
Comptes Rendus
de l’Académie des sciences

1873-7234 (electronic)

Mécanique

Académie des sciences - Paris

Thematic issue / Numéro thématique
Advances in finite fracture mechanics : a tribute to Dominique Leguillon’s scientific 

achievements / 
Progrès récents en mécanique finie de la rupture : un hommage à l’œuvre scientifique 

de Dominique Leguillon

Coordinated by / Coordonné par
Jean-Baptiste Leblond



Comptes Rendus
Mécanique

Objective of the journal

Comptes Rendus Mécanique is an international peer-reviewed electronic journal, covering all areas of 
mechanics and engineering science.
It publishes original research articles, review articles, historical perspectives, pedagogical texts or 
conference proceedings, of unlimited length, in English or in French and in as flexible a format as necessary 
(figures, associated data, etc.).
Comptes Rendus Mécanique has been published since 2020 with the centre Mersenne pour l’édition 
scientifique ouverte (Mersenne Center for open scientific publishing), according to a virtuous Diamond 
Open Access policy, free for authors (no author processing charges nor publishing fees) as well as for 
readers (immediate and permanent open access).

Editorial director: Étienne Ghys.

Editors-in-chief: Samuel Forest.

Associate editors: Olga Budenkova, Francisco Chinesta, Francisco dell’Isola, Florian Gosselin, Jean-
Baptiste Leblond, Éric Lemarchand, Bruno Lombard, Nicolas Moës, Léo Morin, Benoît Perthame, 
Guillaume Ribert, Géry de Saxcé, Emmanuel Villermaux.

Editorial secretary: Adenise Lopes.

About the journal

All journal’s information, including the text of published articles, which is fully open access, is available 
from the journal website at https://comptes-rendus.academie-sciences.fr/mecanique/.

Author enquiries

For enquiries relating to the submission of articles, please visit this journal’s homepage at https://comptes-
rendus.academie-sciences.fr/mecanique/.

Contact

Académie des sciences 
23, quai de Conti, 75006 Paris, France 
Tel: (+33) (0)1 44 41 43 72 
cr-mecanique@academie-sciences.fr

The articles in this journal are published under the license 
Creative Commons Attribution 4.0 International (CC-BY 4.0)
https://creativecommons.org/licenses/by/4.0/deed.en

To cite this issue:
Leblond Jean-Baptiste (ed). Advances in finite fracture mechanics : a tribute to 
Dominique Leguillon’s scientific achievements. Comptes Rendus Mécanique, 

2025. https://doi.org/10.5802/crmeca.sp.2.



Comptes Rendus. Mécanique
2025, Vol. 353, p. 1127-1128

https://doi.org/10.5802/crmeca.329

Foreword / Avant-propos

Recent advances in finite fracture
mechanics—a tribute to Dominique
Leguillon’s scientific achievements

Progrès récents en mécanique finie de la rupture — un
hommage à l’œuvre scientifique de Dominique Leguillon

Jean-Baptiste Leblond

E-mail: jbl@lmm.jussieu.fr

On the scene of contemporaneous French fracture mechanics, Dominique Leguillon stands
as a singular and most remarkable character. Indeed, after the completion of his PhD thesis
undertaken and pursued at the Laboratoire de Modélisation en Mécanique of Université Pierre
et Marie Curie (Paris VI) (now part of Sorbonne Université), he was appointed as Ingénieur de
Recherches in the CNRS (Centre National de la Recherche Scientifique). His already heavy task,
which he managed to perform alone, consisted in the organization and maintenance of the
ensemble and network of computers of the Laboratoire de Modélisation en Mécanique. But he
would not limit his activities to such aspects and undertook scientific cooperations with various
researchers, and notably our illustrious colleague Evariste Sanchez-Palencia. With him, he
dedicated numerous and fruitful efforts to various important issues in mechanics of deformable
solids, such as periodic homogenization, matched asymptotic expansions, and occurrence of
singularities. The popularity and impact of these studies allowed him to successfully apply for
a post of Directeur de Recherches at the CNRS. This highly improbable passage from a position
of engineer in charge of computers to one of researcher is exceptional enough in the CNRS to
deserve a very special mention.

But it was in the 2000’s that Dominique’s career and scientific reputation really started to take
off. In order to explain the nature of his essential contribution, it is first necessary to provide
some elements of context.

The aim of the classical theory of fracture mechanics is to study and predict propagation of
cracks in materials. It is of utmost practical importance, and serves as a basis to avoid crack-
induced failure of various mechanical objects and structures. But in spite of its very numerous
and important successes, it is still prone to notable shortcomings. For instance, it permits to
predict crack propagation from some small pre-existing crack, but not in a sound structure
devoid of any pre-crack. Even more critically, it fails to predict crack initiation from a notch root,
in spite of the frequent occurrence of such a situation, notably in welded joints.

The essential contribution of Dominique, which no longer owed anything to anyone else,
was to overcome these limitations by proposing an extended theory, nowadays known as “finite
fracture mechanics”. This new approach of this type of problems requires the definition of some
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“double” or “coupled” criterion, involving two necessary conditions for crack propagation, one
on the opening stress before propagation, the other on the energy-release-rate. The new theory
is termed finite fracture mechanics because it does not split crack propagation into infinitesimal
steps, each governed by the double criterion, but into steps that may be finite, over some distance
determined by the criterion.

Dominique’s proposal immediately drew attention from numerous researchers in the field
at various places in the world, and met with very important success; experimenters active in
France, Europe, Israël and the USA, embarked on the experimental verification of this proposal
and its practical applications. Dominique collaborated with them and accompanied them in his
typically friendly way, thus weaving a large web of international cooperations.

These features permit to state that Dominique’s new theory of finite fracture mechanics stands
as one of the major additions brought to fracture mechanics in the last few decades.

Having retired, Dominique changed almost nothing in his working habits, and went on com-
ing to his research institution every day, pursuing the development of his ideas with his col-
leagues and friends. However, having reached the age of 75 in full command of his intellec-
tual means, and although nothing permitted to foresee such an event, Dominique suddenly suc-
cumbed to a heart attack while he was walking in the street. He leaves an immense emptiness
behind him, but also appealing scientific perspectives, because his ideas, being so simple, ele-
gant and straightforwardly applicable to problems of both scientific and technical nature, can
still motivate numerous and importants developments; so true it is that fracture mechanics can-
not possibly be content with predicting and depicting the propagation of cracks while forgetting
about their initiation.

For those who had the privilege of knowing Dominique, he will remain an exceptional col-
league and friend. The aim of this special issue of Comptes-Rendus Mécanique dedicated to him
is to fittingly honor his memory, by showing how his ideas still give rise and stimulate diverse and
interesting works.

Jean-Baptiste Leblond
Emeritus Professor
Sorbonne Université
Member of the French Academy of Sciences
France
jbl@lmm.jussieu.fr

mailto:jbl@lmm.jussieu.fr
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Mechanisms of transverse cracking induced
by adjacent ply matrix cracks in composite
laminates

Mécanismes de fissuration transverse induits par des
fissures matricielles dans des plis adjacents de stratifiés
composites

Nicolas Carrère ,a, Aurélien Doitrand ∗, ,b, Mathilde Conan a and Eric
Martin c

a ENSTA Bretagne, CNRS, IRDL, UMR 6027, F-29806 Brest, France
b Université Lyon, INSA-Lyon, UCBL, CNRS, MATEIS, UMR5510, F-69621
Villeurbanne, France

c Bordeaux-INP, Univ. Bordeaux, F-33400 Talence, France

E-mails: nicolas.carrere@ensta-bretagne.fr (N. Carrère),
aurelien.doitrand@insa-lyon.fr (A. Doitrand), mathilde.conan@ensta-bretagne.org
(M. Conan), eric.martin@enseirb-matmeca.fr (E. Martin)

Abstract. Cracking in composite laminates containing θ-plies adjacent to 90° plies is studied experimentally
and numerically using the coupled criterion and finite element calculations. Different damage mechanisms
are considered, namely transverse cracking in 90°, cracking in θ-plies, or debonding between adjacent mis-
oriented plies. The influence of the stacking sequence on the damage mechanism sequence is investigated.
Experimental observations of the composite edge under tensile loading evidence θ-ply cracking (i) at an im-
posed strain level much larger than first transverse cracking in 90° ply for a sufficiently large orientation mis-
match between adjacent plies or (ii) at a similar imposed strain level if the mismatch angle between two ad-
jacent plies is small. The latter phenomenon may be mitigated by the presence of a 0° ply between the 90°
and the θ-plies.

These conclusions are supported by numerical simulation of the experimentally observed damage mech-
anisms, evidencing a change in the damage mechanism sequence depending on the θ-ply misorientation.
The numerical simulations also highlight that debonding between adjacent plies may occur as it becomes
more favorable that adjacent ply crack re-initiation for sufficiently large adjacent ply mismatch angle.

Résumé. La fissuration dans les stratifiés composites, contenant des plis orientés à θ° de la direction de
chargement adjacents à des plis à 90°, est étudiée expérimentalement et numériquement à l’aide du critère
couplé et de calculs par éléments finis. Différents mécanismes d’endommagement sont pris en compte :
la fissuration transverse dans le pli à 90°, la fissuration dans les plis à θ°, ou la décohésion entre des plis
adjacents d’orientation différente. L’influence de la séquence d’empilement sur la séquence des mécanismes
d’endommagement est analysée. Les observations expérimentales effectuées sur des stratifiés sollicités en
traction mettent en évidence une fissuration dans les plis à θ : (i) à un niveau de déformation imposé
beaucoup plus élevé que celui de la première fissuration transverse dans les plis à 90° pour une désorientation
suffisamment grand entre les plis adjacents, ou (ii) à un niveau de déformation imposé similaire si l’angle de
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désorientation entre deux plis adjacents est faible. Ce dernier phénomène peut être atténué par la présence
d’un pli à 0° entre le pli à 90° et les plis à θ.

Ces conclusions sont appuyées par des simulations numériques des mécanismes d’endommagement
observés expérimentalement, mettant en évidence un changement dans la séquence des mécanismes en
fonction de l’angle de désorientation des plis à θ. Les simulations numériques montrent également que la
décohésion entre plis adjacents peut se produire et devenir plus favorable que le ré-amorçage des fissures
dans les plis adjacents lorsque l’angle de désorientation entre ces plis est suffisamment grand.

Keywords. Finite fracture mechanics, Coupled criterion, Laminates, Crack re-initiation.

Mots-clés. Mécanique de la rupture incrémentale, Critère couplé, Stratifiés, Ré-amorçage de fissures.

Manuscript received 15 November 2024, revised and accepted 15 January 2025.

1. Introduction

The growing utilization of composite materials in sectors demanding both performance and
safety is often guided by principles derived from lessons learned. In specific industries, such as
aeronautics, these principles have been formalized into comprehensive best practice guidelines
outlined in the Military Handbook [1]. This document outlines, among other aspects, the
draping recommendations that must be complied with when defining the lay-up of a laminated
composite structure. Among the draping recommendations details, we can mention for example:

(1) Homogeneous stacking sequence are recommended for strength controlled designs. The
handbook reminds that the interlaminar stress distributions are affected, around the
periphery of holes, by the variation of ply orientations relative to a tangent to the edge.
Since it is difficult to optimize for a single lay-up in this case, the best solution is to make
the stacking sequence as homogeneous as possible.

(2) Since transverse strength is highly dependent on ply thickness, it is strongly recom-
mended to minimize the grouping of plies with identical orientations,

(3) The mismatch in Poisson’s ratio between adjacent plies, caused by the anisotropy of
the ply properties and the difference in orientation between them, can generate out-of-
plane stresses at the interface of adjacent plies near the edges of a laminate. It is thus
recommended to perform analyses to predict free edge stresses and delamination strain
levels.

(4) It is recommanded that the laminate has at least four distinct ply angles (e.g., 0°, ±θ°, 90°)
with a minimum of 10% of the plies oriented at each angle.

These recommendations are partly based on experimental observations. Among numerous
examples, and without claiming to be exhaustive, we can highlight a few studies that illustrate
the aforementioned recommendations. Regarding recommendation #2, the pioneering work
published in [2] demonstrated that thickness has a significant influence on the apparent strength
of the ply. The impact of blocked versus dispersed plies on strength (recommendation #1)
has been illustrated, for example, in unnotched specimens [3] and in open-hole specimens [4].
Delamination initiated from the edge and the effect of the stacking sequence (recommendation
#3) have been studied in [5]. Finally, regarding the recommendation #4, the use of 0°, ±45°, 90°
plies is a well-established practice driven by the need to balance stiffness, strength, processability,
and damage tolerance. These orientations offer a versatile and practical solution for a wide range
of engineering applications. It is essential to remember that the recommendations provided in
this handbook serve solely as guidelines that should be verified based on the materials used
and further assessed in relation to new-generation materials and manufacturing processes.
Considering the high cost of testing and the numerous optimization possibilities [6], using
models to estimate the influence of stacking on the laminate’s strength is crucial.
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Various models with differing levels of complexity have been proposed in the literature to
achieve this goal. Classical Laminate Theory (CLT) is a simple and widely used model for
rapidly designing laminated composite structures [7, 8]. Based on the elastic properties of the
individual laminae, the stacking sequence, and the applied loading, this model enables the
determination of the laminate’s overall elastic properties and the stress distribution within each
ply, while accounting for the effects of potential ply failure [9]. However, due to its inherent
assumptions, this theory cannot account for the effects of discrete ply failure on adjacent plies
or the potential delamination between two plies, whether caused by edge effects or induced by
transverse failure. To effectively describe some of these mechanisms, it is essential to capture
the discrete nature of the damage, such as transverse crack and delamination [10], particularly in
terms of how a ply failure affects the neighboring plies [11, 12]. This approach holds significant
potential for accurately describing the phenomena observed experimentally; however, it relies
on sophisticated finite element models combined with highly non-linear material behaviors.
Consequently, this often results in high computational costs, limiting the applicability of these
methods for parametric studies or optimization.

The coupled criterion (CC), introduced by Leguillon in [13, 14], provides an efficient approach
to address this challenge while preserving a discrete representation of the damage. It requires
only a few elastic calculations to compute the stress field in the plane of the potential crack and
the energy released by the crack initiation. It has been applied on composite materials in order
to study several of the aforementioned issues [15]. The CC was used to study crack initiation
in open hole composite plates [16–19] or in fastened joints composites [20] (recommendation
#1 underlined at the beginning of this introduction and taken from the Military Handbook).
Regarding composite laminates, the focus was mainly made on transverse cracking in 90° plies
(i.e. when the loading direction is perpendicular to the fiber direction) and the effect of the
number of grouped plies on the apparent strength (recommandation #2). This topic was studied
in 2D [14, 21–23] or 3D [24, 25], also considering manufacturing thermal residual stresses [26,
27]. The CC has also been employed to investigate the onset of free-edge delamination in angle-
ply laminates [28] (recommendation #3). Additionally, it has been applied to examine other
types of composites. For instance, the CC has been utilized to study 3D transverse cracking
and debonding in polymer matrix and glass fiber plain weave composites [29, 30], as well as 2D
damage initiation and propagation in a ceramic matrix woven composite [31]. Furthermore, the
failure mechanisms at the microscopic scale have been explored, including the debonding of a
particle [32, 33] and the fiber-matrix interface [34–38] as well as the influence of the distance and
angle between two neighbor fibers on interface debonding initiation [39].

A main difficulty in applying the CC in a 3D problem is determining the shape of the potential
crack surface within a 3D geometry. A first way to implement the CC in 3D consists in assuming
a crack path and applying stress and energy criteria corresponding to increasingly large cracks
following this path. This strategy was adopted to study transverse cracking in laminates based on
rectangular crack shapes [24, 26, 40] as well as partially elliptical crack shapes to simulate crack
initiation at a V-notch [41–43], tunneling crack in layered ceramics [44] or free edge delamination
in angle ply laminates [45]. Parameterized crack shapes may not be the optimal crack shapes,
i.e. the ones for which the initiation loading is the minimum. A tentative to get crack shapes
closer to the optimal ones consists in defining the crack fronts based on the stress isocontours
[46–48]. This approach yields crack shapes that are similar to those observed experimentally in
some configurations [49, 50] and enables the possible initiation crack shapes to be described by
a single parameter, i.e. the crack surface or equivalently, the associated stress isocontour level.
It results in an efficient way to avoid testing all possible crack shapes and was implemented for
various 3D configurations [51–54].
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It has been shown here that the CC is a pertinent tool to be used during an optimization pro-
cess taking into account the recommendation of the Military Handbook. Current manufacturing
methods, such as automated fiber placement, due to their precision and the intricate deposition
paths they facilitate, should pave the way for increasingly complex and optimized stacking se-
quence such as Bouligand laminates which exhibits lower damage than classical laminates [55].
However, due to the lack of data, the absence of design rules, and conservatism arising from tra-
ditional practices, many industries continue to rely solely on 0°, ±45°, and 90° plies. Indeed, the
use of varied ply orientations can lead to more complex damage scenarios. Literature has shown
that the stacking sequence can significantly affect both the onset and progression of damage, not
only in the initially failed ply but also in adjacent plies [56, 57].

