrants gen-
erally induces a decrease in glass transition and stiffness [1, 4, 5], contrarily to structural
relaxation inducing an increase in yield stress for example [6, 7]. Physical ageing is in
principle reversible [8]. In the case of water ageing, the amount of desorbed water after
complete drying must correspond to amount of absorbed one during immersion (apart
if penetrant reacts which is a case of chemical ageing described here below [9]).

• chemical aging where polymer slowly reacts with chemicals (water, oxygen. . . ) under the
action of UV light, temperature, or gamma rays [10–12]. Chemical changes are usually
irreversible.
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Scheme 1. Hydrolysis of an ester group.

In many cases, designers try to address the lifetime prediction issues by using very simple laws
(one the best examples is the use of Arrhenius law for lifetime value [13]) but those later however
fail because of the complexity of physico-chemical phenomena [14]. That is the reason why non
empirical approach is needed and involves a multiscale modeling of degradation phenomena
[15], the aim of which is:

• to predict the rate of degradation at molecular scale giving the rate of structural changes
• to use structure properties relationships for predicting the consequences of any given

change at molecular scale.

The combination of both approaches allows predicting the time at which engineering proper-
ties are out of the range of required properties, in other words the lifetime of polymer.

2. Ageing study at molecular scale

Water permeation can induce a decrease in thermomechanical properties (glass transition, elas-
tic modulus. . . ) due to plasticization. However, the main damage induced by water is observed
in case where water slowly reacts with specific groups in polymer (esters, amides. . . ) generating
chain scissions (Scheme 1) as observed for example in polyesters (PLA, PET) [16] or polyamides
[17, 18].

For this last mechanism, a simple equation can be implemented for describing the changes
of ester groups (in concentration [e]) belonging to polymer chain and the appearance of chain
scissions:

d[e]

dt
=−ku[w][e]. (1)

This means that there case where water is poorly soluble in polymer but reacts by hydrolysis
(as for example PBT where the maximal water uptake is about 1%) but the damage is higher than
in some case where water is more soluble but does not react with polymer (as for example the
DGEBA-DDS epoxy thermoset).

The general mechanism for hydrolysis is the following but several subcases can be distin-
guished

• reversible hydrolysis, for example in PA11 [17]
• water diffusion controlled hydrolysis [19]
• auto-accelerated hydrolysis, either because hydrolysis induced groups induce an in-

crease in hydrophily [18, 20]

[w] = [w]0 +a.s. (2)

Or because carboxylic acids usually catalyze further hydrolysis reactions. In this case, a sec-
ondary equation must be added [21]:

e +w +ac → s +ac.

The rate expression becomes:

d[e]

dt
=−ku[w][e]−kc [w][e][ac] (3)
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Scheme 2. Radical oxidation of polyethylene.

i.e., since each ester is transformed into an acid by hydrolysis:

d[e]

dt
=−ku[w][e]−kc [w][e]([e]0 − [e]) (4)

and the following expression of the ester concentration is obtained:

[e] = [e]0
(1+ A)exp−Kt

1+ A exp−Kt
with K = kc [e] f [w] and: A = kc [e]0

ku
. (5)

In the case of thermal oxidation, there are other mechanisms responsible for chemical
changes, as illustrated in Scheme 2 for the radical oxidation of polyethylene [22].

Basing on the Autooxidation Scheme established by Bolland and Gee [23], the study of the
oxidation of aliphatic substrates lead to the following mechanistic scheme [24, 25]:

δPOOH →αP◦+βPOO◦+γ1P = O+γ2s k1

P◦+O2 → POO◦ k2

POO◦+PH → POOH+P◦ k3

POO◦+POO◦ → inactive products k6.

In the frame of radical kinetics, this mechanistic scheme leads to a differential system. This
latter can be analytically solved in some simple case (using some simplifying hypothesis) or
numerically solved. The outputs of the model are the concentration in reactive species ([P◦],
[POO◦], [POOH]) and of stable products (carbonyls, chain scissions. . . ):

d[P = O]

dt
= γ1k1[POOH]δ (6)

ds

dt
= γ2k1[POOH]δ. (7)

In most cases, the derived kinetic models are more complex (in order to take into account
the occurrence of other termination processes [26], reaction of double bonds [27, 28], presence
of stabilizers [29], reaction-diffusion coupling of oxygen [30]. . . ). The finality remains the same:
predict the concentration in trackers of chemical ageing (and chemical changes) versus time.
Rate constants are usually determined in accelerated conditions (i.e. at enhanced temperatures)
and later extrapolated to temperatures corresponding to use conditions using the well-known
Arrhenius equation:

ki (T ) = ki 0 ·exp

(
− Ei

RT

)
. (8)

The validation of such kinetic models by comparing outputs with for example experimental
observations by FTIR remains quite tricky for example:

• in a case of hydrolysis, esters are consumed to give carboxylic acids but the signal of both
group overlap.
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• in the case of radical oxidation of hydrocarbon polymers, a broad band appears with sev-
eral maximal or shoulders (for example 1713 cm−1 for carboxylic acids, 1720 cm−1 for ke-
tones, 1735 cm−1 for esters, 1780 cm−1 for lactones in polyethylene [31]). At first, it is not
trivial to find out the mechanism of formation for some of those species (for example lac-
tones, or esters). Moreover, some species are accompanied by a chain scission (carboxylic
acid) and some other not (ketones) so that the assessment of the macromolecular dam-
age from FTIR spectra requires to perform a reliable deconvolution and the knowledge of
the molar absorptivity of each species.

