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Abstract. This paper deals with the lower bound for blow-up solutions to a quasilinear hyperbolic equation
with strong damping. An inverse Hölder inequality with a correction constant is employed to overcome the
difficulty caused by the failure of the embedding inequality. Moreover, a lower bound for blow-up time is
obtained by constructing a new control functional with a small dissipative term and by applying an inverse
Hölder inequality as well as energy inequalities. This result gives a positive answer to the open problem
presented in [1].
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1. Introduction

In this paper, the following quasilinear hyperbolic equation with strong damping is studied:
ut t −div(|∇u|p(x,t )−2∇u)−∆ut = |u|q(x,t )−2u, (x, t ) ∈Ω× (0,T ) :=QT

u(x, t ) = 0, (x, t ) ∈ ∂Ω× (0,T ) := ΓT

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈Ω,

(1.1)

whereΩ⊂RN (N Ê 1) is a bounded domain with a smooth boundary ∂Ω, T > 0. It will be assumed
throughout this paper that the exponents p(x, t ) and q(x, t ) satisfy the following conditions:

2 É p− É p(x, t ) É p+ <∞, 1 < q− É q(x, t ) É q+ <∞.

Problem (1.1) models many physical problems such as viscoelastic fluids, electrorheological
fluids, processes of filtration through porous media, fluids with temperature-dependent viscosity,
and so on. The interested reader may refer to [2–4] and the references therein. In the case where
p, q are fixed constants, many authors discussed the existence of solutions, finite-time blow-up
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of solutions for low initial energy and arbitrarily high initial energy, and some estimate of a lower
bound for blow-up times. The interested reader may refer to [5–12]. In the case where p, q are
continuous functions, S. N. Antontsev [13, 14] studied the following problem:

ut t = div(a(x, t )|∇u|p(x,t )−2∇u)+α∆ut +b(x, t )|u|σ(x,t )−2u + f (x, t ), (x, t ) ∈Ω× (0,T )

u(x, t ) = 0, (x, t ) ∈ ∂Ω× (0,T )

u(x,0) = u0(x), ut (x,0) = u1(x), x ∈Ω.

(1.2)

Antontsev proved the existence and the blow-up of weak solutions for negative initial energy.
Later, Guo–Gao [15] discussed the blow-up properties of solutions to the above problems for the
case where the initial energy is positive. In addition, Messaoudi and Talahmeh [16, 17] discussed
blow-up properties of solutions to Problem (1.2) in the absence of a strong damping term.

It is well known that the source term causes finite-time blow-up of the solution while the
damping term may drive the equation toward stability. Therefore, it is of interest to explore
the mechanism of how sources dominate the dissipation (the damping term ∆ut ), which has
attracted considerable attention. In fact, the upper bound ensures the occurrence of blow-up
while the lower bound may provide us a safe time interval for operation when we use Problem
(1.1) to model a physical process. Hence, it is more interesting to give a lower bound estimate
for hyperbolic problems than to give a upper bound. In 2017, Guo [1] applied the modified
version of the Gagliardo–Nirenberg inequality for non-constant cases and energy inequalities
to obtain some estimates of lower bounds for blow-up time in the case where 2 < p− < q+ <
p−(1+ (2+p−∗)/2N ) with p−∗ = (N p−/(N −p−))(2 < p− < N ). In particular, Remark 1.1 of [1]
gives an unsolved problem, namely, as follows.

Remark 1.1. Since p ∈ [p−(1+(2+p−∗)/2N ), p−∗], it seems that we cannot obtain results similar
to those of Lemma 1.5 [1] unless we may obtain more information about ∥ut∥2. Therefore, we
need to develop a new method or technique to discuss this problem.

In this paper, we first follow along the lines of the proof of Lemma 1.3 [1] to obtain an inverse
Hölder inequality with correction constants in the case where p lies in [p−(1+(2+p−∗)/2N ), p−∗].
Second, we construct a new control functional with a small dissipative term and then apply
the inverse Hölder inequality as well as energy inequalities to establish a differential inequality.
Finally, we obtain an estimate of lower bounds for blow-up time.

This paper is organized as follows. First, in Section 2, we present some preliminaries. Section 3
is devoted to giving an estimation of a lower bound.