The objective of this work is to study crack initiation in θ-plies that are adjacent to a 90° ply in a
composite laminate. Experiments carried out on laminates having both 90° and θ°-plies are first
presented in Section 2. The aim of this section is to highlight the effect of different parameters
(ply thicknesses, angle differences between 90° and θ°-plies on the threshold for the initiation of
transverse cracks in each ply. The finite element model and the CC procedure are described in
Section 3. Section 4 focuses on evaluating different damage mechanisms such as crack initiation
in (i) 90° ply and (ii) θ-ply, as well as (iii) debonding (delamination) between 90° ply and θ-ply. A
qualitative comparison to the damage mechanisms observed experimentally is finally provided.

2. Experiments

The laminates under investigation were manufactured from Hexcel ply prepreg with AS4 carbon
fibers and 8552 matrix. The panels were fabricated using a press machine, following the pressure
and temperature cycles recommended by the prepreg manufacturer. One ply thickness corre-
sponds to tply = 150 µm. The aim of this section is to highlight the influence of various param-
eters on the strain threshold for transverse crack initiation in the plies. To achieve this, different
layups and stacking sequences were investigated:

• [302/902/−302/0]s is the base line (see Figure 1). It is expected that the 90° plies will crack
first, and that any transverse cracking in the 30° plies will occur only at a loading level
approaching failure.

• The [702/902/−702/0]s layup is designed to investigate whether a crack initiated in a
misaligned ply can reinitiate cracking in an adjacent ply. It is important to note that,
in this case, the doubled-thickness −70° plies are embedded within the laminate, while
the other doubled-thickness 70° plies are located on the outer surface. As shown in [58],
the position of the ply within the laminate (whether embedded or on the outer surface)
influences the in-situ strength.

• The [702/0/902/0/−702]s layup is used to investigate the confinement effect of a highly
oriented ply (0° in this case) on crack reinitiation. In this case, the outer plies are
doubled-thickness 70° plies, while the ply located in the laminate’s symmetry plane is
a quadrupled-thickness −70° ply.

• The [704/904/−704/0]s layup is used to study the effect of ply thickness on crack reinitia-
tion.

The specimen surfaces, where cracks are observed, are polished using silicon carbide paper
with grit sizes ranging from P80 to P4000. A thin layer of white paint is then applied to these
surfaces using a Posc® marker pen (Uni Mitsubishi Pencil). This thin layer of white paint
facilitates crack detection, as cracks appear black against the white background. During the test,
the gauge length is monitored using a high-resolution camera (4504×4504 pixels, with a 50 mm
lens). Particular attention has been paid to the lighting to ensure that the light exposure is as even
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Figure 1. Location of the first cracks in the [302/902/−302/0]s laminate under two levels
of external loading. A representative cross-sectional image has been included to indicate
the ply locations (not visible due to the white paint layer). The arrows highlight the crack
locations in the 90° plies.

Figure 2. Location of the first cracks in the [702/902/−702/0]s laminate. A representative
cross-sectional image has been included to indicate the ply locations (not visible due to the
white paint layer). The arrows highlight the crack locations in the plies.

as possible and remains constant throughout the test. The aim is to detect the crack initiation in
each ply and its location. The evolution in the number of cracks during testing falls outside the
scope of this study.

The results obtained in the base line are shown in Figure 1. The first crack is initiated in
the 902 plies. The number of cracks in these plies increases until final failure occurs, driven by
delamination (between the 90° plies and the ±30° plies) and fiber failure in the 0° plies.

If the ±30 plies are replaced by ±70 plies, ([702/902/−702/0]s) the scenario changes signifi-
cantly. The initial failures occur simultaneously in all off-axis plies, namely the outer 70° plies,
the 90° plies, and the −70° plies (see Figure 2). It is important to note that cracks in adjacent
plies are interconnected, suggesting that a crack initiated in one ply may lead to the initiation of
a crack in an adjacent ply.

When the 0° plies are placed between the 90° plies and the ±70° plies (as in the
[702/0/902/0/−702]s laminate), transverse cracks initiate in the ±70° plies (Figure 3a). The
locations of cracks in the outer doubled-thickness 70° plies differ significantly from those in
the quadrupled-thickness −70° ply. The first cracks in the 90° plies initiate at a slightly higher
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Figure 3. Location of the cracks in the [702/0/902/0/−702]s laminate. (a) Initial cracks in
the ±70° plies and (b) first crack in the 90° ply, occurring at a higher load. A representative
cross-sectional image indicates ply locations (not visible due to the white paint layer). The
arrows highlight crack locations within the plies.

applied load (see Figure 3b). The crack locations in the plies appear random, with no observable
connection between cracks in different plies.

To conclude this experimental section, it is important to note that, on the one hand, when
the angular difference between two adjacent plies is large, a matrix crack in the more misaligned
ply does not initiate a crack in the adjacent ply, as in the baseline case [302/902/−302/0]s. On
the other hand, when the mismatch angle between two adjacent plies is small, a crack in one
ply can initiate interconnected cracks in the adjacent plies, as observed in the [70n/90n/−70n/0]s

laminate with n = 2 or 4, a phenomenon not predicted by classical design approaches. A single
ply with a large mismatch angle (in this case, the 0° ply between the ±70° and 90° plies) could
prevent this phenomenon. Another notable result concerns the effect of ply thickness: in the
[702/0/902/0/−702]s laminate, the first matrix cracks appear in the outer doubled-thickness 70°
plies and the quadrupled-thickness −70° ply, rather than in the doubled-thickness 90° ply, which
would be expected to fail first according to a simple failure criterion. The various observed
mechanisms will be examined in the following sections using the CC.

3. Fracture modeling and simulation

3.1. The coupled criterion

The CC states that crack initiation occurs if the two following conditions are met:

• The incremental energy release rate (Ginc), i.e. the ratio between the elastic strain energy
release (−∆Wel(S) = Wel(0)−Wel(S)) due to the initiation of a crack and its surface (S)
must be larger than the material critical energy release rate Gc: Ginc ≥Gc

• The stress over the whole crack path prior to initiation must be sufficiently large. In
homogeneous isotropic materials, it reverts to comparing the opening stress to the
tensile strength. However, in anisotropic materials such as composite laminates, or for
interfaces subjected to mixed mode loadings, a criterion combining the opening (σnn)
and shear (σnt) stress components and the corresponding strengths can be used. For a
lamina under tensile loading, the transverse crack initiation criterion can be described
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using a Hashin-based failure criterion: f (σ,Yt,Sc) =
√

(σnn/Yt)2 + (σnt/Sc)2 ≥ 1 where
σnn and σnt represent the transverse and shear components of the stress tensor in the
ply coordinate system. The parameters Yt and Sc denote the transverse tensile strength
and the shear strength, respectively.

Under linear elasticity and small deformation assumptions, the stress components are pro-
portional to the applied strain (denoted ε0) and the energy is proportional to the square applied
strain. These conditions write:σeq =

√
(σnn)2 +

(σnt

α

)2
= ξ(S)ε0 ≥σc

Ginc = A(S)ε2
0 ÊGc

(1)

where α = Sc /Yt , σc = Yt and ξ and A are functions depending on the geometry and material
properties. Note that in the following, we study configurations in which the stress field in the ply
is either uniform (Sections 4.1 and 4.2) or present a gradient (Section 4.4) The strain that must
be prescribed in order to fulfill either the stress or the energy conditions can be calculated from
Equation (1): 

εstress
0 (S) = σc

ξ(S)

ε
energy
0 (S) =

√
Gc

A(S)

(2)

For a given crack surface S, the strain that must be prescribed in order to fulfill Equation
(1) is the maximum between εstress

0 (S) and ε
energy
0 (S). The applied strain at initiation εc is thus

determined for the crack surface Sc that minimizes the applied strain:{
εc = min

S
(max(εstress

0 (S),εenergy
0 (S)))

Sc = arg min
S

(max(εstress
0 (S),εenergy

0 (S)))
(3)

3.2. Finite element model of laminates

The configuration under investigation is [0n/−θn/θn/90n]s, except in Section 4.4 where
[−θn/θn/0n/90n]s stacking is studied to highlight the influence of the presence of a 0° ply in
between 90° and θ° plies. Even if the stacking sequences studied numerically slightly differ from
the tested ones, they allow assessing the different damage mechanisms observed experimen-
tally. The FE models presented in the following are set-up using Abaqus™ Standard. Due to the
loading and geometry symmetry, only half the laminate thickness is modeled. The thickness of n
plies is denoted t , so that t = ntply. It means that when studying θ-ply crack initiation, one crack
is present in the n θ-plies (thickness t ) in the FE model, which actually represents the simulta-
neous cracking of the two sets of n θ-plies by symmetry. In addition, when studying 90° ply crack
initiation, one crack is present in the n 90° plies (thickness t ) in the FE model, which actually
represents cracking in a set of 2n 90° consecutive plies by symmetry since the 90° ply lies on the
symmetry plane. Crack opening for all the studied mechanisms (transverse cracking in a 90° ply,
in θ-ply or debonding) are simulated by doubling the nodes along the corresponding surface.
The ply angle refers to the angle formed between the loading direction and the fiber orientation
within the ply. Since crack paths are oriented by the microstructure, they are likely to follow
the fiber direction therefore cracks in θ-ply form a θ angle with respect to the loading direction.
The material orientation of each ply is assigned and the same ply properties are defined in the
corresponding ply local axis system. The transversely isotropic ply properties are EL = 127 GPa,
ET = 9.2 GPa, νLT = 0.302, νTT = 0.4, GLT = 4.8 GPa [27, 59], where the index L denotes the longi-
tudinal fiber direction and T the direction perpendicular to the fibers in the ply plane. The ply
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Figure 4. Geometry and dimensions of (a) the tested specimens and of two possible
mechanisms occurring after transverse crack initiation in a 90° ply: (b) cracking in θ-ply
or (c) debonding between 90° and θ-ply. The loading direction is along z⃗.

transverse tensile and shear strengths are respectively Yt = 63.9 MPa and Sc = 91 MPa, the ply
critical energy release rate is 248 J/m2 [27], which corresponds to transverse crack propaga-
tion under opening mode. Boundary conditions are set-up as imposed displacement on the
specimen faces along the tensile loading direction (z in the Figure 4). Due to the symmetry of
the laminate, only half of the layup is modeled, with symmetric boundary conditions applied
along the plane (Ox⃗, z⃗). The meshes are made of 10-nodes quadratic tetrahedrons, the mesh
size being refined in the vicinity of the crack or debonding locations, resulting in meshes with
around 250,000 nodes. The mesh size is chosen so that a finer mesh provides a similar initiation
loading.

3.3. Transverse crack initiation

The main difference between 2D and 3D simulation of transverse crack initiation in laminates
arises from the fact that the stress field is not perfectly homogeneous in the whole ply but only
in the ply center, the stress increasing closer to the ply free edge. Nevertheless, it was shown by
Garcia et al. [24] that the 2D or the 3D applications of the CC for transverse crack initiation leads
to similar initiation strain, especially for plies thinner than the Irwin’s length ℓmat = ETGc/σ2

c .
The differences slightly increase with increasing ply thickness, they however remain smaller than
10%. Therefore, in this case it is possible to simplify the 3D application of the CC for transverse
crack initiation by neglecting the stress variation near the 90° ply free edge and considering a
constant homogeneous stress within the ply. Under this assumption, Equation (3) reduces to:

εc = max(εstress
0 (S90),εenergy

0 (S90)) = max

(
σc

ξ90(S90)
,

√
Gc

A90(S90)

)
(4)

where S90 = w t90 is the surface of the crack crossing the whole ply. The functions ξ90(S90)
and A90(S90) (corresponding to the functions ξ and A involved in Equation (2) in the case of
transverse cracking) are computed from two FE calculations, one before crack opening that
enables the calculation of the stress condition (and thus ξ90(S90)) and the elastic strain energy
before initiation, then crack surface nodes are unbuttoned to calculate the elastic strain energy
release due to crack initiation and to deduce A90(S90). Transverse crack initiation loading is finally
calculated from Equation (4).
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3.4. Debonding

A possible damage mechanism occurring after transverse crack initiation is debonding between
the 90° and θ-ply. This occurs because of the presence of a transverse crack in the 90° ply induces
a stress singularity at the interface between both plies. It can be noted that under in-plane tensile
loading, the interface is parallel to the loading direction thus debonding is not likely to occur
without the presence of a crack in a surrounding ply. For the sake of simplicity, we assume that
symmetric debonding occurs ahead of the transverse crack and along the whole ply width. This
assumption allows us to describe the inter-ply debonding by only one parameter, namely the
debonding length 2d , the corresponding debonding surface being calculated as Sd = 2d w , where
w is the sample width. Thus, the CC for debonding length calculation can be applied following
the reasoning described in Section 3.1. We make the hypothesis that the same material strength
and fracture toughness as for transverse crack can be used in the case of debonding. This is
justified by the fact that both mechanisms involve matrix cracking and fibre-matrix debonding at
the microscopic scale. The function ξd and Ad (corresponding to the functions ξ and A involved
in Equation (2) in the case of inter-ply debonding) are computed based on FE calculations for
several debonding lengths. Since debonding occurs after transverse crack initiation, two possible
cases may arise:

• If both the stress and the energy criteria are fulfilled for the loading corresponding to
90° ply transverse crack initiation, thus debonding is likely to occur instantaneously after
transverse crack initiation.

• Otherwise, no debonding is observed when the transverse crack initiates so that the
loading must be increased in order to initiate a debonding ahead of the transverse crack,
the imposed debonding initiation strain can be calculated from Equation (3).

3.5. Re-initiation in θ-ply

Another possible damage mechanism occurring after transverse crack initiation is cracking in
the θ-ply (Figure 2). In next section we study different scenarii, namely crack initiation in θ-ply
alone, simultaneous crack initiation in 90° and θ-ply, or crack initiation in 90° followed by crack
re-initiation mechanism in θ ply. For crack initiation in θ-ply alone, the exact same approach as
for 90° ply crack initiation presented in Section 3.3 is adopted. For simultaneous crack initiation
in 90° and θ-ply, a similar formulation as in Section 3.3 is adopted, except that the elastic strain
energy release is calculated for a total crack surface which is the sum of both 90° and θ ply cracks.

The main difference in the CC implementation compared to the two previous scenarii arises
for crack re-initiation in θ-ply. This is mainly due to the fact that the presence of a transverse
crack in the 90° ply induces a stress singularity at the crack tip, i.e. at the interface between 90°
and θ-ply, which results in a heterogeneous stress field in θ-ply. Therefore, the CC can be applied
to assess crack re-initiation in θ-ply after the nucleation of a first transverse crack in the 90° ply.
The stress heterogeneity in the θ-ply prevents us to adopt a simplified application of the CC and
3D crack initiation has to be studied. The critical step in the 3D CC application concerns the
definition of the possible initiation crack shapes. We follow the approach proposed in [47–50, 52]
to define the possible crack shapes based on the stress criterion isocontours (Figure 5). The main
interest of this method is the definition of a unique relation between the stress level and the crack
surface. Besides, for a given crack size, the stress criterion is strictly fulfilled since the crack shape
is defined from the stress criterion isocontour. The corresponding crack surface is calculated
based on the face area of the FE mesh elements attached to the crack. For a given configuration
including a θ-ply, the functions ξθ and Aθ (corresponding to the functions ξ and A involved in
Equation (2) in the case of crack re-initiation in θ-ply after a first transverse crack initiation in the
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Figure 5. (a) Geometry including both 90° and θ-ply cracks. (b) Stress criterion isovalues in
θ-ply after 90° ply crack initiation and (c) corresponding mesh including the stress criterion
isocontour based possible crack shapes, (d)–(e) crack visualization in θ-ply.

90° ply) are computed by successively unbuttoning the crack nodes corresponding to decreasing
stress isovalues or equivalently increasing crack surfaces. The re-initiation crack surface and
imposed strain are finally determined by solving Equation (3). In the sequel, the numerical results
corresponding to the different damage mechanisms are presented.

4. Results

We recall that the configuration under investigation is [0n/−θn/θn/90n]s, except in Section 4.4
where [−θn/θn/0n/90n]s stacking is studied to highlight the influence of the presence of a 0° ply
in between 90° and θ° plies.