In other words, approach can be flawed due to the complexity of the polymer. It is thus needed
to study the effect of degradation on polymer architecture so as to predict its effect on mechanical
properties.

3. Study of degradation at macromolecular scale

In a second step, the damage of polymer must be studied at macromolecular scale in order
to implement structure properties involved in polymer ageing. For that purpose, experimental
approaches are needed to assess the concentration in structural changes, i.e. chain scissions
and/or crosslinks.

In thermoplastic polymers, the predominance of chain scissions or crosslink can be quite
easily estimated from the changes in molar mass. Those latter can be measured:

• from rheometric measurements at molten state, where the Newtonian viscosity is linked
to molar mass by the formula [32]:

η= k ·M 3.4
w . (9)

There are several papers illustrating the predominance of chain scissions for example in
linear polymers such as polyolefins [33], and the predominance of crosslinking in unsaturated
(uncured) elastomers such as Ethylene Propylene Diene Monomer (in link with the presence of
carbon carbon double bonds) [34].

• from liquid chromatography, this latter allowing to estimate both number and weight
average molar mass. Using some statistical analysis proposed by Saito, the concentration
in chain scission and in crosslink can be simultaneously estimated by [35]:

1

MN
− 1

MN 0
= s −x (10)

1

MW
− 1

MW 0
= s

2
−2x (11)

where s and x are respectively the concentration in chain scissions and in crosslinking.

Elastomers and thermoset networks are in essence insoluble and cannot be molten, which
prevents the use of the here above experimental techniques. The “key” parameter is the concen-
tration elastically active chains (linked to 2 crosslink nodes), which must increase in case of pre-
dominant crosslinking. Experimentally, the concentration in chain scission can be assessed

• from the residual soluble fraction (sol) using the Charlesby approach [36, 37]:

ν

ν0
=

(
1− sol1/2

1− sol1/2
0

)2

(12)

• or the glass transition value (Tg ) [38]:

Tg = Tg l

1−KDM ·F · x
. (13)
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Figure 1. Schematization of an undegraded ideal networks (all chains are elastically active
and denoted by A) and of an degraded networks. NB: arrows indicate that chain are linked
to other chains belong to network whereas open circle correspond to the end of a dangling
chain.

The concentration in chain scissions can thus be estimated from the decrease in elastically
active chains. In a simplified approach, on can assume that for a tridimensional network [39]:

n = n0 −3s +2x (if chain scission and crosslinking coexist) (14)

or n = n0 −3s (if they are only chain scissions). (15)

In this last case, some simplified relationships can be derived [36]

s = ν0

3

(
1−

(
1− sol1/2

1− sol0
1/2

)2)
(16)

s = Tg l

2KDM F
·
(

1

Tg
− 1

Tg 0

)
. (17)

However, Equations (14)–(15) are a simple approximation which is valid only at low conversion
degree. For summarizing, it is clear that one chain scission induces the loss of three elastically
active chains (denoted by A in Figure 1) in an unaged network. Reversely, at higher conversion
degree of the chain scission process, networks looks like depicted in Figure 1b. One can thus
imagine that a chain scission can occur on a chain denoted by B, C or E dangling chain with a
limited consequence on elastic properties, or on a dangling chain (denoted by D) which is linked
by one single node to the rest of network, and becomes soluble.

A most refined approach was proposed by Gilormini et al. [21]. Network is here composed
of a (elastically active chains connected to two nodes connected themselves with elastically
active chains), b (elastically active chains connected to one node connected with elastically active
chains and another node connected with dangling chains).

In this approach, the concentration of reactive groups hold by “a chains” and “b chains”
changes with the concentration of chain scissions occurring on each kind of chain (sA , sB ) as
follows:

d[a]

dt
=−5L

dsA

dt
−4L

dsB

dt
(18)

d[b]

dt
= 4L

dsA

dt
+2L

dsB

dt
. (19)

The concentration in chain scissions can be predicted as follows

s = sA + sB (20)
dsA

dt
= [a]

[e]

ds

dt
and

dsB

dt
= [b]

[e]

ds

dt
(21)
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and
1

[e]

ds

dt
= K

1+ A exp(−Kt)
. (22)

The solution of the differential system gives:

[a]

[e]0
=

[
cos

(p
15 ·K Lu

2

)
− 7p

15
sin

(p
15 ·K Lu

2

)]
·exp

(
−3

2
·K Lu

)
(23)

[b]

[e]0
= 8p

15
sin

(p
15 ·K Lu

2

)
·exp

(
−3

2
·K Lu

)
(24)

with

u =− 1

K
ln(1−x). (25)

Those equation lead to a fair prediction of decrease in elastically active chain concentrations
which is sufficient for several industrial applications (Figure 2).