2. Preliminaries

Define the energy functional as

E(t ) = 1

2

∫
Ω
|ut |2 dx +

∫
Ω

1

p(x, t )
|∇u|p(x,t ) dx −

∫
Ω

1

q(x, t )
|u|q(x,t ) dx.

For simplicity, we give some notation and the embedding inequality to be used later. By Corollary
3.34 in [3], we know that W 1,p(x,0)

0 (Ω) ,→W 1,p−
0 (Ω) ,→ Lr (Ω)(1 < r É (N p−/(N −p−))). Let B be the

best constant of the embedding inequality

∥u∥r É B∥∇u∥p(·), ∀ u ∈W 1,p(x,0)
0 (Ω). (2.1)

Set E1 = (q+−p+)/q+p+α1,α1 = B (p+q+)/(p+−q+)
1 , where B1 = max{B ,1}. The following conclu-

sions are presented to shorten the statement of our main results and their proofs.
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Lemma 2.1 ( [15]). Suppose that u ∈ Lq(x,t )(QT )∩L∞(0,T ;W 1,p(x,t )
0 (Ω)), and ut ∈ L2(0,T ; H 1(Ω))

is a solution to Problem (1.1). Then E(t ) satisfies the identity

E(t )+
∫ t

0

∫
Ω
|∇us |2 dx ds = E(0)+

∫ t

0

∫
Ω

ps (·)
p2(·) |∇u|p(·) (ln |∇u|p(·) −1

)
dx ds

−
∫ t

0

∫
Ω

qs (·)
q2(·) |u|

q (ln |u|q −1)dx ds. (2.2)

Theorem 2.1 ( [15]). Assume that the initial data (u0,u1) and the exponents p(x, t ) and q(x, t )
satisfy the following conditions:

(H1) u0 ∈W 1,p(x,0)
0 (Ω), u1 ∈ L2(Ω), E(0)+ |Ω|

p− + |Ω|
q− < E1,

min
{
∥∇u0∥p−

p(x,0),∥∇u0∥p+
p(x,0)

}
>α1;

(H2) max{2, p+} < q− É q(x, t ) É q+ < N p−

N −p− , ∀ x ∈Ω, t Ê 0;

(H3) pt É 0, qt Ê 0,

∣∣∣∣ pt

p2

∣∣∣∣+ ∣∣∣∣ qt

q2

∣∣∣∣ ∈ L1
l oc ((0,∞);L1(Ω)).

Then the solution to Problem (1.1) is not global.

Some ideas of this proof of Theorem 2.1 mainly come from the pioneering work of Levine [6,18]
(see also the work of Ball [19]). For more details, the reader may refer to [15].

Lemma 2.2 ( [15]). If u is the solution to Problem (1.1) and (H3) is satisfied, then the energy
functional E(t ) satisfies

E(t )+
∫ t

0

∫
Ω
|∇us |2 dx ds É E(0)+

(
1

p− + 1

q−

)
|Ω| := E2, t Ê 0. (2.3)

Lemma 2.3 ( [1]). Assume that u is the solution to Problem (1.1) and condition (H1) is fulfilled.
Then there exists a positive constant C depending on |Ω|, p−, N , and B1 such that for any k >
(N (q+−p−))/p−,∫

Ω

1

q(·) |u|
q(·) dx É 1

q−−p+ max{Cµ(k),Cν(k)}max

{(∫
Ω
|u|k dx

)α(k)

,

(∫
Ω
|u|k dx

)β(k)
}

+ p+

q−−p+

(
E2 + |Ω|

q−

)
. (2.4)

Here, µ, ν, α, and β are defined as follows:

µ(k) =


N (q+−k)

kp−−N (q+−p−)
, k < q+;

1− q+

k
, k Ê q+.

ν(k) =


N p−(q+−k)

k(N p−−N p++p+p−)−N p−(q+−p+)
, k < q+;

1− q+

k
, k Ê q+.

α(k) =


N p−−q+(N −p−)

kp−−N (q+−p−)
, k < q+;

q+

k
, k Ê q+.
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β(k) =


[N p−−q+(N −p−)]p+

k(N p−−N p++p+p−)−N p−(q+−p+)
, k < q+;

q+

k
, k Ê q+.