4.1. Crack initiation in 90° or θ° ply

We first study transverse crack initiation in 90° or θ° ply. The CC enables the calculation of the
strain that must be imposed in order to fulfill the stress criterion, the energy criterion, or both
(Figure 6a). Crack initiation in a thick enough (t > 0.6 mm) 90° ply is controlled by the stress
criterion. Indeed, a thick ply stores a sufficient amount of elastic energy that could be used
to form a crack for imposed strain smaller than the imposed strain required to fulfill the stress
criterion. Therefore, crack initiation occurs as soon as the stress criterion is fulfilled. This is not
the case for a thin ply, for which not enough energy is available to create the crack when the
stress criterion is fulfilled. Therefore, it results in a larger crack initiation imposed strain which
corresponds to the strain required to fulfill the energy criterion. Figure 6b shows the 90° crack
initiation imposed strain for several θ-ply configurations. The larger the disorientation between
the 90° ply and the θ-ply, the larger the initiation imposed strain, even if the difference remains
smaller than 10% for the studied configurations.

First crack initiation in a θ-ply is also studied and the variation of the initiation strain as a
function the ply thickness is shown in Figure 6c. Whatever the ply orientation, the transition
between energy-driven and stress-driven crack initiation is observed depending on the ply
thickness. For a given ply thickness, the larger the ply misorientation, the larger the imposed
strain at initiation. It can be concluded that if the θ-ply is not located at the specimen surface,
90° ply crack initiation is likely to be the first observed damage mechanism. In case the θ-ply
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Figure 6. (a) Imposed strain to fulfill the stress (circles, dotted line), the energy (squares,
dashed line) or both (solid line) criteria corresponding to 90° ply crack initiation as a
function of the ply thickness for θ = 30° ply orientation. (b) Imposed strain at 90° ply crack
initiation as a function of the ply thickness for several θ-ply orientations of the adjacent
ply. (c) Imposed strain at θ-ply crack initiation as a function of the ply thickness for several
θ-ply orientations.

is located at the specimen surface, crack initiation in θ-ply may be more favorable than crack
initiation in inner 90° depending on the ply thickness, as shown in Section 2.

For plies thicker than 0.6 mm, the stress criterion is fulfilled in the 90° ply at the crack initiation
imposed strain, however it is not fulfilled in θ-ply because of the ply disorientation with respect
to the loading direction. However, for plies thinner than 0.6 mm, crack initiation is driven by
the energy criterion which means that the imposed strain may be large enough so that the
stress criterion is fulfilled not only for the 90° ply but also for the θ-ply. Thus, another cracking
mechanism could be envisioned, namely simultaneous crack initiation in both 90° ply and θ-ply.

4.2. Simultaneous crack initiation in 90° ply and θ-ply

The CC is applied in order to determine if simultaneous 90° ply and θ-ply crack initiation may
occur instead of 90° ply crack initiation only for thin plies. Figure 7 shows the corresponding
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Figure 7. Imposed strain to fulfill the stress (circles), the energy (squares) or both criteria
corresponding to either 90° ply crack initiation (dashed line) or simultaneous 90° and θ-ply
crack initiation (solid line) as a function of the ply thickness for (a) θ = 30° and (b) θ = 70°.

imposed strain to fulfill the stress criterion, the energy criterion or both for configurations with
30° or 70° θ-ply.

The imposed strain required for crack initiation in thick plies is larger for simultaneous crack
initiation than for 90° ply crack initiation only, thus resulting in a larger initiation imposed strain.
Whatever the ply thickness and orientation, the imposed strain to fulfill the energy criterion is
smaller for 90° ply crack initiation only than for simultaneous initiation. Therefore, simultaneous
crack initiation in both plies is not likely to occur, the mechanism of crack re-initiation in θ-ply
after first crack initiation in the 90° ply is therefore selected in the sequel.

4.3. Debonding ahead of a 90°-ply crack

Debonding at the interface between the 90° ply and the θ-ply is not likely to occur before any
intra-ply cracking because the stress criterion is not fulfilled since the interface between both
plies is parallel to the loading direction. However, the presence of a transverse crack in the
90° ply induces a stress singularity at the ply interface and thus enables a possible debonding
between plies. The CC is applied in order to evaluate if debonding is likely to occur just after
90°, as depicted in Figure 4c. ply crack initiation or if a larger imposed strain is required. Two
configurations arise leading either to a possible debonding or not. If the imposed strain is large
enough so that there exists at least a debonding surface for which both criteria are fulfilled, a
possible debonding may be observed as a consequence of transverse crack initiation and it occurs
at the same imposed strain. Otherwise, if both criteria are not fulfilled for any debonding surface,
debonding ahead of the transverse crack is not expected without imposed strain increase. The
CC enables the calculation of the imposed strain required to initiate a debonding, its variation as
a function of the ply thickness is shown in Figure 8 together with transverse crack initiation strain
for θ = 50° and θ = 70° ply orientations.

For the studied configurations, debonding is not likely to occur just after transverse crack
initiation except for the largest ply thicknesses θ-ply orientation close enough to 90°. Otherwise,
the imposed strain must be increased in order to promote debonding ahead of the transverse
crack.
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Figure 8. Imposed strain at debonding ahead of a transverse crack for (a) θ = 70° and
θ = 50° ply orientations.

Figure 9. Imposed strain at crack re-initiation in θ-ply after the first crack initiation in the
90° ply as a function of the ply thickness for (a) θ = 80°. (b) θ = 50° in case the θ-ply and the
90° ply are separated by a 0° ply.

4.4. θ-ply crack re-initiation

We first study the case for which the 90° ply and the θ-ply are separated by a 0° ply. The first
damage mechanism is transverse crack initiation in the 90° ply. Similarly to previous analysis,
simultaneous crack initiation in 90° ply and θ-ply is not likely to occur because it is energetically
less favorable. Contrary to the configuration for which the 90° ply and the θ-ply are adjacent,
crack initiation in the 90° ply does not induce any stress concentration in θ-ply. Therefore,
crack re-initiation in the θ° ply may occur if both the stress and the energy criteria are fulfilled,
i.e. for a larger imposed strain than the one corresponding to 90° ply crack initiation (Figure 9).
If the 90° ply and the θ-ply are separated by a 0° ply, crack re-initiation is thus not likely to
be observed immediately after the first crack initiation whatever the ply thickness or θ-ply
orientation.
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Figure 10. Imposed strain that must be prescribed in order to fulfill stress (dashed line) and
energy (solid line) criteria and corresponding minimum imposed strain and crack surface
for which both criteria are fulfilled (circle) for t = 1 mm ply thickness and (a) θ = 80° or
(b) θ = 50°.

We now study the configuration for which the 90° ply and the θ-ply are adjacent. A first
crack initiation in the 90° ply induces a stress singularity at the crack tip located at the interface
between both plies and thus a stress gradient in the θ-ply (Figure 5) which may promote θ-ply
crack re-initiation. We use the term of re-initiation because we concluded previously that θ-ply
crack initiation cannot occur simutaneously or before 90° ply crack initiation. Therefore, this
mechanism is a consequence of a first crack initiation in the 90° ply which induces the stress
singularity necessary to further enable a possible crack re-initiation. The stress and the energy
criterion can be implemented in order to determine θ-ply re-initiation imposed strain as well
as crack surface (Figure 10). If there exists a crack surface for which both criteria are fulfilled
at the imposed strain corresponding to a first crack initiation in the 90° ply (Figure 10a), crack
initiation immediately following 90° ply crack initiation is likely to occur. From an experimental
point of view, it is difficult to detect both mechanisms separately since they are expected to occur
sequentially in a short time interval. However, it is possible to observe whether a crack nucleated
or not in θ-ply just after 90° crack initiation.

If fulfilling both criteria requires an imposed strain larger than the imposed strain at 90° ply
crack initiation (Figure 10b), crack re-initiation in θ-ply is not likely to occur immediately after
90° ply initiation but requires an increase in the imposed strain. From an experimental point of
view, it means that single crack initiation in the 90° ply is likely to be observed before θ-ply crack
re-initiation for a larger imposed strain.

In both cases, it can be noted that the incremental energy release rate (and thus the differential
energy release rate G ) is an increasing function of the crack surface. Therefore, as soon as crack
initiation occurs, unstable crack propagation is likely to occur (G ÊGc and dG/dS Ê 0). It means
that without any increase in the imposed strain, the initiated crack will instantaneously grow
through the entire ply. Therefore, the crack is expected to be observed experimentally on the
specimen surface.

Figure 11 shows the imposed strain at θ-ply crack re-initiation as a function of the ply
thickness and orientation. The imposed strain at crack re-initiation decreases with increasing
ply thickness or decreasing ply disorientation (difference between 90° and the ply orientation θ).
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Figure 11. Imposed strain at θ-ply crack re-initiation as a function of (a) the ply thickness
for θ = 70° and of the ply angle for (b) t = 1.2 mm or (c) for several ply thicknesses.

Figure 12. Imposed strain at θ-ply crack re-initiation as a function of the ply thickness
compared to the imposed strain at 90° crack initiation for (a) θ = 80°, (b) θ = 70°, (c) θ = 50°.

Figure 12 shows θ-ply crack re-initiation imposed strain as a function of the ply thickness
compared to the imposed strain at 90° ply crack initiation for several ply orientations, resulting
in different possible scenarii. If the ply orientation is close to 90° (Figure 12a), crack re-initiation
is likely to occur whatever the ply thickness. We thus expect to observe experimentally cracks in
both plies just after initiation. On the contrary, if the ply disorientation with respect to 90° is too
large (Figure 12c), no crack re-initiation is expected to occur just after transverse crack initiation,
it would require a larger imposed loading. For intermediate orientations (Figure 12b), crack re-
initiation is expected to occur just after transverse crack initiation only for thick enough plies
(t > 0.6 mm).

We finally compare the three damage mechanisms, namely transverse crack initiation,
debonding and θ-ply crack re-initiation (Figure 13) for several ply orientation. For ply orientation
close to 90° (Figure 13a) and thick enough plies (t > 1 mm), both debonding or crack re-initiation
are likely to occur just after transverse crack initiation. For thin plies (t < 6 mm), the damage
sequence that is likely to occur is the following order:

(i) transverse crack initiation
(ii) θ-ply crack re-initiation at a slightly larger imposed strain

(iii) possible inter-ply debonding.

For intermediate ply thicknesses, crack re-initiation is likely to occur just after transverse crack
initiation without any imposed strain increase, and debonding may occur for a larger imposed
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Figure 13. Imposed strain at (i) 90° ply transverse cracking (solid line), (ii) inter-ply
debonding (square symbols) or (iii) θ-ply crack re-initiation (disk symbols) as a function
of the ply thickness t obtained for (a) θ = 70°, (b) θ = 50°, (c) θ = 30°.

strain. For ply orientation different enough from 90° (Figure 13c), whatever the ply thickness,
the most likely damage sequence is transverse crack initiation followed by debonding at a
larger imposed strain. Crack re-initiation could possibly occur at a larger imposed strain. For
intermediate ply orientation (Figure 13b), whatever the ply thickness, the most likely damage
sequence is transverse crack initiation followed by crack re-initiation at a larger imposed strain.
The observed change in the predicted sequence of damage mechanisms for different theta
ply angles can be explained due to the critical strain for re-initiation changes a lot with θ ply
misorientation, whereas the critical strain for debonding changes much less.

5. Discussions and conclusion

Composite materials offer significant potential for optimization in terms of the number of plies,
ply orientations, and stacking sequences. However, the potential offered by new manufacturing
techniques, such as automated fibre placement, is not being fully exploited due to the conserva-
tive practices currently in place. These practices are used to address the lack of predictive tools
for mechanisms that may lead to domino cracking through the thickness of the laminate. In this
article, we propose an approach based on the use of the coupled criterion, implemented using
3D finite element calculations.

To attain this objective, numerical simulations were conducted to investigate the damage
mechanisms occurring in laminates with θ-plies adjacent to 90° plies. The results indicate that
the damage sequence depends on the orientation mismatch between the 90° ply and the θ-ply.
Several mechanisms can be identified. The deformation leading to the initiation of the first crack
depends on both the ply thickness and the angle between the fiber orientation in the ply and
the applied loading direction. For equivalent ply thicknesses, the greater the misorientation of
the ply with respect to the loading axis, the smaller the deformation leading to the initiation of
the first crack. However, this conclusion is called into question by the thickness of the plies.
For instance, a thin ply oriented at 90° may undergo greater deformation before failure than
a thicker, less misoriented ply. This conclusion is supported by experimental results. In the
[702/0/902/0/−702]s laminate, the first cracks are initiated almost simultaneously in the doubled-
thickness outer 70° ply and in the quadrupled-thickness inner −70° ply.

This mechanism possibly enables two other mechanisms (that cannot occur without the
presence of this first crack), namely either inter-ply debonding or crack re-initiation in adjacent
θ-ply. These two mechanisms may possibly occur at the same imposed loading as the one
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necessary for transverse crack initiation, if the ply is the θ-ply orientation close enough to 90°
This conclusion is supported by experimental results. In the [702/0/902/−702/0]s laminate, the
first cracks are initiated simultaneously in the ±70° and 90° plies. Moreover, all the cracks in the
adjacent plies are continuous. Based on the results obtained for the previous laminate, it can be
concluded that the crack first initiates in the outer 70° ply, leading to the failure of the adjacent
plies.

If the angle offset between two adjacent plies is large, the most likely mechanism is debonding
at the interface, initiated at the tip of the transverse crack. As observed experimentally in the
[702/0/902/0/−702]s layup, a highly oriented ply (0° in this case), acts as a barrier, preventing
crack re-initiation.

This study thus provides insight towards optimal, less empirical and less restrictive design
of laminate stacking sequences. The results presented in this article were obtained using a
thermoset matrix composite. Future work will focus on extending this study to thermoplastic
matrix composites, which have much higher critical energy release rates. Moreover, for the
[302/902/−302/0]s laminate, the cracks in the 90° ply appear to be slightly inclined, which
motivates the investigation of the underlying phenomenon.
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[37] M. Muñoz-Reja, L. Távara, V. Mantič and P. Cornetti, “Crack onset and propagation at fibre–matrix elastic
interfaces under biaxial loading using finite fracture mechanics”, Compos. A: Appl. Sci. Manuf. 82 (2016), no. x,
pp. 267–278.

[38] H. Girard, A. Doitrand, B. Koohbor, R. G. Rinaldi, N. Godin and J. Bikard, Comparison between 2D and 3D fiber-
matrix debonding simulation for inverse identification of interface fracture properties, preprint, 2024. Online at
https://hal.science/hal-04431332.

[39] H. Girard, A. Doitrand, B. Koohbor, R. G. Rinaldi, N. Godin, D. Long and J. Bikard, “Influence of nearby fiber on
fiber–matrix debonding: Coupled Criterion prediction and debonding shape determination”, J. Mech. Phys. Solids
183 (2024), article no. 105498.

[40] Z. Hamam, N. Godin, P. Reynaud, C. Fusco, N. Carrére and A. Doitrand, “Transverse cracking induced acoustic
emission in carbon fiber-epoxy matrix composite laminates”, Materials 15 (2022), article no. 394.

[41] B. Mittelman and Z. Yosibash, “Asymptotic analysis of the potential energy difference because of a crack at a V-
notch edge in a 3D domain”, Eng. Fract. Mech. 131 (2014), pp. 232–256.

[42] B. Mittelman and Z. Yosibash, “Energy release rate cannot predict crack initiation orientation in domains with a
sharp V-notch under mode III loading”, Eng. Fract. Mech. 141 (2015), pp. 230–241.

[43] Z. Yosibash and B. Mittelman, “A 3-D failure initiation criterion from a sharp V-notch edge in elastic brittle
structures”, Eur. J. Mech. A/Sol. 60 (2016), pp. 70–94.
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Abstract. The determination of the remote stress causing crack propagation in an infinite 3D domain with an
embedded flat elliptical crack is here revisited in the framework of the Coupled Criterion of Finite Fracture
Mechanics. We started reviewing Linear Elastic Fracture Mechanics approaches, which differ by accounting
for different infinitesimal crack growths. Then, we provide the solution based on Finite Fracture Mechanics:
if the elliptical flaw is sufficiently small, the crack grows along iso-stress lines. For larger sizes, other crack
growths may take place. Thus, the present investigation shows that assuming an iso-stress crack front may
effectively provide the exact Finite Fracture Mechanics solution, particularly for small defects; on the other
hand, it can be wrong for larger size, providing moreover un-conservative predictions. However, for the
geometry at hand, it yields failure stress estimates differing from the actual one by a few percents. Thus, the
iso-stress assumption, conjectured by Leguillon [D. Leguillon, “An attempt to extend the 2D coupled criterion
for crack nucleation in brittle materials to the 3D case”, Theor. Appl. Fract. Mech. 74 (2014), pp. 7–17]—
implying strong simplifications in the numerical implementation of the coupled criterion in 3D problems—
seems to be largely justified by the present results. Moreover, regardless of the initial crack size, the finite
growth predicted by the model results in a new elliptical crack shape closer to the circular one, meaning the
eccentricity consistently decreases as the crack propagates.