It remains interesting to focus on the prediction of degel, i.e. the critical stage at which chain
scissions have cleared out all the elastically active chains and the network reverts back to a soluble
material (with the possibility to regenerate chemicals and repolymerize them later). An original
approach for predicting the degelation was developed by Gilormini et al. [40]: in the simplest
version of this approach, a chain contains L reactive groups likely to undergo a chain scission
process.

The probability of any chain to be uncut is given by:

u(x) = (1−x)L . (26)

Let us focus now on the possibility for a node to belong to the gel or to belong to the soluble
fraction of network (i.e. to be a free chain). The Figure 3 summarizes three possibilities:

• either the node is attached to 2 soluble chains, or at least 1 or 2 chains are attached to
the network (with a probability g (x). It gives the probability of the node to belong to the
soluble fraction:

P (x) = [1− g (x)]2. (27)

So that the probability for node#2 to belong to the gel:

P (x) = 1− [1− g (x)]2 if f = 3 (28)

or:

P (x) = 1− [1− g (x)] f −1 for any f . (29)

It gives the probability for a chain to be uncut and belong to the gel:

g (x) = u(x) · [1− (1− g (x)) f −1] (30)

so that, at degel:

xd = 1− 1

( f −1)1/L
. (31)

This approach was for example successfully validated in the case of methyl methacrylate–
ethylene glycol di methacrylate radiolysis [41]. It is clear that it will be helpful in a close fu-
ture given the increasing need to recycle by mechanical or chemical processes thermosets and
rubbery networks.
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Figure 2. Decrease in elastically active chains concentration of a polyester urethane rub-
bery network for several ageing conditions.

4. Structure-properties involved in the prediction of ageing induced failure

According to previous parts, it seems possible to predict the appearance of chain scissions or
crosslink nodes in either thermoplastics or networks, and subsequently the changes in average
molar mass (for thermoplastics) or crosslink density (for networks). It remains to establish the
effect of such changes on the mechanical properties of polymers.

In the field of thermoplastic polymers undergoing mainly chain scissions, the main effect is
the plasticity loss. A first end of life criteria was established basing on the observation that plastic

C. R. Mécanique, 2020, 348, n 10-11, 785-795
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Figure 3. Schematization of network degradation.

Figure 4. Schematization of embrittlement criterion for thermoplastic polymers.

deformation was possible only when residual average molar mass was higher than a “critical
value” (denoted by M ′

c ) as depicted in Figure 4a. This latter was carefully discussed [42] in the
past and it was observed that:

• in amorphous thermoplastics (PMMA, PC, PS. . . ), its value was slightly higher than the
molar mass between entanglements, indicating that failure occurs when the polymer is
severely damaged.

• in semi-crystalline polymers (in particular with amorphous phase in rubbery state), the
ratio of “critical” molar mass to the molar mass between entanglement clearly exceeds
1, meaning that only a few chain scissions strongly reduce the plasticity. This pointed
out the “morphological” origin of embrittlement. The following scenario was evidenced:
chain scissions liberate “small” segments in amorphous phase and those latter join the
crystalline phase which is, in essence, less deformable. This led to a “mixed” end of
life criterion expressed in an “average molar mass–crystalline ratio” window (Figure 4b):
polymers made with longer chains and poorly crystalline are ductile whereas polymers
made of short chains with a high crystalline ratio are brittle.

In rubbery networks, one of the key properties is the changes in elastic modulus. Based on
the fact that elasticity has an entropic origin in rubbery networks, it is established for years that
elastic modulus depends on the concentration in elastically active chains i.e. [43]:

G = nA ·RT (32)

with

E = 3 ·G . (33)

C. R. Mécanique, 2020, 348, n 10-11, 785-795
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The failure of networks can be described by the critical strain energy release rate in mode I
(GIC). This later is shown to vary as follows in network:

• at first, GIC can increase with the crosslinking concentration because crosslinking posi-
tively influences the elastic modulus,

• in the same time, crosslinking decreases the maximal chain extensibility.

It results in curves displaying a maximum as depicted in [44].
In thermosets, there are also data highlighting the relationship between crosslink density and

toughness [45]. However, it was recently proposed that for networks with a sub-glassy relaxation
such as epoxies, the end of life is governed by the depletion of groups responsible for this low
temperature mobility [46].

5. Conclusions

This short paper summarizes the mathematical description of multiscale changes induced by
the “chemical” ageing, i.e. the effect of the reactions of chemicals (oxygen, water) with polymer.
Kinetic approaches can allow a fine prediction of the rate of chemical changes at “molecular
scale”. The use of statistical theories allows thus to address the changes at macromolecular scale,
even ut to advanced degradation levels (such as the degelation). Last, the use of well-known
structure properties relationships established for virgin polymers, together with the prediction
of changes in macromolecular architecture with chains scissions or crosslinking allow predicting
the changes in some physical properties and later offer to engineers a complete physico-chemical
toolbox for addressing polymer lifetime issues by a non-empirical approach.
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