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Abstract. This paper deals with the lower bound for blow-up solutions to a quasilinear hyperbolic equation
with strong damping. An inverse Holder inequality with a correction constant is employed to overcome the
difficulty caused by the failure of the embedding inequality. Moreover, a lower bound for blow-up time is
obtained by constructing a new control functional with a small dissipative term and by applying an inverse
Holder inequality as well as energy inequalities. This result gives a positive answer to the open problem
presented in [1].
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1. Introduction

In this paper, the following quasilinear hyperbolic equation with strong damping is studied:
U — div((VulP® 072V ) — Auy = [ul 192y, (x,0) € @ x (0,T):=Qr
u(x, 1) =0, (x,)edQx(0,T):=T7 (1.1)
u(x,0) =up(x), us(x,0)=u;x), x€),

where Q c RN (N = 1) is a bounded domain with a smooth boundary dQ, T > 0. It will be assumed
throughout this paper that the exponents p(x, t) and q(x, t) satisfy the following conditions:

2<sp  splx,<sp<oo, 1<q <qx,D<q" <oco.

Problem (1.1) models many physical problems such as viscoelastic fluids, electrorheological
fluids, processes of filtration through porous media, fluids with temperature-dependent viscosity,
and so on. The interested reader may refer to [2-4] and the references therein. In the case where
p, q are fixed constants, many authors discussed the existence of solutions, finite-time blow-up
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of solutions for low initial energy and arbitrarily high initial energy, and some estimate of a lower
bound for blow-up times. The interested reader may refer to [5-12]. In the case where p, g are
continuous functions, S. N. Antontsev [13, 14] studied the following problem:

uy = divia(x, H|VulP®072vu) + aAu, + b(x, Dlul®D2u+ f(x, 1), (x,0)eQx(0,T)
u(x, =0, (x,)€dQx(0,T) (1.2)

u(x,0) = up(x), us(x,0)=up(x), xeQ.

Antontsev proved the existence and the blow-up of weak solutions for negative initial energy.
Later, Guo—Gao [15] discussed the blow-up properties of solutions to the above problems for the
case where the initial energy is positive. In addition, Messaoudi and Talahmeh [16, 17] discussed
blow-up properties of solutions to Problem (1.2) in the absence of a strong damping term.

It is well known that the source term causes finite-time blow-up of the solution while the
damping term may drive the equation toward stability. Therefore, it is of interest to explore
the mechanism of how sources dominate the dissipation (the damping term Au,), which has
attracted considerable attention. In fact, the upper bound ensures the occurrence of blow-up
while the lower bound may provide us a safe time interval for operation when we use Problem
(1.1) to model a physical process. Hence, it is more interesting to give a lower bound estimate
for hyperbolic problems than to give a upper bound. In 2017, Guo [1] applied the modified
version of the Gagliardo-Nirenberg inequality for non-constant cases and energy inequalities
to obtain some estimates of lower bounds for blow-up time in the case where 2 < p~ < g* <
p (A +@2+p *)2N) with p~™* = (Np~/(N—-p7))(2 < p~ < N). In particular, Remark 1.1 of [1]
gives an unsolved problem, namely, as follows.

Remark 1.1. Since pe [p~(1+(2+ p~*)/2N), p~*], it seems that we cannot obtain results similar
to those of Lemma 1.5 [1] unless we may obtain more information about ||u;|l». Therefore, we
need to develop a new method or technique to discuss this problem.

In this paper, we first follow along the lines of the proof of Lemma 1.3 [1] to obtain an inverse
Holder inequality with correction constants in the case where pliesin [p~(1+(2+ p~*)/2N), p~*1.
Second, we construct a new control functional with a small dissipative term and then apply
the inverse Holder inequality as well as energy inequalities to establish a differential inequality.
Finally, we obtain an estimate of lower bounds for blow-up time.

This paper is organized as follows. First, in Section 2, we present some preliminaries. Section 3
is devoted to giving an estimation of a lower bound.

2. Preliminaries

Define the energy functional as

1 1 1
E(n) = —f Iutlzdx+[ ——— |VyP® dx—f |70 dx.
2Ja o px,1) Qqx,1)

For simplicity, we give some notation and the embedding inequality to be used later. By Corollary
3.34in [3], we know that W, "% (@) — WP (Q) — L' (Q)(1 < r < (Np™ /(N - p™))). Let B be the

best constant of the embedding inequality
lull, < BIVullpe, ¥ uew,”*0@). @.1)

Set By = (g"-pHigtpTa, , where B; = max{B, 1}. The following conclu-
sions are presented to shorten the statement of our main results and their proofs.