Résumé. La détermination de la contrainte à distance provoquant la propagation d’une fissure dans un
domaine 3D infini contenant une fissure elliptique plane est ici revisitée dans le cadre du Critère Couplé
de la Mécanique de la Rupture Finie. Nous commençons par passer en revue les approches de la Mécanique
Linéaire de la Rupture, qui diffèrent selon la prise en compte de différentes croissances infinitésimales de
la fissure. Ensuite, nous présentons la solution basée sur la Mécanique de la Rupture Finie : si le défaut
elliptique est suffisamment petit, la fissure croît le long de lignes iso-contraintes. Pour des tailles plus grandes,
d’autres modes de croissance de fissure peuvent se produire. Ainsi, cette étude montre que supposer un front
de fissure iso-contraintes peut effectivement fournir la solution exacte en Mécanique de la Rupture Finie,
en particulier pour les petits défauts ; en revanche, cela peut être erroné pour des défauts de plus grande
taille, entraînant de surcroît des prédictions non conservatrices. Toutefois, pour la géométrie considérée,
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cela donne des estimations de contrainte de rupture ne différant que de quelques pourcents de la valeur
réelle. Ainsi, l’hypothèse d’iso-contraintes, avancée par Leguillon [D. Leguillon, “An attempt to extend the
2D coupled criterion for crack nucleation in brittle materials to the 3D case”, Theor. Appl. Fract. Mech. 74
(2014), pp. 7-17], impliquant des simplifications importantes dans l’implémentation numérique du critère
couplé dans des problèmes 3D, semble largement justifiée par les résultats présents. En outre, quelle que soit
la taille initiale de la fissure, la croissance finie prédite par le modèle aboutit à une nouvelle forme elliptique
de la fissure, plus proche d’un cercle, ce qui signifie que l’excentricité diminue systématiquement au fur et à
mesure de la propagation de la fissure.

Keywords. Coupled criterion, Finite fracture mechanics, 3D linear elastic fracture mechanics, Elliptical
cracks, Quasi-brittle materials.
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1. Introduction

The Coupled Criterion of Finite Fracture Mechanics (CCFFM), introduced for the first time by
Leguillon [1] in 2002, has proven to be an effective, yet simple, fracture criterion for obtaining
the failure load in a variety of structural problems, spanning from size effect (e.g. [2]) to stress
concentration/intensification (e.g. [3–5]) in homogeneous materials, from composite materials
(e.g. [6–8]) to bonded joints (e.g. [9]), from static loadings to dynamic (e.g. [10,11]) and fatigue
(e.g. [12,13]) loadings. With respect to Linear Elastic Fracture Mechanics (LEFM), a major
advantage is its applicability to any geometry, cracked or plain (i.e. not only cracked). With
respect to more sophisticated models like the Cohesive Crack Model (CCM) or the Phase Field
(PF) model for fracture, the numerical implementation of the CCFFM is usually much easier,
often allowing for an analytical or semi-analytical solution for the problem at hand. Moreover, the
CCFFM has proven to be often in agreement with CCM and PF models: for a comparison between
CCFFM and CCM the reader is referred to [14–19]; and for a comparison between CCFFM and PF
to [20–24].

Most of the CCFFM applications address two-dimensional problems, where cracks/V-notch
tips are straight lines through-the-thickness. However, recently, attention has also been focussed
to 3D problems, starting from Leguillon’s pioneering work [25]. The application of the CCFFM to
3D problems is challenging because the finite crack advance, differently from the 2D case, can
be of any shape [26]. To overcome this difficulty, researchers often assumed a finite crack growth
occurring along an iso-stress line, see e.g. [27–29]. One of our main purposes is investigating
this assumption for a model problem allowing an analytical derivation in the framework of the
CCFFM: a flat elliptical flaw in an infinite linear elastic medium subjected to a remote tensile
stress orthogonal to the crack plane.

The linear elastic stress-strain solution for an elliptical flaw under remote tensile stress dates
back to Green and Sneddon [30], following (and including) the one for a penny-shaped crack
provided by Sneddon [31]. Later, Irwin [32] provided the Stress Intensity Factor (SIF) values along
the elliptical crack front. More recent contributions related to the stress field in the vicinity of the
crack front can be found in [33,34]. For what concerns crack propagation, Lazarus [35], among
different flaw shapes, considered the elliptical one and analysed the crack growth for a brittle
fracture (assuming propagation where the SIF reaches the fracture toughness and regularising
the crack front) and fatigue (using Paris’ equation). More numerical/practical contributions
along with experimental data validation (under cycling loading) about crack propagation from
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flat elliptical cracks can be found, e.g., in [36–38]. Finally, we refer to a recent numerical
investigation where the CCFFM criterion has been exploited to deal with free edge delamination
in angle-ply laminates, assuming a semi-elliptical crack shape, under static [39], fatigue [40] and
thermal [41] loadings. These papers provide details on the numerical implementation of the
Coupled Criterion for geometries similar to the one addressed herein.

The paper is organised as follows. In Section 2 we focus on LEFM, deriving the general
expression of the mode I failure stress in the presence of a flaw of any shape under the assumption
of an infinitesimal iso-stress crack growth. Then, we specify the failure stress for the flat elliptical
crack, providing its closed form estimate by means of SIFs. Thereafter, we show the same
result can be achieved by evaluating the Strain Energy Release Rate (SERR). Following this latter
procedure, we also consider the infinitesimal elliptical crack growth along the minor axis alone,
showing it provides failure stress estimates lower than the iso-stress one.

In Section 3 we derive the failure stress provided by the CCFFM for the flat elliptical crack.
We assume the finite crack propagation to be characterised by an elliptical crack front of any
shape/size. Thus, the new crack front is characterised by two parameters (the increments of
the semi-axes); CCFFM implies solving a minimisation problem upon the variation of these two
parameters. It will be shown that, based on the crack shape and size, two different scenarios (i.e.
iso-stress and minor-axis crack propagations) can occur and the corresponding fracture stress is
finally provided. The results are commented and in Section 4 some conclusions are drawn.

2. LEFM approach

We first provide the failure stress according to LEFM for a flat crack with an arbitrary shape subject
to a mode I loading, then specify it for the elliptical crack. Two procedures, based on SIF or SERR,
are outlined and exploited.

2.1. Planar crack of arbitrary shape: iso-stress crack growth

Let us consider a planar crack of arbitrary shape in an infinite body, made by a homogeneous
isotropic linear elastic brittle material. Let the plane of the crack be (x, y). The remote loading
is a uniform tensile stress σ in the z direction as in Figure 1. Under this assumption the crack
is in pure mode I condition (or—the same—in opening mode, since, because of isotropy, the
displacement field is symmetrical to the crack plane).

Except for the penny-shaped crack, the SIF varies along the contour C of the crack, i.e.
K I = K I (s), s being the curvilinear abscissa along the contour C (Figure 1b). Denoting by K I ,min

and the by K I ,max the minimum and maximum value of the SIF respectively, we can write:

K I ,min ≤ K I (s) ≤ K I ,max. (1)

Assume K I = K I (s) is available in an analytic or numerical form, and the fracture toughness KIc

of the material is known. One is interested in σf, the remote stress causing crack growth, i.e.
failure, according to LEFM. Because of mode I, the crack expands in its plane (x, y). However, if
one wishes to consider the Griffith’s SERR, there are an infinite possible shapes of infinitesimal
crack growth, unlike in 2D domains where only a collinear crack growth is possible along an
infinitesimal length da (a being the crack length).

A reasonable starting point is assuming (yet, an assumption) an infinitesimal crack growth
defined by an iso-stress line. Since the asymptotic stress field in the direction normal to the crack
contour (r is the coordinate along the normal n̂ starting from the crack contour C , see Figure 1b)
is:

σz
∼= K Ip

2πr
(2)
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Figure 1. A planar crack of arbitrary shape in an infinite 3D domain under uniform tensile
stress normal to the crack plane (a). Crack geometry (b).

Figure 2. Asymptotic stress field ahead the crack front (a) and iso-stress crack growth (b).

The same stress level (e.g. σ0) is achieved at different distances from the contour C , larger where
K I is larger, smaller where K I is smaller (see Figure 2a). Where K I is maximum, the stress σ0 is
achieved at a distance (∆a)max:

(∆a)max
∼=

K 2
I ,max

2πσ2
0

(3)

while in a generic point we have:

(∆a) ∼=
K 2

I

2πσ2
0

(4)

Dividing Equation (3) by (4), one obtains:

∆a

(∆a)max

∼=
(

K I

K I ,max

)2

= G

Gmax
(5)
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where the last expression is a consequence of Irwin’s relationship G = K 2
I /E ′, G being the SERR

and E ′ the Young modulus of the material under plane strain conditions. As ∆a tends to zero,
Equation (5) defines the shape of the infinitesimal iso-stress crack growth (see Figure 2b).

Expressing the Griffith infinitesimal energy balance according to LEFM (Gc being the material
fracture energy) by an integral along the curve C , one obtains:∮

C
G(s)∆a ds =

∮
C

Gc∆a ds (6)

Dividing both sides of Equation (6) by (∆a)max and substituting Equation (5) into Equation (6),
one obtains the condition for crack growth:

Giso =

∮
C

G2(s)ds∮
C

G(s)ds
=Gc (7)

The ratio between the integrals is somehow an equivalent-2D SERR, since crack growth occurs
whenever this value reaches the material fracture energy Gc, like in 2D problems. We named it
Giso since it is the equivalent-2D SERR under the assumption of iso-stress crack growth. Note
that, from a mathematical point of view, Giso is the contra-harmonic mean (sum of the squared
values divided by sum of values, see Appendix A) of the SERR values evaluated along the crack
contour. Among different averages (i.e. harmonic, geometric, arithmetic, quadratic, etc.) the
contra-harmonic mean is the highest one, thus affected by large values and close to the maximum
value of the variable. By Irwin’s relationship we can get also the equivalent-2D SIF K I ,iso, which
provides the failure stress when it equals the material fracture toughness KIc:

K I ,iso =

√√√√√√√
∮

C
K 4

I (s)ds∮
C

K 2
I (s)ds

= KIc (8)

2.2. Elliptical crack: iso-stress crack growth by SIF values

As a particular case, we consider the elliptical flat crack shown in Figure 3a. The failure stress ac-
cording to LEFM assuming an iso-stress crack growth is here obtained by the results in Section 2.1
(Equation (8)). The ellipse in Figure 3b is defined by semi-axes a and b (a ≥ b) defined as:

x2

a2 + y2

b2 = 1 (9)

or in parametric form (0 ≤ϕ< 2π):

P(ϕ) =
{

x = a cosϕ

y = b sinϕ
(10)

The aspect of the ellipse is univocally defined either by the aspect ratio γ = b/a (0 < γ < 1) or
by the eccentricity k =

√
1− (b/a)2 (0 < k < 1).

The SIF along the crack front is [32]:

K I = σ
p
πb

E(k2)
4
√

1−k2 cos2ϕ (11)

where E(k2) is the complete elliptic integral of the second kind (see Appendix B). From Equa-
tion (11) the maximum value of the SIF K I ,max is at point B (i.e. on the minor axis, ϕ=π/2) while
the minimum value of the SIF K I ,min is at point A (i.e. on the major axis, ϕ= 0):

K I ,max = (K I )B = σ
p
πb

E(k2)
(12)
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Figure 3. An elliptical (planar) crack in an infinite medium under uniform tensile stress
normal to the crack plane (a). Crack geometry (b).

K I ,min = (K I )A = σb

E(k2)

√
π

a
= K I ,max

√
b

a
(13)

For what concerns K I ,max, Equation (12) encompasses the limit cases of a penny-shaped crack
(k = 0 or γ= 1):

K I = 2

π
σ
p
πb (14)

constant all around the crack front, and of a through-the-thickness crack of length 2b (corre-
sponding to k = 1 or γ= 0):

K I =σ
p
πb (15)

To obtain the failure stress, we have to compute the 2D-equivalent SIF by means of Equation (8).
Using the parametric expression of the ellipse (Equation (10)), the equivalent SIF (Equation (8))
reads:

K I ,iso =

√√√√√√
∫ π/2

0 K 4
I (ϕ)

∥∥∥ dP
dϕ

∥∥∥dϕ∫ π/2
0 K 2

I (ϕ)
∥∥∥ dP

dϕ

∥∥∥dϕ
= σ

p
πb

E(k2)

√√√√∫ π/2
0

(
1−k2 cos2ϕ

)3/2 dϕ∫ π/2
0

(
1−k2 cos2ϕ

)
dϕ

(16)

where the double symmetry of the ellipse has been exploited to limit the integration interval
to [0,π/2]. By analytical manipulations, the integrals in Equation (16) can be cast in terms of
complete elliptic integrals of first (K (k2)) and second (E(k2)) kind (see Appendix B) as:

K I ,iso = 2σ
p

b

E(k2)

√
2(2−k2)E(k2)− (1−k2)K (k2)

3(2−k2)
(17)

Thus, according to LEFM and iso-stress crack growth, failure is achieved whenever the above
quantity reaches the material fracture toughness. Hence, the corresponding failure stress
(σf)LEFM-iso is:

(σf)LEFM-iso =
p

3

2

KIcp
b

E(k2)

√
2−k2

2(2−k2)E(k2)− (1−k2)K (k2)
(18)
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Note that, as expected for any LEFM approach, the failure stress tends to infinity as the crack
vanishes (i.e. σf →∞ as b → 0).

2.3. Elliptical crack: iso-stress crack growth by SERR evaluation

We show in this sub-section that same results in Section 2.2 are obtained also by proper evalua-
tion of the SERR. This procedure will be exploited in the following to remove the assumption of
iso-stress crack growth.

Computation of the SERR G can be performed without the need of SIF (i.e. without exploiting
Irwin’s relationship). It is the way followed originally by Griffith in his 1921 seminal work.
Accordingly, under load control, one has:

G = lim
∆A→0

∆Φ

∆A
(19)

To compute Giso (i.e. the SERR assuming an iso-stress crack growth) by Equation (19) one need
to know (i) the iso-stress contour lines and (ii) the change in strain energy ∆Φ due to the (finite)
variation ∆A of the crack surface. These ingredients can be derived by Green and Sneddon [30]
solution. Accordingly, because of the remote stress the planar elliptical crack takes the shape of
an ellipsoid whose semi-axes are a,b and wmax (the maximum crack opening displacement), the
last one given by:

wmax = 2σb

E(k2)E ′ (20)

By looking at the load as a uniform remote tensile stress field plus a uniform compressive stress
applied on the crack faces, and by means of Clapeyron’s theorem, the strain energy Φ increment
due to the presence of the crack can be computed as:

Φ= σV

2
(21)

where V is the volume of the (deformed) crack (i.e. the ellipsoid), whose value is:

V = 4
3πa b wmax (22)

Hence, by combining Equations (20) to (22):

Φ= 4π

3E(k2)

σ2ab2

E ′ (23)

The iso-stress lines can also be derived from Green and Sneddon [30]. From their solution, the
σz stress field on the crack plane (outside the crack faces) is amenable of the following analytical
expression:

σz

σ
= 1+ 1

E(k2)

[
a√
ξ

√
b2 +ξ

a2 +ξ
−E

(
arcsin

a√
a2 +ξ

|k2

)]
(24)

where E(ϕ|k2) is the incomplete elliptic integral of the second kind (see Appendix B) and ξ is an
ellipsoidal coordinate. On the crack plane (z = 0), ξ= constant (ξ≥ 0) corresponds to a family of
ellipses with equation:

x2

a2 +ξ
+ y2

b2 +ξ
= 1 (25)

Hence, we get a relevant information: the iso-stress curves are a particular family of ellipses. More
precisely, Equations (24) and (25) show that, as ξ increases from 0 to ∞, the stress value decreases
from ∞ to σ and the corresponding isostress lines are ellipses of increasing size and decreasing
eccentricity. As an example, some of them are plotted in Figure 4a for an elliptical crack with
aspect ratioγ= 0.5. Naming by∆a and∆b the increment of the semi-axes of the generic iso-stress
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Figure 4. Possible crack growths: (elliptical) iso-stress crack growth (a); elliptical, with
increment along minor axis alone (b), named minor-axis crack growth; non-elliptical crack
growth, not considered in the current investigation (c).

line with respect to the ones of the original elliptical flaw, from Equation (25) the relationship
between them may be obtained (see details in Appendix C):

∆a =
√

a2 +2b∆b + (∆b)2 −a (26)

Let us assume the crack grows by a finite amount up to a given iso-stress line, which in turns is
defined by a given ξ value. From Equation (23), the energy variation ∆Φ is:

∆Φ= 4πσ2

3E ′

{ (
b2 +ξ

)√
a2 +ξ

E
[
(a2 −b2)/(a2 +ξ)

] − ab2

E(1−b2/a2)

}
(27)

while the newly created crack surface is (difference between elliptical areas):

∆A =π
[√

a2 +ξ
√

b2 +ξ−ab
]

(28)

The following step is inserting Equations (27) and (28) into Equation (19). Then, the limit for
∆A → 0 (i.e. ξ → 0) has to be evaluated. The limit takes the undetermined form 0/0, but the
application of De l’Hôpital rule along with property (B4) allows the computation of the limit.
Finally equating the SERR Giso to the fracture energy Gc along with Irwin relationship yields
failure stress (σf)LEFM−iso, which coincides with Equation (18). Thus, despite the different lines
of thought (local vs. global), we checked that the SIF- and SERR-based procedures yield the same
outcome, Equation (18).
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2.4. Elliptical crack: minor axis crack growth

On the basis of the analysis in the previous section, we are able to evaluate the failure stress for
any elliptical crack growth (i.e. not only the iso-stress crack growth). The criterion that mostly
agrees with LEFM is the G-max, i.e. the crack growth actually occurring is the one providing the
maximum SERR and consequently the minimum failure stress. Since the SIF is higher at the edge
of the minor axis, among all elliptical crack extensions, the one resulting in the largest SERR is the
one at which only the minor axis is increasing.