In fact, when k < q+, we follow along the lines of the proof of Lemma 1.3 [1] to obtain the above
conclusions. When k Ê q+, we apply condition (H1) to prove that there exists a positive constant
α2 depending on E(0),B1 such that the term ∥u∥q(·) is bigger than α2. Then, we apply some

inequalities min{∥u∥q−
q(·),∥u∥q+

q(·)} É
∫
Ω |u|q(·) dx É max{∥u∥q−

q(·),∥u∥q+
q(·)} and ∥u∥q(·) É (1+|Ω|)∥u∥q+

to finish our proof.

3. Lower bound estimates

In this section, we give our main results and their proof.

Theorem 3.1. If (N (p−+2))/(2(N −p−)) < q+ < ((2N −p−+2)p−)/(2(N −p−)), then the blow-up
time T ∗ satisfies the estimate∫ +∞

F (0)

1

C4 y2− 2
θ +C5 y2− 2

θ
+λ+C6 y2− 2

θ
+2λ

dy ≤ T ∗.

Here, the constants C4 and C5 and the initial data F (0) are defined in (3.11) and

λ= N +2

2(N −p−)
, θ = 2(N p−−q+N +q+p−)(N −p−)

(N +2)p−p−−2N (q+−p−)(N −p−)
.

Proof. This proof is divided into three steps.

Step 1. Equivalent of blow-up. Define

H(t ) =
(∫
Ω
|u|k dx

)θ
− 1

2M

∫ t

0

∫
Ω
|∇uτ|2 dx dτ,

where

θ = 2(N p−−q+N +q+p−)(N −p−)

(N +2)p−p−−2N (q+−p−)(N −p−)
, M = 1

q−−p+ max{Cµ1 ,Cν1 }2θ−1,

µ1 = N (q+−k)

kp−−N (q+−p−)
, ν1 = N p−(q+−k)

k(N p−−N p++p+p−)−N p−(q+−p+)
, k = N (p−+2)

2(N −p−)
.

By Lemmas 2.2 and 2.3 and the definition of E(t ), we have∫ t

0

∫
Ω
|∇uτ|2 dx dτ≤ E2 +

∫
Ω

1

q(·) |u|
q(·) dx ≤ M

(∫
Ω
|u|k dx

)θ
+C1, (3.1)

where

C1 = M + p+

q−−p+

(
E2 + |Ω|

q−

)
+E2.

The definition of H(t ) and Inequality (3.1) yield

H(t ) ≥ 1

2

(∫
Ω
|u|k dx

)θ
− C1

2M
. (3.2)

Combining the conclusion of Theorem 1.7 [1] with Inequality (3.2), we have

lim
t→T ∗ H(t ) =+∞. (3.3)

Step 2. A first-order differential inequality. A simple computation shows that

H ′(t ) = θk

(∫
Ω
|u|k dx

)θ−1 ∫
Ω
|u|(k−2)uut dx − 1

2M

∫
Ω
|∇ut |2 dx. (3.4)
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By using the Hölder inequality, the Sobolev embedding theorem, and the Young inequality, it is
not hard to verify that

H ′(t ) ≤ θk

(∫
Ω
|u|k dx

)θ−1 (∫
Ω
|u|(k−1) 2N

N+2 dx

) N+2
2N

(∫
Ω
|ut |2∗ dx

) 1
2∗ − 1

2M

∫
Ω
|∇ut |2 dx

≤ Cθk

(∫
Ω
|u|k dx

)θ−1 (∫
Ω
|u|(k−1) 2N

N+2 dx

) N+2
2N

(∫
Ω
|∇ut |2 dx

) 1
2 − 1

2M

∫
Ω
|∇ut |2 dx

≤ MC 2

2

[
θk

(∫
Ω
|u|k dx

)θ−1 (∫
Ω
|u|(k−1) 2N

N+2 dx

) N+2
2N

]2

+ 1

2M

∫
Ω
|∇ut |2 dx − 1

2M

∫
Ω
|∇ut |2 dx

≤ MC 2

2

[
θk

(∫
Ω
|u|k dx

)θ−1 (∫
Ω
|u|(k−1) 2N

N+2 dx

) N+2
2N

]2

, (3.5)

where the constant C is the best embedding constant of the embedding H 1
0 (Ω) ,→ L(2N /N−2)(Ω).