_ ptaipt-a")
= B,
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Lemma 2.1 ([15]). Suppose that u € L9%9(Qr) N L>(0, T; Wol'p(x’t) (), and u; € L2(0, T; H'(Q))
is a solution to Problem (1.1). Then E(t) satisfies the identity

E(t)+ff|Vu3| dxds—E(0)+f f pst) |Vu|"”(1n|Vu|P<> 1) dxds

—f qg(())mm(lmum 1)dxds. 2.2)

Theorem 2.1 ( [15]). Assume that the initial data (uy, u;) and the exponents p(x, t) and q(x, t)
satisfy the following conditions:

1l 19

S, wel?Q), EO)+— + 7 <Bv
p

(Hl) Up € W

min {IVugll o, 1Vl 0} > a1

Nop-
(H) max{2,p*i<q  <qx,0H<qg’ <N—pJ VxeQ,t=0;
-pP

+ Zr eL! ((0,00); L' ().

loc

(H3) pr<0, qr=0,

F
Then the solution to Problem (1.1) is not global.

Some ideas of this proof of Theorem 2.1 mainly come from the pioneering work of Levine [6,18]
(see also the work of Ball [19]). For more details, the reader may refer to [15].

Lemma 2.2 ( [15]). If u is the solution to Problem (1.1) and (Hs) is satisfied, then the energy
functional E(t) satisfies

t 1 1
E(t)+/ f IVuslzdxdssE(0)+(—_+—_)|Q|:=E2, t=0. 2.3)
0 Ja p q

Lemma 2.3 ([1]). Assume that u is the solution to Problem (1.1) and condition (H,) is fulfilled.
Then there exists a positive constant C depending on |Q|, p~, N, and B, such that for any k >

(N(gt-p NIp,

1 a(k) B(k)
f—lulq()dx max{C*® cV®} max (flulkdx) ,(f Iulkdx)
O] q —-p*t Q Q

+ P E; I
| B+ —|. 2.4)
q —-p q
Here, 1, v, a, and B are defined as follows:
N(@g* -k
— 4 +) —, k<q™;
q
1-—, k=q".
k =4
Np_(q+_k) k<q+.
v(k) = k(NP;—NP*+P+P‘)—NP‘(q+—p+)’ ’
q
1-—, k=gqg*
k =4
Np —q*(N-p~
p_ q (+ p_), k<q+;
atky = { FPToN@ =D
q +
= k/ .
k =4
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[Np” —q"(IN—-pT)lp”
-_ + +9-) — —(a+ — p+
B(k) = ’;ng Np*+p*p-)-Np~(g* - p*)
-, k=q".
© q
In fact, when k < g*, we follow along the lines of the proof of Lemma 1.3 [1] to obtain the above
conclusions. When k = g*, we apply condition (H;) to prove that there exists a positive constant
ay depending on E(0), By such that the term [lull4() is blgger than az. Then, we apply some

, k<qg*;

1nequahtlesmln{llullq(),llullq()}<fQ|uI"”dx<max{||u|| o ] )}andllullq() A +1QDlul g+
to finish our proof.

3. Lower bound estimates

In this section, we give our main results and their proof.

Theorem3.1. If(N(p~ +2))/2Q(IN-p ) <qt <(@N-p~+2)p7)/(2(N - p~)), then the blow-up
time T* satisfies the estimate

+00 1
f 5 > ——dy=T".
F(0) C4y2—§ + C5y2—§+/1 + C6y2—§+2A
Here, the constants Cy and Cs and the initial data F(0) are defined in (3.11) and
_ N+2 _ 2(Np~=q*N+q*p)(N-p)
2(N-p7)’ (N+2)p~p~=2N(g*-p7)(N-p7)’
Proof. This proofis divided into three steps.