Let us denote by ∆b the increment of the minor axis (see Figure 4b). The energy available for
a finite elliptical crack growth along the minor axis by ∆b is:

∆Φ= 4πσ2

3E ′

{
a (b +∆b)2

E
[
1− (b +∆b)2 /a2

] − ab2

E
(
1−b2/a2

)}
(29)

The energy needed to create the new surface is:

∆Φ=Gcπ [a (b +∆b)−ab] (30)

The corresponding failure stress (σf)LEFM-minor is obtained by equating Equations (29)–(30) and
taking the limit for ∆b → 0, or, by introducing the ratio εb between the final value of the minor
axis and its initial value, letting εb → 1:

εb = b +∆b

b
(31)

(σf)LEFM-minor = lim
εb→1

√√√√√√3

4

K 2
Ic

b

εb −1
ε2

b

E
[

1−ε2
b (1−k2)

] − 1
E(k2)

=
p

3

2

KIcp
b

E(k2)
k√

(1+k2)E(k2)− (1−k2)K (k2)
(32)

where again De l’Hôpital rule along with property (B4) has been used.
A further, third, estimate of the failure stress is obtained by setting K I ,max = KIc. This condi-

tion is sometime referred to as Irwin criterion (as opposed to the previous ones, based on Equa-
tion (19), referred to as Griffith criterion, see e.g. [42]). Note that, differently from 2D problems
where the two criteria coincide, the equality K I ,max = KIc does not rely on any energy balance;
however, it is interesting because it provides conservative predictions with respect to the previ-
ous estimates Equations (18) and (32). Let us denote (σf)Irwin the new failure stress estimate. By
Equation (12) one easily obtains:

(σf)Irwin = KIc
E(k2)p
πb

(33)

In Figure 5 the dimensionless failure stress estimates Equations (18), (32), (33) are plotted
vs. the ellipse eccentricity. Note that all predictions are close, since the contra-harmonic mean
(of G ∼ K 2

I ), as already observed, is close to its maximum value. In Figure 5a the estimates are
compared at constant minor axis length. As k increases, so does the major axis and, obviously,
the failure stress decreases. LEFM based on minor-axis crack growth provides predictions closer
(or equal) to G-max criterion: however, we cannot state Equation (32) coincides with G-max
criterion since infinitesimal crack extensions other than the elliptical ones could take place
(see e.g. Figure 4c). It is apparent that, according to G-max criterion the effective failure stress
lies in between Equations (32) (upper bound) and (33) (lower bound). Reasonably, it will be
closer to minor-axis crack growth for small eccentricity and closer to Irwin estimate for large
eccentricity, where an elliptical crack growth is unlikely: e.g., for k = 1, we know the failure stress
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Figure 5. LEFM failure stress estimates vs. ellipse eccentricity k for an infinitesimal iso-
stress crack growth (LEFM, iso-stress), an infinitesimal minor axis crack growth (LEFM,
minor-axis), K I ,max = KIc (Irwin): at constant defect minor axis b (a) and at constant defect
area A (b); k = 0 refers to a penny-shaped crack while k = 1 refers to a through-the-thickness
crack.

is σf = KIc/
p

(πb), since the geometry becomes the 2b-long through-the-thickness crack, while
LEFM-minor (and LEFM-iso) provides σf = KIc

p
3/
p

(8b), see Figure 5a.
In Figure 5b the same estimates are plotted at constant defect area A = πab. It is evident that

the effect of eccentricity is very low up to eccentricity values close to unity, i.e. what really affect
failure stress is the defect area and not its shape. This result agrees with the ones provided by
David and Lazarus [43], related to (flat) defects of almost any shape.

3. FFM approach

The estimates provided in the previous section are based on a LEFM approach. As such, they
share the well-known drawback that can be applied only to cracked bodies, or, the same, they
provide infinite failure stress as the defect size vanishes. On the other hand, for quasi-brittle
materials, we expect the failure stress to approach the material tensile strength σc as the defect
size vanishes. Thus, more refined models able to take into account the material tensile strength
beyond the fracture toughness (or fracture energy) have to be used to deal with defects of any
size. Herein, we resort to the CCFFM, whose predictions will match LEFM just for relatively large
defect size, where energy alone rules crack growth and propagation.
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Figure 6. An elliptical (planar) crack in an infinite medium under uniform tensile stress
normal to the crack plane: solution by FFM (a); crack geometry and elliptical finite crack
growth of any shape (b).

The CCFFM assumes crack growth by a finite increment ∆A (whence the name FFM), see
Figure 6a. This increment as well as the failure load are determined based on the finite energy
balance and a stress condition (whence the name CC)—the stress must exceed the material
tensile strength over the newly created crack surface ∆A. While in 2D the finite crack extension
is simply determined by its length and, possibly, by its direction, in 3D problems the crack
extension can have any shape (the actual one will be the one minimising the failure load),
even in cases where the crack plane is already known, as in the present case. The application
of FFM to 3D problems is thus a challenging task. Up to now, a common approach in the
literature has been to consider finite crack growth following the iso-stress lines [25,27–29]. This
assumption greatly simplifies the problem, allowing the crack growth to be described by just
one parameter; moreover, it makes the fulfilment of the stress requirement trivially checked.
However, a check of the approximation introduced by considering just (finite) iso-stress crack
growths is not available; our goal is to provide it for the model problem at hand (the flat elliptical
crack).

Thus, let us derive the CCFFM failure stress for the planar elliptical crack (Figure 2). Here we
don’t restrict the analysis to finite iso-stress crack growth, since the results in the previous section
allow us to consider the crack growth of any (yet elliptical) shape.

Hence, let us assume a finite crack growth where the new crack front has the shape of an
ellipse (see Figure 6b) (whose symmetry axes coincide with the ones of the original flaw elliptical
geometry). Its shape is univocally determined by two parameters, namely the increment of
the minor axis ∆b and the increment of the major axis ∆a. As such, this approach includes
as particular cases the iso-stress crack growth (Figure 4a) and the minor-axis crack growth
(Figure 4b). Since the iso-stress lines are also elliptical, the lowest stress level within the crack
extension (darker area in Figure 6) is reached either at A′ or B ′ (Figure 6b). Thus, in order
the stress condition to be fulfilled, it is enough to check that σz (A′) ≥ σc and σz (B ′) ≥ σc;
meanwhile FFM also requires that the energy available for crack growth ∆Φ is larger than the
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energy dissipated to create the new fracture surface ∆A. That is:
σz (A′) ≥σc

σz (B ′) ≥σc

∆Φ≥Gc∆A

(34)

It is worth noting the analogy with the approach presented in [44], where the growth of an
embedded elliptical crack under fatigue loading was analysed by analytically coupling and
solving the Paris laws at points A and B, while assuming that the crack front maintains an elliptical
shape throughout its propagation.

Beyond the ratio εb between the final value of the minor axis and its initial value—
Equation (31)—we now also introduce the ratio εa between the final value of the major axis and
its initial value:

εa = a +∆a

a
(35)

The first inequality in Equation (34) is achieved by means of Equation (24) along with the
following ξ value (coming from Equation (25)):√

a2 +ξ= a +∆a ⇒ ξ= (ε2
a −1)a2 (36)

yielding (by Equation (35) as well):

σ

σc
≥ E(k2)

[
1

εa

√
ε2

a −k2

ε2
a −1

+E(k2)−E

(
arcsin

1

εa

∣∣k2
)]−1

= fSa(εa ,k2) (37)

The second inequality in Equation (34) is achieved by means of Equation (24) along with the
following ξ value (coming again from Equation (25)):√

b2 +ξ= b +∆b ⇒ ξ= (
ε2

b −1
)

b2 (38)

yielding (by Equation (31) as well):

σ

σc
≥ E(k2)

 ε2
b√

ε2
b −1

√(
1−k2

)
ε2

b +k2
+E(k2)−E

arcsin
1√(

1−k2
)
ε2

b +k2

∣∣k2



−1

= fSb
(
εb ,k2)

(39)
The third inequality in Equation (34) follows from Equation (23) and the area of the crack

increment ∆A:

∆Φ = 4π

3

σ2

E ′


(a +∆a) (b +∆b)2

E

[
1−

(
b+∆b
a+∆a

)2
] − ab2

E

[
1−

(
b
a

)2
]
 (40)

∆A = π [(a +∆a) (b +∆b)−a b] (41)

Let us introduce the dimensionless flaw size β as:

β= b

(KIc/σc)2 = b

lch
(42)

where lch is (Irwin’s) material characteristic length. Equation (42) highlights that the crack size
is a relative concept: what really matters is the ratio of the size to the characteristic length.
Note also that β is the square of the inverse of the so-called brittleness number introduced by
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Figure 7. Graphical representation of the minimum search—Equation (44)—for ellipse
eccentricity k (flaw shape) equal to 0.8. The dots correspond to the position of the
minimum. Small flaw size (β = 0.8), corresponding to iso-stress crack growth scenario
(a); large flaw size (β = 10), corresponding to minor-axis crack growth scenario (b); limit
(β∼= 1.45) case (c).

Carpinteri [45], s = KIc/(σc
p

b). By Equations (40) and (41), the third inequality in Equation (34)
in dimensionless form finally reads:

σ

σc
≥

p
3

2
√
β

√√√√√√
εaεb −1

εaε
2
b

E

[
1− (1−k2)ε2

b
ε2

a

] − 1
E(k2)

= 1√
β

fE (εa ,εb ,k2) (43)

Hence, according to FFM, for a given defect shape (k) and size (β), the relative failure stressσf/σc

is univocally determined. More precisely,σf is the minimum value, for any crack increment εa > 1
and εb > 1, satisfying the three inequalities in Equation (34). That is:

σf =σc ×min
εa>1
εb>1

max

{
fSa

(
εa ,k2) , fSb

(
εb ,k2) ,

1√
β

fE
(
εa ,εb ,k2)} (44)
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Let us fix k, e.g. k = 0.8. Depending on β, we may have just two scenarios, as evident in Figure 7.
For small β (Figure 7a), i.e. for relatively small flaw size, the minimum load is achieved for iso-
stress crack growth (Figure 4a). The finite crack growth is significant (i.e. εa and εb significantly
larger than unity) and the relationship between the increment of the two semi-axes is given by
Equation (26) that, in terms of εa and εb , can be more conveniently expressed as (see Appendix C
for details):

εa =
√

k2 + (
1−k2

)
ε2

b (45)

Note that in this case the three inequalities in Equation (34) are strictly fulfilled. This former
scenario is the iso-stress one.

The second scenario (Figure 7b) is linked to large β, i.e. for relatively large flaw size: the
minimum load is achieved for minor-axis crack growth (Figure 4b). The finite crack growth is
relatively small (i.e. εb slightly higher than unity) and, of course, εa = 1 since there is no increment
in the major axis of the flaw. Note that in this latter case the second and third inequalities in
Equation (34) are strictly fulfilled while the first one is over fulfilled. This latter scenario is the
minor-axis one. The discriminant between the two scenarios is when the failure stress is the
same (see Figure 7c), i.e.:

fE (εa = 1,εb) = fE

(
εa =

√
k2 + (1−k2)ε2

b ,εb

)
(46)

This is an equation in the unknown εb . Let us name εb its solution. The corresponding
dimensionless threshold size βth is obtained by equating the stress condition (either the first or
the second one in Equation (34)) with the energy one (third condition in Equation (34)). That is:

βth =
[

fE
(
εa = 1,εb

)
fSb

(
εb

) ]2

(47)

For k = 0.8, we found βth
∼= 1.45. Then, if β<βth, iso-stress scenario takes place. Accordingly, the

finite crack growth (through εb) is given by the solution of the following equation:√
β fSb (εb) = fE

(
εa =

√
k2 + (1−k2)ε2

b ,εb

)
(48)

On the other hand, ifβ>βth, minor-axis scenario takes place. Accordingly, the finite crack growth
(through εb) is provided by solving:√

β fSb (εb) = fE (εa = 1,εb) (49)

Let us denote by εbc the solution of either Equation (48) or (49). In both cases the failure stress is
given by either the stress or energy condition. Taking the first we have:

σf =σc fSb (εbc) (50)

For clarity, the flow chart providing the finite crack growth and the failure stress is given in
Figure 8.

In Figure 9 the failure stress vs. flaw size plots for different ellipse eccentricity values are drawn.
The threshold size according to which there is the switch between scenarios is also highlighted.
While the iso-stress scenario prevails for small eccentricity (being the only one for a penny-
shaped crack), the minor-axis scenario becomes predominant for large eccentricity. Note also
that FFM reverts to LEFM (in its minor-axis crack growth version) as the flaw size increases; on
the other hand, for small flaw size, LEFM provides unrealistically high failure stresses, while FFM
predictions remain always lower than the material tensile strength.

In Figure 10a the different curves in Figure 9 are compared altogether, including the ones
referring to a through-the-thickness crack of semi-length b (k = 1) and to a penny-shaped crack
of radius b (k = 0). Note that these two latter cases are 2D geometries (the first one is actually
a 2D problem; the second one is a pseudo 3D problem, due to the radial symmetry); as such,
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Figure 8. Flowchart to determine the failure stressσf for a given flaw shape (k) and size (β).

their solution is simpler and already available in the literature [16,17]. Of course, the comparison
being made at constant b, the failure stress decreases as the eccentricity increases. In Figure 10b
the same comparison is provided at a constant flaw area (the through-the-thickness crack case
is somewhat meaningless, since A constant and a infinite yield b null). Again, as in the LEFM
analysis, it is apparent that, for relatively small eccentricity, the parameter governing failure stress
is the flaw area. In other words, for flaw aspect ratio b/a between 0.5 and 1, the failure stress due
to the presence of an elliptical crack is (almost) equal to the one due to a penny-shaped crack of
the same area.

Note that, whatever is the scenario, the elliptical crack always grows toward an elliptical
shape closer to that of a circle (with respect to the original elliptical shape), i.e. the eccentricity
diminishes. This is a common finding in the literature, even for original flaws of shape other than
the elliptical one [35,38,43,44].