In addition, noting that (2N (k −1))/(N +2) ≤ p−∗ and applying embedding inequality (2.1),
Lemmas 2.2 and 2.3, and the definition of E(t ), we have(∫

Ω
|u| 2N (k−1)

N+2 dx

) N+2
2N ≤ B∥∇u∥k−1

p(·) ≤ B max

{(∫
Ω
|∇u|p(·) dx

) k−1
p−

,

(∫
Ω
|∇u|p (·)dx

) k−1
p+

}

≤ B max

{(
p+E2 +

∫
Ω

p+

q(·) |u|
q(·) dx

) k−1
p−

,

(
p+E2 +

∫
Ω

p+

q(·) |u|
q(·) dx

) k−1
p+

}

≤ B max

{
1, M

k−1
p+ − k−1

p−
1

}(
M1 +

∫
Ω

p+

q(·) |u|
q(·) dx

) k−1
p−

≤ B max

{
1, M

k−1
p+ − k−1

p−
1

}(
M2 +p+M

(∫
Ω
|u|k dx

)θ) k−1
p−

≤ C2 +C3

(∫
Ω
|u|k dx

) (k−1)θ
p−

, (3.6)

where the constants Ci (i = 2,3) are defined as follows:

C2 = 2
k−1
p−

(
p+E2 +2θp+M + p+E2

q−−p+ + p+|Ω|
(q−−p+)p−

) k−1
p−

B max

{
1,(p+E2)

k−1
p+ − k−1

p−
}

,

C3 = B max

{
1,(p+E2)

k−1
p+ − k−1

p−
}

(2θp+M)
k−1
p− .

Therefore, inserting (3.6) into (3.5), we get

H ′(t ) É MC 2θ2k2

2

(∫
Ω
|u|k dx

)2(θ−1)
[

C2 +C3

(∫
Ω
|u|k dx

) (k−1)θ
p−

]2

. (3.7)

Step 3. A lower bound for blow-up time.
By using Inequality (3.2), (3.7) is equivalent to the inequality

H ′(t ) É MC 2θ2k2

2

(
2H(t )+ C1

M

)2(1− 1
θ

)
[

C2 +C3

(
2H(t )+ C1

M

) k−1
p−

]2

. (3.8)

Furthermore, a simple computation indicates that Inequality (3.8) may be rewritten as(
2H(t )+ C1

M

)′
É MC 2θ2k2

(
2H(t )+ C1

M

)2(1− 1
θ

)
[

C2 +C3

(
2H(t )+ C1

M

) k−1
p−

]2

. (3.9)
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Setting F (t ) = 2H(t )+C1/M , we have

F ′(t ) É MC 2θ2k2F 2(1− 1
θ

)(t )
[
C2 +C3F

k−1
p− (t )

]2

:= C4F 2(1− 1
θ

)(t )+C5F 2(1− 1
θ

)+ k−1
p− (t )+C6F 2(1− 1

θ
)+ 2(k−1)

p− (t ), (3.10)

where
C4 = MC 2k2θ2C 2

2 , C5 = 2MC 2θ2k2C2C3,

C6 = MC 2θ2k2C 2
3 , F (0) = 2

(∫
Ω
|u0|k dx

)θ
+ C1

M
.

(3.11)

Equation (3.10) implies∫ +∞

F (0)

1

C4 y2− 2
θ +C5 y2− 2

θ
+ k−1

p− +C6 y2− 2
θ
+ 2(k−1)

p−
dy ≤ T ∗.

This completes the proof of this theorem. □

Remark 3.1. The fact
(2N −p−+2)p−

2(N −p−)
−p−

(
1+ 2+p−∗

2N

)
= p−p−

N (N −p−)
> 0

shows that the result of this paper gives a positive answer to the unsolved problem in [1]. However,
when q+ lies in the interval [((2N −p−+2)p−)/(2(N −p−)), p−∗], due to technical reasons, at
present, we cannot give any answer.
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