Step 1. Equivalent of blow-up. Define

H(t):(flulkdx) ——f f Vi |2 dxdr,
Q

where
2(Np~—g*N TP )WN-p~ 1
__ p_ f] +q p)(_ p)_y M= — max(CH, CV1y20-1
(N+2)p~p~ —2N(g* - p ) (N-p~) q--p*
[y = N(g*-k) = Np~(g* -k :N(p_+2)
" kpT-N@t-p)' T kNpT=Nptptp)-Np (@t -p?) T 20N-p)
By Lemmas 2.2 and 2.3 and the definition of E(¢), we have
¢ 0
ffIVuTIdedrsEz+f —|u|‘7“dx<M(f|u|"dx) +C, 3.1
0 Ja ) Q
where .
p ( IQI)
C1= — E2+— +E2
-p* q
The definition of H(#) and Inequality (3.1) yield
Hm>1(f |u|kdx)9—ﬂ (3.2)
~2a 2M’ '

Combining the conclusion of Theorem 1.7 [1] with Inequality (3.2), we have

lim H(f) = +oo. (3.3)
t—T*

Step 2. A first-order differential inequality. A simple computation shows that

6-1
1
H’(t):Hk(f Iulkdx) flul(k_z)uutdx——f IV, > dx. (3.4)
Q Q 2M Jo
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By using the Holder inequality, the Sobolev embedding theorem, and the Young inequality; it is
not hard to verify that

6-1 Ni2 €
* 1
H’(t)sek(f |u|"dx) (f |u|”“‘”%dx) - (f |ut|2*dx)2 ——f IVut,l? dx
Q Q
0-1 .

CBk(f Iulkdx) (f Iul(k_l)mdx) (f Vg dx) ——f IVutl dx
MC? 0-1

[0k(f|u| dx) (flul(k 1)I\de) B

MC? 6-1 w3
ek(f Iulkdx) (f |u|(’“‘”mdx) ] , (3.5)
Q Q

where the constant C is the best embedding constant of the embedding H} () — LEN'N=2(Q).
In addition, noting that 2N(k—1))/(N+2) < p~* and applying embedding inequality (2.1),
Lemmas 2.2 and 2.3, and the definition of E(¢), we have

N+2 k-1 k-1
_ N e -F
( ) V7 dx)2 < BIVull) sBmax{(f IVulp(')dx)p U IVqu(-)dx)p }
Q Q o)
= N i
p T
< Bmax (p*Ez +[ Iulq()dx) ,(p+E2+f p—lulq(') dx) ’
aq(0) aq()

IA

IA

+—f Vg dx——f IVutI dx

IA

kel kel e
<Bmax{ ” b }( —Iul"()dx)
k+1 Jo= 0\
<Bmax P }( L+ p Mf|u| dx))
k
< C2+C3(f |Lt| dx) (3.6)
Q

where the constants C; (i = 2,3) are defined as follows:

k-1
ko1 *E 1Q T k=l _ k-1
Cr=27 (p+E2+29p+M+ ARC M _)” Bmax{l,(p+E2)P+ Z }
a-p* (@ -pHp
kL kol

k-1
C3:Bmax{1,(p+Eg) »* }(29 M)

Therefore, inserting (3.6) into (3.5), we get

, MC262 kZ ) 2(0-1) 2
H (1) < B — f lul"dx
Q

k10
cz+c3(f Iulkdx) ’ ] . 3.7)
Q

Step 3. A lower bound for blow-up time.
By using Inequality (3.2), (3.7) is equivalent to the inequality
—1 2

kol
p
] . (3.8)

H/(t) _ MCZQZkZ( G )2(1 9)

2H(t)+M

Cy+C (2H(t)+ G
2 3 M

Furthermore, a simple computation indicates that Inequality (3.8) may be rewritten as

2
Cy + C: (2H([)+C1) -
2 3 M

C I C 2(1-3)
(2H(t)+Ml) < MC20% > (2H(t)+M1) ’ 3.9)
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Setting F(#) = 2H(t) + C;/ M, we have

k— 2
Fl(1) < MC2O*KPFP - (1) |G+ G F 7 (1)

1 Ly k-1 _ 1y, 2(k=D)
= G P20 (1) + G0 () 4+ G PP T Tm

(1), (3.10)
where
Cy= MC*K*0°C3, Cs=2MC*0*k*C,Cs,
6 (3.11)
C
Ce= MC*0*K*C2, F(0)=2 (f luplFdx| +==.
Q M
Equation (3.10) implies
f+oo 1
- —dy=<T".
FO c,27 5 4 C5y2—§+k3 + C6y2—5+¥
This completes the proof of this theorem. g
Remark 3.1. The fact
@N-p +2)p~  _ (1+ 2+p”° ) __rp
2(N-p7) 2N N(N-p7)

shows that the result of this paper gives a positive answer to the unsolved problem in [1]. However,
when g* lies in the interval [(QN—p~ +2)p7)/(2(N—p~)),p~*], due to technical reasons, at
present, we cannot give any answer.
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