Regarding the difference between iso-stress and non-iso-stress finite crack growth, for small
sizes fracture propagates actually by iso-stress lines. For larger size (i.e. β > βth) the iso-stress
failure stress prediction becomes larger than the minor axis one. Let us consider for instance
the case considered in Figure 7b, where k = 0.8 and β = 10: although it is clear that the
minimum load is achieved for minor-axis growth (εa = 1), it is also apparent that the failure stress
corresponding to iso-stress crack growth is just slightly larger. Actually the difference between the
two predictions increases with size, i.e. β. For β→∞, FFM reverts to LEFM and the difference
between minor-axis and iso-stress predictions can be directly determined from Figure 5a. For
instance, for k = 0.8, the relative difference (i.e. the error made using the iso-stress assumption)
is about 3%, which is almost negligible from an engineering point of view. Figure 5a also shows
that the largest error takes place when β→∞ and k = 1, i.e. a large through-the-thickness crack:
in this extreme case the difference is [

p
(3/8)−p

(1/π)/
p

(1/π)] ∼= 8.5%. Thus, we can conclude
that, for the geometry at hand and for ellipse aspect ratios not really close to zero (i.e. except for
case b ≪ a), the error made by using the iso-stress crack growth assumption is reasonably small.
Of course, this does not mean that this is always the case, but the present case corroborates the
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Figure 9. Failure stress vs. dimensionless flaw size β = b/lch for different flaw shape (i.e.
ellipse eccentricity k or aspect ratio γ= b/a) according to LEFM (minor axis crack growth)
and to FFM: γ= 0.8, k = 0.6 (a); γ= 0.5, k ∼= 0.85 (b); γ= 0.2, k ∼= 0.98 (c). Threshold value of
β dividing iso-stress (left) and minor axis (right) finite crack growth are also highlighted.

conjecture made by Leguillon [25], i.e. iso-stress crack growth can be a reasonable and effective
simplifying assumption.

Finally, note that extending our analysis to a more complex stress state, such as the one
occurring to the present geometry when the remote tensile stress is not normal to the crack
plane, would broaden the applicability of the paper. However, given the mode mixity (I, II, III)
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Figure 10. FFM estimates of the failure stress for different flaw shape (k ∼= 0, 0.6, 0.85, 0.98,
1; i.e. γ = 1, 0.8, 0.5, 0.2, 0) vs. dimensionless flaw size β = b/lch (a) and vs. dimensionless
flaw area (A/l 2

ch) (b).

and the expected non-planar (unknown) crack growth, this is a major, challenging task going
beyond the scope of the current manuscript. In this sense, it would be reasonable to start with
an inclined penny shaped crack, which is a configuration investigated in the past with simpler
fracture criteria, see e.g. [46]; see also [47] for recent interesting experimental data.

4. Conclusions

The failure remote stress causing (unstable) crack propagation in an infinite linear elastic 3D
domain containing a flat elliptical crack has been obtained in an analytical form by means of the
CCFFM, under the assumption that the finite crack growth can be of any elliptical shape. It is
found that finite crack growth always leads to elliptical crack geometries with lower eccentricity,
i.e. the crack shape tends to that of a penny-shaped crack. Differently from other investigations
available in the literature, in this 3D application of FFM we removed the assumption of iso-
stress crack growth. Particularly for large flaws we found failure stress values lower than the
ones obtained by the iso-stress assumption, which, thus, must be seen as potentially dangerous
since providing non-conservative predictions. Nevertheless, the difference appears to be of a
few percents and, thus, the iso-stress assumption when applying CCFFM is regarded as more
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than reasonable in engineering practice. It is noteworthy that for small elliptical defects, the
failure remote stress predicted by the present FFM procedure can be significantly smaller than
that obtained by LEFM assuming infinitesimal crack growth. Notably, the failure remote stress
predicted by LEFM depends on the assumed shape of the infinitesimal crack increment.

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

Acknowledgements

The present manuscript is the final version of what presented in the Sevilla workshop within
NEWFRAC Project (Marie Sklodowska-Curie grant agreement No. 861061), which is gratefully ac-
knowledged by all the Authors, and later, at the International Conference of Fracture held in At-
lanta, June 2023 (ICF15). In Atlanta the Authors had—as usual—fruitful and stimulating discus-
sions about the topic investigated in the present manuscript with Prof. Dominique Leguillon: al-
though he passed away, we wish to thank him and dedicate the present work to his memory. ZY
is grateful for the partial support of this research by the Pazy Research Foundation. The research
of VM was partially supported by the Spanish Ministry of Science and Innovation and the Eu-
ropean Regional Development Fund (PID2021-123325OB-I00). Finally, PC wishes to thank also
Prof. Veronique Lazarus for pleasant and useful discussions had at Sorbonne Université, where
he was upon Prof. Leguillon’s invitation.

Appendix A.

The Contra-harmonic mean (C ) was introduced by Eudoxus from Cnidus (408–355 B.C.) as the
ratio between the sum of the squares of the values and the sum of the values themselves. The
name is due to the fact that, if we consider two values a and b, the distance between the
Arithmetic mean (A) and the Harmonic mean (H) is equal to the one between the Contra-
harmonic mean (C ) and the Arithmetic mean (A):

A(a,b) = a +b

2
(A1)

H(a,b) = 2

1/a +1/b
(A2)

C (a,b) = a2 +b2

a +b
(A3)

C (a,b)− A(a,b) = A(a,b)−H(a,b) (A4)

For instance, if a = 9 and b = 1, A = 5, H = 1.8, C = 8.2 (C−A = 3.2 = A−H).

Appendix B.

The complete elliptic integral of the first kind reads:

K (m) =
∫ π/2

0

1√
1−m sin2ϕ

dϕ (B1)



Pietro Cornetti et al. 743

The complete elliptic integral of the second kind reads:

E (m) =
∫ π/2

0

√
1−m sin2ϕdϕ (B2)

The derivative of the elliptic integral of the second kind with respect to m is:

dE(m)

dm
= E(m)−K (m)

2m
(B3)

The incomplete elliptic integral of the second kind is:

E
(
ϕ |m )= ∫ ϕ

0

√
1−m sin2ϑdϑ (B4)

The relationship between the incomplete elliptic integral and its complete counterpart is:

E
(π

2
|m

)
= E (m) (B5)

Appendix C.

Here we derive the relationship between the semi-axes increments in case of iso-stress crack
growth, in dimensional—Equation (26)—and dimensionless—Equation (45)—form.

From Equation (36) we have:
∆a =

√
a2 +ξ−a (C1)

while, from Equation (38):
ξ= (∆b +b)2 −b2 (C2)

Replacing (C2) into (C1), we get Equation (26).
From Equation (36) we have also:

ε2
a = ξ

a2 +1 (C3)

while, from Equation (38):
ξ= b2 (

ε2
b −1

)
(C4)

Replacing (C4) into (C3) and recalling that, by eccentricity definition, (b/a)2 = 1−k2, we get
Equation (45).
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1. Introduction

The pioneering paper [1] of Leguillon was, without a doubt, a major step in the direction of
understanding and quantifying the crack nucleation process. Its starting point was a seemingly
simple remark concerning the potential energy release occuring during the process:

−δEpot ≥GcδS (1)

in which Gc denotes the fracture energy per unit surface. As opposed to the Griffith concept of
rate of energy release [2], it is emphasized that the above inequality refers to a finite variation δS
of surface. The significance of (1), that is generally referred to as energy criterion, is now widely
acknowledged. In [1], it was proposed that (1) should be combined with a stress criterion to be
fulfilled in the area where the crack is nucleated. This is intended to determine the critical loading
level of nucleation as well as its extent. This approach is therefore often referred to as the double
or coupled criterion (CC) method. Ever since, the latter was applied to deal with a number of
different situations, first in its initial quasi-static framework and more recently with account for
dynamic effects [3].

More recently, in the case of stable nucleation processes, [4] argued that Leguillon’s energy
criterion was sufficient for characterizing the occurrence and the extent of nucleation. This new
methodology was first applied to study fracture nucleation that occurs during tunnelling in the
context of nuclear waste storage. It was also illustrated in various problems of rock mechanics
(e.g. [5,6]). Finally, an extension to the case of saturated porous materials was proposed [7].

The modelling of crack nucleation must address the determination of the geometry of the
crack and its evolution in time. For simplicity, considering the case of a straight line crack,
it amounts to determine the interval I of observable crack lengths ℓ together with the crack
velocity ℓ̇. The next question is how the loading level affects the minimum and maximum (if any)
in I as well as the evolution law.

Among these questions, the determination of the minimum of I , which can be termed the
initiation crack length, is of paramount importance. More precisely, the question is whether it
has a non-zero value or if the interval I of observable crack lengths truly starts at 0. It has
been argued [3] that a non zero initiation length is an artefact of the quasi-static description
of nucleation. It was also suggested in [3] that an appropriate dynamic description of crack
initiation could account for a progressive extension of crack length starting from 0. It seems
however that the issue is still opened and that some arguments are in favor of a strictly positive
initiation length, irrespective of whether the description is dynamic or not. Furthermore, the
question that comes next is whether the model of brittle material is able, by itself, to describe the
transition from the initial state (no crack) to that of a cracked state. We shall see that the energy
criterion in the form (1) is a good starting point to contribute to this discussion.

More generally, the choice between quasi-static and dynamic modelling of nucleation is in
itself an important issue that the present paper would like to consider. Indeed, as pointed out
in [3], the very nature of nucleation is the creation of a crack in short amount of time. Therefore,
a quasi-static modelling of such a process seems a priori questionable, although it is widely
used. At least, it deserves a thorough investigation in order to clarify in which case it can be
implemented.

The methodology adopted in this paper consists to strictly rely on the model of perfectly
brittle material without additionnal assumption. The purpose is to draw the necessary conditions
following from this basis. Accordingly, as regards the description of the crack nucleation process,
the relevant material constant is the fracture energy Gc with which both the Griffith criterion as
well as (1) can be formulated. In short, the main objective is to determine what can be derived
from this model as well as what is out of reach and would require a more elaborated framework
or further hypotheses.
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2. Dynamic energy release rate

Let Ω denote the mechanical system in which possible crack nucleation is considered. The
geometry of the crack is described by a formal parameter ℓ. This is for instance the length in
2D or the area in 3D. It controls the energy Gcℓ that is dissipated during nucleation. During the
nucleation process, ℓ increases from 0 to a limit value ℓ∗ for which stability is recovered under
the loading that has triggered the nucleation.

The starting point is the Clausius–Duhem inequality [8,9]: In isothermal conditions, it states
that the external power (Pe ) provided to the system Ω is transformed into the rate of change
of free energy (Ψ̇) and the rate of change of the kinetic energy (K̇ ) or dissipated in the crack
nucleation process (dissipation rate D):

D =Pe − Ψ̇− K̇ ≥ 0. (2)

As already stated in the introduction of the present paper, this is also the starting point of the
celebrated work of Leguillon [1] in which (2) is considered in an integrated form with respect to
time:

∆Ψ−We +K +
∫

D dt = 0. (3)

For simplicity, we assume steady state conditions for the mechanical loading L , the latter being
defined by body forces F , prescribed surface forces T d on ∂ΩT , prescribed displacements ξd on
∂Ωξ, the boundary of the material system being ∂Ω= ∂Ωξ∪∂ΩT . The external power provided to
the system thus reads:

Pe =
∫
Ω

F · ξ̇dV +
∫
∂ΩT

T d · ξ̇dS.

Since we aim at describing the crack propagation occuring in the framework of crack nucleation,
we focus on a time interval of crack length increase (ℓ̇> 0). This makes the relation between time
and crack length a bijective one, so that the velocity ξ̇ can be put in the form:

ξ̇=
∂ξ

∂ℓ |L
ℓ̇.

For the same reason, the time derivatives of the free energy and the kinetic energy are replaced
by derivatives with respect to the crack length:

Ψ̇= ∂Ψ

∂ℓ |L
ℓ̇; K̇ = ∂K

∂ℓ |L
ℓ̇. (4)

Under steady loading conditions, the external power is due to crack propagation only:

Pe|L = ∂Φ

∂ℓ |L
ℓ̇ with Φ=

∫
Ω

F ·ξdV +λT (t )
∫
∂ΩT

T 0 ·ξdS (5)

whereΦ is the potential of the given loads. Eventually, the combination of (2), (4) and (5) yields:

D + ∂K

∂ℓ |L
ℓ̇=−

∂E
dyn

pot

∂ℓ |L
ℓ̇ (6)

which introduces the potential energy E
dyn

pot = Ψ−Φ, where the upperscript dyn recalls that it
is evaluated from the dynamic evolution of the displacement. If the dissipation process can be
described by the concept of specific fracture energy, (6) takes the form:

Gc + ∂K

∂ℓ |L
=−

∂E
dyn

pot

∂ℓ |L
. (7)

The derived expression is formally very similar to the classical rate of energy release (see e.g. [10]),
except for the fact that it comprises a term of kinetic energy. Furthermore, unlike the quasistatic
case, the rate of potential energy release cannot be evaluated a priori. Indeed, it must be
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calculated from the strain and displacement fields which are solution to the dynamic evolution
of the system. It is therefore appropriate to refer to a dynamic potential energy release rate.
Qualitatively, (7) states that the released energy is not entirely dissipated since a part of it is
transformed into kinetic energy.

Note that (7) can be put in the equivalent form:

Gc =−∂E
dyn

mec

∂ℓ |L
(8)

where E
dyn

mec is the mechanical energy Epot + K . This suggests an alternative definition to the
dynamic energy release rate.

3. The assumption of quasistatic nucleation process

To begin with, let us however leave the dynamic aspect of the process aside which amounts to
assuming that the kinetic energy term is negligible. In this section, we shall therefore examine
the assumption of a quasistatic nucleation process under a given constant loading level. The
quasistatic assumption means that each state in the nucleation process is an equilibrium state.
From a practical point of view, the great advantage of this assumption is clearly that, by nature,
it avoids the determination of a dynamic problem. The potential energy therefore becomes a
function of the crack length.

For instance, let us assume that the loading is defined1 by a single scalar parameter Q, and
that the corresponding work of external forces reads Φ = Qξ. The free energy takes the form
Ψ = (1/2)C (ℓ)ξ2 where C (ℓ) represents the elastic stiffness of the cracked structure. In view of
further use, let us introduce the functions C(ℓ) and C (ℓ):

C(ℓ) = 1

ℓ
(C (0)−C (ℓ)); C (ℓ) = 1

ℓ

(
1

C (ℓ)
− 1

C (0)

)
. (9)

In particular, the function C (ℓ) is going to play a very important role in the following discussion.
It involves informations concerning the geometry of the structure and the boundary conditions
used for defining the loading. It represents the rate of change of the structural compliance. The
static potential energy of the solution reads:

E stat
pot = min

ξ

(
1

2
C (ℓ)ξ2 −Qξ

)
=− Q2

2C (ℓ)
.

Considering any stage in the propagation process associated with some crack length ℓ, the energy
balance reads:

Q2

2

(
1

C (ℓ)
− 1

C (0)

)
=

∫
D dt .

We now assume that the dissipation process can be described by the concept of a constant
fracture energy Gc per unit surface. Accordingly, the above equation takes the form:

Q2

2
C (ℓ) =

E stat
pot (0)−E stat

pot (ℓ)

ℓ
=Gc . (10)

Note that the above equation is also obviously retrieved from (3) in which the kinetic energy
term is omitted. (10) indeed very much recalls the incremental form of the energy criterion of
Leguillon. However, attention is drawn to the fact that we herein consider an equality which
is made possible from the fact that we handle with a quasistatic process. Once again, such a
framework is necessary for a practical determination of the energy release associated with the
crack nucleation. This information is namely provided by the function C (ℓ). The determination

1The boundary conditions could also be defined on the displacemnt. This would affect the definition of the potential
energy.
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of the latter only requires the resolution of standard elastostatic problems. It is worth noticing
that the first equality in (10), that is:

Q2

2
C (ℓ) =

E stat
pot (0)−E stat

pot (ℓ)

ℓ

can be regarded as a more general definition of function C (ℓ). Its interest is to avoid to rely upon
the stiffness function C (ℓ) which cannot be defined in the case of an infinite body. In contrast,
the incremental energy release rate

Ginc(ℓ) =
E stat

pot (0)−E stat
pot (ℓ)

ℓ

introduced by Leguillon overcomes this shortcoming. Besides, in many cases, an analytical
form of C (ℓ) can be derived from the stress intensity factors (see e.g. [11]) by means of Irwin
equation (see for example Section 4.2). Indeed, according to the latter, the incremental energy
release rate of Leguillon is immediately derived by integration of the square of the stress intensity
factor.

Nevertheless, it may be useful to observe that it is equivalent to give oneself the stiffness
function C (ℓ) or the function C (ℓ) appearing in the static incremental energy release rate.
Indeed, the latter can obviously be derived from the former by (9). And in return, even if
the stiffness function does not exist as such (typically the case of an infinite body), it is al-
ways possible to introduce C (ℓ) = 1/(a + ℓC (ℓ)). The choice of the positive constant a is ar-
bitrary provided that limℓ→0ℓC (ℓ) = 0. This constant vanishes in the expressions of energy
criteria.

Similarly, it is equivalent to give oneself the compliance function S(ℓ) = 1/C (ℓ) or the function
C (ℓ) appearing in the static incremental energy release rate. Again, the latter can be derived
from the former by (9). And in return, even if the compliance function cannot be defined
(typically the case of an infinite body where the compliance tends to 0), it is possible to introduce
S(ℓ) = a +ℓC (ℓ). As before, the choice of the positive constant a is arbitrary.

We shall see now that the quasistatic assumption has drastic consequences.

3.1. The case of a monotonic C (ℓ) function

The very concept of energy release suggests that the stiffness function is monotonically decreas-
ing, or that the elastic compliance function is monotonically increasing. This obviously does not
imply that C (ℓ) shares this property. We first consider the case where the C (ℓ) function is indeed
a strictly increasing function (see Figure 1 case (a)).

From a mathematical point of view, this is in particular the case if the stiffness function is a
decreasing strictly concave function:

(∀ℓ≥ 0) C ′(ℓ) ≤ 0 and C ′′(ℓ) < 0.

From a second order Taylor–Lagrange expansion:

(∃θ ∈ [0,1]) C (0) =C (ℓ)−ℓC ′(ℓ)+ 1
2C ′′(θℓ)ℓ2

it is found that C(ℓ)+C ′(ℓ) < 0. Observing that

C ′(ℓ) = 1

C (0)C (ℓ)ℓ

(
−C (0)

C (ℓ)
C ′(ℓ)−C(ℓ)

)
and recalling that C (0) >C (ℓ), we conclude that C ′(ℓ) > 0. It can be also readily shown that C (ℓ)
is monotonically increasing if the compliance function S(ℓ) is convex.

More concretely speaking, let us consider the example of a semi-infinite body subjected to
a remote traction stress σ∞ with an edge-crack normal to the boundary. The (mode I) stress
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Figure 1. Various patterns of the rate of change of structural compliance C (ℓ): (a) example
of the monotonic increasing case; (b) example of the existence of a maximum.

intensity factor is of the form σ∞
p
πℓF where F is a scalar coefficient (F ≈ 1.12, [11]). By

integration of Irwin equation, this implies, in the present example, that the C (ℓ) function is
proportional to the crack length:

C (ℓ) = F 2π
1−ν2

E
ℓ. (11)

Let us go back to the general case of a strictly increasing function C (ℓ). It follows that (10) with
unknown ℓ has a unique solution ℓ∗ (provided that Q2 < 2Gc /C (0), if C (0) > 0). This obviously
implies that the nucleation process is not the propagation of a crack from 0 to the final length ℓ∗.
In other words, within the quasistatic framework, it is impossible to observe any crack having a
length ℓ< ℓ∗.

Let us assume that the crack with length ℓ∗ has been indeed created. Following the quasistatic
assumption, the current state is a (possibly not stable) equilibrium state. In any case, the rate of
energy release in its differential form must comply with the standard Griffith criterion:

Gdiff(ℓ∗) =−
∂E stat

pot

∂ℓ
(ℓ∗) = Q2

2

d

dℓ
(ℓC (ℓ))(ℓ∗) ≤Gc . (12)

Since C ′(ℓ∗) > 0, we have:

d

dℓ
(ℓC (ℓ))(ℓ∗) =C (ℓ∗)+ℓ∗C ′(ℓ∗) >C (ℓ∗)

from which it follows that (10) and (12) are not compatible. In other words, in the case of a strictly
concav stiffness function, or more generally when C (ℓ) is a monotonic increasing function, the
quasistatic assumption fails to describe the nucleation process. As stated above (see (11)), this
approach is therefore disqualified for a wide class of structures. This suggests that any method
that aims at predicting the crack formation should take into account inertia effects, that is, should
be developed in a dynamic framework.

3.2. The case of a non monotonic C (ℓ) function

We now assume that C (ℓ) is increasing on some interval [0,ℓcr] and decreases for ℓ > ℓcr (see
Figure 1 case (b)). This implies that C ′(ℓcr) = 0. For given elastic properties, it is important to
note that this property and in particular the critical length ℓcr are, by nature, independent of the
loading level. Indeed, the practical determination of C (ℓ) incorporates informations concerning
the type of boundary conditions and the geometry of the body and of the crack. This is all the
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Figure 2. Characterization of the nucleated crack length ℓ∗: differential Gdiff(ℓ) and incre-
mental Ginc(ℓ) energy release rates for the critical loading level Q∗ of (14).

more clear when C (ℓ) is determined by integration of the (square of the) stress intensity factor in
Irwin equation.

An example of this situation is the (mode I) crack that appears in a plate with circular hole
under compression (see Section 4.2). The crack is expected to develop from the cavity boundary
along the direction of compression. The analysis of the physical dimensions at stake indicates
that the critical length ℓcr is expected to be proportional to the hole diameter R.

Let us examine if a quasistatic nucleation is compatible with this new framework. Clearly
enough, this implies (necessary condition) that the sought crack length ℓ∗ complies with (10)
and (12) which are repeated here for convenience:

E stat
pot (0)−E stat

pot (ℓ∗)

ℓ∗
= Q2

2
C (ℓ∗) =Gc ; −

∂E stat
pot

∂ℓ
(ℓ∗) = Q2

2
(C (ℓ∗)+ℓ∗C ′(ℓ∗)) ≤Gc . (13)

The compatibility of these conditions appears to be C ′(ℓ∗) = 0, which means that the nucleation
crack length ℓ∗ is none but the critical length ℓcr. Following the previous remarks concerning the
latter, it is emphasized that the nucleation crack length predicted in this framework is determined
a priori, without reference to the loading level that is responsible for nucleation.

The next question is to determine this loading level. The answer follows directly from (13):

Q∗ =
√

2Gc

C (ℓcr)
. (14)

We thus note that both the nucleation crack length and the loading level are determined in a
unique way [12]. If Q < Q∗, the energy criterion is not fulfilled, in the sense that the energy
release is not sufficient for the creation of the crack. If Q > Q∗, a dynamic process is intuitively
expected, in which inertia effects have to be accounted for. This conclusion will be justified more
thoroughly at the next section.

The loading level Q∗ is such that the plot of the incremental energy release rate Ginc(ℓ) is
tangent to the line G =Gc at the point with abscissaℓcr. The relative position of the plots of Ginc(ℓ)
and Gdiff(ℓ) in Figure 2 is obtained from the expressions of these quantities recalled in (13).

Again, it is noteworthy that no crack with length ℓ < ℓcr can be observed. This suggests that
the nucleation process that yields the critical crack length ℓ∗ = ℓcr cannot be described with the
conventional concept of fracture energy Gc and the corresponding so-called Griffith criterion.
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The opinion of the authors is that more elaborated modellings such as the idea of gradient
damage [13] can be helpful for describing this maturation phase that precedes nucleation.

Anyway, under the loading Q∗, the structure is left in a state of stable equilibrium with a
created crack of length ℓcr. Here, the physical interpretation of quasistatic nucleation is that the
energy release exactly reaches the amount required for the creation of the crack and, so to speak,
nothing is left for kinetic energy.

4. The non quasistatic nucleation process

4.1. Rigorous bounds for the set of observable crack lengths

At Section 3.1, we have seen that the quasistatic assumption fails to describe the nucleation
process. This means that the latter cannot be viewed as a sequence of equilibrium states. It
also fails in the framework of Section 3.2 if the loading level is greater than the threshold given
by (14). In both cases, the reason is obviously related to non negligible inertia effects. This is also
most consistent with the widespread physical intuition of nucleation as a sudden phenomenon
taking place during a short amount of time. From now on, the set of observable crack lengths is
denoted by I dyn.

The inequality (1) derived by Leguillon, already stated in the introduction of this paper,
appears as an appealing way to approach the modelling of nucleation in a more realistic manner.
The latter relies upon the simple but very effective remark that the starting point being an
equilibrium state, the variation of kinetic energy is necessarily positive. The profound interest
of (1) is clearly that it is most general. Nevertheless, the question that arises is: how can we
evaluate the potential energy in the lefthand side, with due account for the fact that the kinetic
energy is not negligible? This very fact prohibits an approximation of the dynamic potential
energy E

dyn
pot by its static counterpart E stat

pot . This can be highlighted in re-stating (1) in the explicit
form:

−δE dyn
pot ≥GcδS. (15)

Some insight in this matter can be gained from an elementary argument, namely the so-called
principle of minimum potential energy in linear elasticity. More precisely, for a given crack
length ℓ and for the associated geometry Ωℓ, we are faced with two displacement fields: the
solution ξdyn to the “real” dynamic evolution and the solution ξstat to the elastostatic problem.

The displacement field ξdyn is, by nature, kinematically admissible, so that the theorem ensures

that E
dyn

pot > E stat
pot . An immediate consequence is that −δE dyn

pot <−δE stat
pot and further that:

−δE stat
pot >−δE dyn

pot ≥GcδS. (16)

This provides a simple justification of Leguillon’s seminal intuition to the use of a static estimate
of the potential energy in (1). Let us now interpret the consequence of this result as far as the
modelling of nucleation is concerned. The obvious but also considerable interest of the static
potential energy is that it is a function of the crack length and that it does not require the solution
to an evolution problem. Accordingly, any crack length in the dynamic nucleation process must
comply with (16):

(∀ℓ ∈I dyn)
Q2

2
C (ℓ) >Gc . (17)

Let us first consider the case of the monotonic increasing function C (ℓ).
The equation Q2C (ℓ) = 2Gc with unknown ℓ has therefore a unique solution which, owing
to (17), proves to be a lower bound for any observable crack length during the dynamic
evolution process, that is, of the interval I dyn. It is therefore denoted by ℓlb (Q) and defined
by:

Q2

2
C (ℓlb ) =Gc ; (∀ℓ ∈I dyn) ℓ> ℓlb (Q). (18)
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The very fact that I dyn has a non-zero lower bound leads to introduce the concept of
initiation length, denoted by ℓdyn

init , and being the smallest crack length that can be observed
in the dynamic nucleation process. Clearly enough, ℓlb (Q) is also a rigorous lower bound for
ℓinit that can be determined from the associated static problem:

ℓ
dyn
init > ℓlb (Q).

Using again that C (ℓ) is an increasing function, it follows from (18) that ℓlb (Q) is a bijective
decreasing function of Q. As stated at the end of Section 3.1, and despite the static nature
of ℓlb (Q), it should be remembered that any attempt to determine the exact value of the
initiation length should account for dynamic effects.

Let us now consider the case of a non monotonic function C (ℓ).
Again, the starting point is that observable crack lengths must comply with (17). This is a
necessary condition for the very existence of a crack of length ℓ in a dynamic process of
nucleation. For a given value of Q, this implies that ℓ meets the following requirement:

Q >
√

2Gc

C (ℓ)
.

A necessary condition for the existence of a solution ℓ in the above inequality is:

Q >
√

2Gc

maxC (ℓ)
=

√
2Gc

C (ℓcr)
=Q∗ (19)

in which we recognize the threshold Q∗ introduced at (14) as the unique loading level being
compatible with a quasistatic nucleation process. We now gain a new interpretation of the
latter: Q∗ is in fact a rigorous lower bound for any loading level able to initiate a crack. In other
words, we draw the conservative conclusion that no crack nucleation should be observed,
neither quasistatic nor dynamic, is Q <Q∗.

We now assume that Q > Q∗. Let ℓlb (Q) and ℓub (Q) be the solutions of the equation
Q2C (ℓ) = 2Gc with unknown ℓ as shown on Figure 3. The condition (17) implies that these
lengths indeed provide bounds for I dyn. The latter is therefore a bounded interval of the
form [ℓdyn

init ,ℓdyn
nuc] and we have:

ℓlb (Q) ≤ ℓdyn
init ≤ ℓ

dyn
nuc ≤ ℓub (Q). (20)

In particular, for values of Q > Q∗ in the neighborhood of Q∗, it may be concluded that the
initiation and nucleation lengths should be very close and that ℓcr is a good estimate of them
(see Figure 3).

It is emphasized that the bounds ℓlb (Q) and ℓub (Q) are very simply determined within
an elastostatic framework and are therefore elastostatic by nature. Furthermore, for any
loading level Q > Q∗, we have seen that the nucleation process is not a quasistatic one. It
is all the more remarkable that ℓl b (Q) and ℓub (Q) nevertheless provide rigorous bounds for
the interval I dyn of observable crack lengths in a dynamic process.

4.2. The example of an infinite medium with circular hole

Let us apply the developments of Section 4.1 to the classical problem of an infinite medium
with a circular hole subjected to remote uniaxial compression in plane strains. In this case, it
is wellknown that the nucleation of a stable crack is expected (e.g. [6,14]).

Figure 4 presents the quasistatic incremental energy release rate for two different remote
stresses. In the present case, an analytical expression can be provided. The starting point is the
stress intensity factor for a given remote stress state [14]:

K I (ℓ) ≈− 1.1
p
ℓ/R

(1+ℓ/R)3.3σ∞
p
πR. (21)

Irwin’s formula in plane strains relates the stress intensity factor to the rate of energy release G(ℓ):

G(ℓ) =−
∂E stat

pot

∂ℓ
= 1−ν2

E
K 2

I . (22)
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Figure 3. Lower and upper bounds of I dyn in the case of non monotonic C (ℓ).

Figure 4. Circular hole in an infinite medium. Incremental energy release rate for two
different stress levels: the critical stress level σ∗∞ (solid line); σ∞ = 1.5σ∗∞ (dashed line).

Ginc(ℓ) is readily obtained by integration:

Ginc(ℓ) = 1−ν2

Eℓ

∫ ℓ

0
K 2

I (u)du (23)

which yields, with λ= ℓ/R:

Ginc(ℓ) = Γ
(

1

21.29λ

(
1− 1

(1+λ)4.6

)
− 1

4.63(1+λ)5.6

)
with Γ= πRσ∞2(1−ν2)

E
. (24)

Figure 5 presents the variation of the lower and upper bounds of I dyn as functions of the
remote compression stress. Interestingly, when the remote stress is slightly greater than the
critical stress level σ∞∗ , the dynamic lower and upper bounds are very close to the static critical
length ℓ∗ = ℓcr.
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Figure 5. Circular hole in an infinite medium. Normalized lower and upper bounds of
I dyn as functions of the normalized loading level σ∞/σ∞∗ .

Figure 6. Double cantilever beam. The crack tip is located at x =−ℓ(t ) (left extremity of the
beams).

4.3. A simplified dynamic example: the double cantilever beam

Let us investigate the concept of crack initiation length into more details in the framework
of a one-dimensional continuous medium. The example is that of a double cantilever elastic
beam (flexural rigidity E I , width b). Two opposite forces ±Qe y act on two identical masses m
located at the symmetric right extremities A and A′ of the beams (see Figure 6). The vertical
displacement of the upper beam is denoted by ξy (x, t ). Let denote u(t ) = 2ξy (0, t ) = A A′ and
v(t ) = ξy (0, t ). The inertia effects are accounted for through the kinetic energy of the two point
masses while preserving the possibility to derive an analytical solution. At point (−ℓ,0), the
boundary conditions are ξy (−ℓ(t ), t ) = 0 and ∂ξy /∂x(−ℓ(t ), t ) = 0.

For symmetry reasons, we focus on the upper beam. We shall introduce the three following
quantities, which have the dimension of a length, among which the last one κ is time dependent:

λ=
√

E I

Gc b
; ℓ0 =

√
E IGc b

Q
; κ= K

Q
.
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Let denote V (x, t ) and M(x, t ) the shear force and the bending moment. Moment balance yields:

−V +Q = mv̈ and
dM

dx
+V = 0 ⇒ M(x, t ) = (mv̈ −Q)x.

The displacement ξy (x, t ) is therefore obtained by two integrations from the curvature χ =
∂2ξy /∂x2:

E I
∂2ξy

∂x2 (x, t ) = (mv̈ −Q)x.

The term mv̈ incorporates the inertia effect and is responsible for the discrepancy between the
dynamic solution and the static one. Owing for the boundary conditions at x =−ℓ(t ), it is found
that:

E Iξy (x, t ) = (mv̈ −Q)

(
x3

6
− ℓ(t )2x

2
− ℓ3

3

)
and eventually at x = 0:

E I v(t ) = (Q −mv̈)
ℓ(t )3

3
.

The dynamic equation of the beam written for u(t ) = 2v(t ) therefore takes a familiar shape:

µü +C (ℓ)u =Q

with µ = m/2 and C (ℓ) = (3/2)(E I /ℓ3). The total kinetic energy is K = (1/2)µu̇2 and, after inte-
gration of the elastic energy density (1/2)E Iχ2, the total elastic energy is (1/2)C (ℓ)u2. Eventually,
the dynamic potential energy reads:

E
dyn

pot = 1
2C (ℓ)u2 −Qu

which is formally identical to the expression of the static potential energy, except of course for
the fact that u(t ) is not equal to the static solution ustat = (2Qℓ3)/(3E I ) which yields

E stat
pot =−Q2ℓ3

3E I
. (25)

According to definition (9), it is found that

C (ℓ) = 2ℓ2

3E I
which is monotonic increasing. Following the conclusions of Sections 3.1 and 4.1, a lower bound
of the initiation crack length can be derived from (18):

ℓ
dyn
init >

p
3ℓ0 (26)

and we know that the damage process that leads to the crack of length ℓdyn
init cannot be a quasistatic

one.
It is recalled that the previous bound is derived from the inequality E

dyn
pot > E stat

pot which follows
from the theorem of minimal potential energy. As previously stated, it holds true for any dynamic
evolution. But the very fact that it does not require the determination of the dynamic evolution
suggests that it could be improved if the latter were considered. Following this idea, we now aim
at improving the lower bound (26). With the expressions of E

dyn
pot and K , the energy balance (3)

reads:
d

dt

(
1

2
C (ℓ)u2 −Qu + 1

2
µu̇2 +Gc bℓ

)
= 0

which can be put in the form:

ℓ̇( 1
2C ′(ℓ)u2 +Gc b)+ u̇(µü −Q +C (ℓ)u) = 0.

The combination with the momentum balance equation yields ℓ̇((1/2)C ′(ℓ)u2+Gc b) = 0. There-
fore, once the crack has been created (ℓ≥ ℓdyn

init ) and propagates (ℓ̇> 0), we have to write together
1
2C ′(ℓ)u2 +Gc b = 0
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and the energy balance in the integrated form:
1
2C (ℓ)u2 −Qu +Gc bℓ+K = 0

where K is the current value of the kinetic energy. Note that these equations are the particular
form in the present example of (7) and (3) respectively. This yields

K + 4

3
Gc bℓ− 2

3
ℓ2Q

√
Gc b

E I
= 0

or

ℓ(t )2 −2ℓ0ℓ(t )− 3

2
κ(t )λ= 0 ⇒ ℓ(t ) = ℓ0

(
1+

√
1+ 3λκ(t )

2ℓ2
0

)
.

Since κ(t ) is a positive number, the above expression of ℓ(t ) provides a new lower bound of the
initiation length:

ℓ
dyn
init = ℓ0

(
1+

√
1+ 3λκinit

2ℓ2
0

)
≥ 2ℓ0.

The improvement of the lower bound as compared to (26) underlines that the initiation state is
not an equilibrium state, even when we take the limit κinit → 0. It is noteworthy that the present
approach cannot per se determine the value of the constant κinit which is necessary for deriving
the exact value of the initiation length.

5. Conclusion

The purpose of this paper was to highlight what can be said about the nucleation process with
the standard model of perfectly brittle material as a modelling basis. It is important to underline
that the developments presented herein are based on the assumption that the crack is indeed
nucleated. For instance, the lower bound of I dyn provided in (18) explicitely assumes this
prerequisite. Similarly, (19) is a necessary condition for crack nucleation and the model cannot
say whether it is sufficient. To do so, further material parameters, such as the tensile strength
occurring in the CC (coupled criterion), would be required. With this in mind, let us briefly review
the main conclusions drawn in this framework.

A very important characteristic involving the geometry of the structure together with the
way the loading is applied is the rate of change of the structural compliance. In the simple
case of a straightline crack, it becomes a function C (ℓ) of the crack length. The latter is easily
determined analytically from the knowledge of stress intensity factors or numerically from the
solution to elastostatic problems. It is appropriate to distinguish two cases whether this function
is monotonically increasing or not.

When the function C (ℓ) is a monotonically increasing one, a quasistatic description of nucle-
ation is not possible irrespective of the loading level. In contrast, when the function C (ℓ) reaches
a maximum at ℓ= ℓcr, there exists a unique loading level Q∗ that is compatible with a quasistatic
process of nucleation. The critical crack length ℓcr is only a function of the geometry at stake.
Any loading level Q >Q∗ will induce dynamic effects.

An appropriate use of the classical theorem of minimum potential energy reveals that the
dynamic potential energy release is upper bounded by its static counterpart, that is, for the
same crack length change. This enables to use various mathematical descriptors issued from a
quasistatic framework fro the design of dynamic bounds. For instance, a rigorous strictly posi-
tive lower bound of the (dynamic) initiation length ℓ

dyn
init can be determined as a function of the

loading level. In other words, the theoretical framework of perfectly brittle material in itself con-
tradicts the existence of a length crack ℓ< ℓ

dyn
init . The description of the damage process yielding

the initiation length should resort to more elaborated material modellings (see e.g. [15–17]).
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When the function C (ℓ) is non monotonic, the set I dyn of observable crack lengths is lower
and upper bounded. The closer the loading level to the critical one (14), the narrower the set
I dyn in the neighborhood of the critical length ℓcr.
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L’objectif de cette étude est d’évaluer expérimentalement l’effet de la taille du renfort sur la résistance
du composite et de le comparer aux prédictions du critère couplé de la mécanique de la rupture finie (CC-
MRF). Un objectif secondaire est d’observer le mécanisme d’amorçage de la rupture, qui débute à l’interface
particule-matrice et évolue vers une fissure scindant l’éprouvette. Pour cela, un nouveau design d’éprouvette
est proposé, ainsi qu’un procédé de fabrication optimisé. Les essais ont été enregistrés à l’aide d’une caméra
à haute vitesse, permettant de visualiser l’initiation de la fissure à l’interface particule-matrice.

Les résultats expérimentaux mettent en évidence un fort effet de taille, où des inclusions plus petites
entraînent une résistance apparente plus élevée. Ces résultats sont en accord relativement bon avec les
prédictions du CC-MRF.
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1. Introduction

Particle-reinforced composites are becoming more and more prevalent in industrial applica-
tions [1]. This type of composite materials is particularly adequate for tailoring certain properties
of the unreinforced matrix without increasing significantly the complexity of the fabrication pro-
cess. The addition of particles to certain materials is able to enhance some properties, such as
electrical or thermal conductivity [2], stiffness [3], tensile strength [4], or fracture toughness [5,6].

The mechanical properties of this type of material can be effectively enhanced by carefully
selecting the particles to be added. The modification of these properties depends not only
on the type and volumetric fraction of the added materials but also on the particle shape and
size. This relationship has been shown in various experiments, see [7] for a review. Given
the influence of micromechanics on macroscopic behavior, it is essential to fully understand
the failure mechanisms at the microscale, as highlighted in [8] in a similar material system.
This understanding is crucial for predicting and tailoring mechanical performance, ultimately
ensuring reliability in both macroscopic and mesoscopic models, which are based primarily on
phenomenological observations [9,10].

The first stage of the failure mechanism in particle-reinforced composites is typically associ-
ated with the particle-matrix interface. There are two main reasons for this: (a) the stress con-
centration generated by the presence of a particle, either at the poles for particles stiffer than the
matrix, see e.g. [11], or at the equator for softer particles, and (b) the usually lower strength and
fracture toughness properties of the interface. For stiffer particles, which is the typical case when
enhancing mechanical properties is the main objective of the added particles, the failure initiates
as small debonds at the particle-matrix interface [11]. Typically, in the most simple case of uni-
axial tension, the debond appears initially at the interface poles, progressing along the interface
and finally kinking towards the matrix [12]. The first stage of the failure mechanism is similar to
the related problem of debonding at the fiber-matrix interface, see, e.g., [13,14].

In this initiation stage, two micromechanical characteristics strongly influence the initiation
and progression of failure mechanisms: (i) the strength and fracture toughness of the interface
and (ii) the size and shape of the particle, see a review in [15].

The influence of the interface properties has been reported both theoretically [16] and exper-
imentally [12]. Similar results have been reported in [13] for a similar system with fibrous re-
inforcement. The authors carried out experiments on dog-bone specimens with a single fiber
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embedded. The 3D digital image correlation technique allowed them to characterize the whole
sequence of the failure mechanism in this very related problem.

The influence of the shape and size of the particles has been reported by some limited
experiments [11]. The size effect has been explained by using diverse models: In [17], the
authors compared different models predicting the size effect and found an accurate correlation
with experiments with a stress model combined with the effect of nanoscale damage at the
interface. In [16], a model was presented based on prescribing a cohesive law at the interface
and a coupled plasticity-damage model for the matrix in a Representative Volume Element (RVE).
The prediction of this model match the experimental results in terms of the stress–strain curve.
However, the size effect was not studied, but was expected to be inherent in the approaches used.
In the same line, in [18] a computational approach was presented based on micromechanical
simulations prescribing a non-local plasticity model in the matrix and a non-local ductile damage
model based on the well-known Gurson-Tvergaard-Needleman model, within a Fast-Fourier-
Transform approach. The results show a strong size effect, even for systems with relatively high
volumetric fractions.

Among the diverse approaches used to predict this size effect, it is worth highlighting the
coupled criterion of finite fracture mechanics (CC-FFM). This is an interesting approach not
only to predict, but also to provide a physical explanation for the size effect. This criterion,
proposed in [19,20], postulates that debonding will initiate with a finite extension when both
stress and energy conditions are met simultaneously, see [21] for a recent review on this criterion.
Size effect has been predicted by this approach for very diverse problems, see e.g. [22–28],
and even used to explain the size effect found by other approaches [29,30]. In this sense, the
present authors [31] proposed a model based on the CC-FFM to predict the crack initiation
at the particle-matrix interface. The model presents, among other results, a strong size effect,
predicting a delay in crack initiation for smaller particles under monotonous loading. A more
general model was presented in [32], including residual thermal stresses and different volumetric
fractions with multi-particle models. In [33], a comparison of the predictions of the CC-FFM
with a computational model using a cohesive zone model at the particle-matrix interface was
presented. The results show a good agreement between the two on a qualitative level, but a
quantitative divergence in the asymptotic tendency for small particles, in line with the results
in [29] for the problem of fiber-matrix debonding.

Despite the fact that different models predict the size effect on this type of material, the ex-
perimental results validating this size effect are limited. It is worth highlighting the experiments
in [11], which demonstrate a strong size effect that aligns, at least qualitatively, with the predic-
tions of most previous models, particularly those based on the CC-FFM. However, these experi-
mental results are limited because of the use of multi-particle specimens with no control over the
inter-particle distance, and thus the influence of nearby particles. Lauke [34] presented a spec-
imen specifically designed to study the effect of multiaxial loading in the failure mechanisms
around the spherical particle. However, to the best of our knowledge, there are no experimental
results in the literature using this proposal yet. In view of these facts, it is necessary to obtain new
experimental evidence to validate the main results predicted by these models.

The objective of the present work is to design a single-particle specimen to be tested under
tension. The key idea is to validate the predictions on the size effect, keeping the specimen as
simple as possible to avoid any influence of other parameters, such as volume fraction, interface
finish, or multiaxial loading. These effects could be the objective of further work once the model
is validated for the simplest case. The secondary objective is to observe the sequence of the failure
mechanism, the symmetry of debonding, and the manner in which the crack migrates towards
the matrix. This observation will contribute to validating the failure sequence assumed by the
theoretical models.
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Figure 1. Schematic of the problem under study.

The document is organized as follows: First, the CC-FFM model for this problem will be briefly
introduced in Section 2. The experimental setup will be described in terms of specimen design
and fabrication in Section 3. Finally, the experimental results are presented and discussed in
Section 4, where they are compared with the predictions given by the CC-FFM model.

2. Coupled criterion analysis

The problem under study is schematized in Figure 1, where a particle-reinforced material is
subjected to uniaxial tension. Assuming a low volumetric fraction, a spherical particle of radius R
surrounded by an infinite matrix can be studied as a representative volume element, neglecting
the effect of nearby particles. The particle material is considered to be stiffer than the matrix.
This simplified axisymmetric model allows focusing the analysis on the sequence of events of the
failure mechanism and the size effect. In addition, this simplicity and the CC-FFM allow us to
obtain quasi-analytical expressions for the stresses leading to the formation of the first debond.
Note that the schematic assumes that the debond will appear in only one of the poles, in a non-
symmetric manner. This result is predicted by the CC-FFM, as proved in [31] and discussed in
detail for a related problem in [35]. Thus, this result is also to be validated by the experiments
presented here.

The CC-FFM is based on assuming that a finite-length crack onset takes place when two
conditions are met simultaneously: a stress condition defined on the stresses before the crack
onset and an energy condition based on an energetic balance between the states before and after
the crack onset. In this case, the states before and after the debond are represented in Figure 1.
In what follows, the two criteria will be briefly studied in Sections 2.1 and 2.2 to be subsequently
combined in Section 2.3, where the expression that will be compared with the experiments is fully
developed.

2.1. Stress criterion

The stress criterion is based on the evaluation of the stresses before the debond onset, i.e. the
state (I) in Figure 1. According to the CC-FFM, a debond onset is possible only at those points with
angle θ ∈ [0°, 180°] of the interface where a certain combination of the interface normal and shear
tractions, σ(θ) and τ(θ), respectively, is greater or equal to a critical value. Since the poles are the
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most stressed points at the interface, it is assumed that the debond onset will always occupy the
pole (θ = 0°) and surrounding points up to a certain angle ∆θ. In this case, the condition given by
the stress criterion for a debond onset will be:

σeq(σ,τ) = p

√〈
sgn(σ) |σ|p +

( |τ|
µ

)p〉
+
≥σc ∀θ ∈ [0,∆θ], (1)

where σc is the interface tensile strength, and µ= τc/σc is the ratio of interface shear to interface
tensile strength. The exponent p ≥ 1 controls the coupling between normal and shear tractions,
see [36] for more details about this expression for the stress criterion.

Assuming linear elastic behavior for the spherical particle and matrix material and assuming
a perfect interface before the debond onset, the normal σ and shear τ tractions can be obtained
exactly using the expressions by [37] as,

σ(θ) =σ∞σ̂(θ) =σ∞ (k +m cos2θ) , τ(θ) =σ∞τ̂(θ) =σ∞m sin2θ (2)

where σ∞ is the remote tension and k and m depend on the elastic properties of particle and
matrix in the following form:

k = 1

2

1+α
1+β

2+α−β
1+α−2β

, (3a)

m = 1+α
1+β , (3b)

α= µ1(κ2 +1)−µ2(κ1 +1)

µ1(κ2 +1)+µ2(κ1 +1)
, (4a)

β= µ1(κ2 −1)−µ2(κ1 −1)

µ1(κ2 +1)+µ2(κ1 +1)
, (4b)

where µi = Ei /(2(1+νi )) and κi = 3− 4νi , Ei and νi denoting Young’s modulus and Poisson’s
ratio, respectively, of particle (i = 1) and matrix (i = 2), and α and β are Dundurs parameters of
the bimaterial.

Introducing (2) in (1) and after some rearrangements, the expression obtained for the stress
criterion is:

σ∞

σc
≥ s(∆θ) = max

θ∈[0,∆θ]

1

p

√〈
sgn(k +m cos2θ) |k +m cos2θ|p +

( |m sin2θ|
µ

)p〉
+

. (5)

The dimensionless function s(∆θ) gives the minimum value required for the remote tension as a
function of the size of the debond at its onset.

The expression presented here is the most simple, assuming linearity in the material behavior
and conditions, in order to keep the comparison as simple as possible to be able to understand
the basic behavior. The extension of the stress criterion to take into account viscous, nonlinear
material effects and even higher volumetric fractions could be obtained by using the expressions
in [38].

2.2. Energy criterion

The energy criterion, within the context of the finite fracture mechanics, postulates that the
debond onset is possible if the energetic balance between the states before (I) and after the
debond onset (II) is thermodynamically admissible. This is an extension of the classical Griffth
criterion [39] to an incremental balance between two states, rather than a differential approach.
In this sense, the incremental balance can be written as:

∆Π+∆Ek +Ed = 0, (6)
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where ∆Π and ∆Ek are the increments of potential elastic and kinetic energy, respectively. The
term Ed refers to the energy dissipated during the crack initiation process. If the initial state is
assumed to be static, ∆Ek ≥ 0, the expression in (6) can be rewritten as:

−∆Π≥ Ed, (7)

so the application of the energy criterion reduces to evaluate the change in potential elastic
energy and the dissipated energy.

The change in potential elastic energy ∆Π can be obtained in different manners, see Sec-
tion 3.4.1 in [40] for a review. In this case, in line with [31], this term will be obtained by inte-
grating the energy release rate (ERR) G for a crack slowly growing from a debond angle θd = 0 to
an angle θd =∆θ from the pole

−∆Π=
∫ θd=∆θ

θd=0
G(θd)2πR2 sin(θd)dθd, (8)

where G(θd) can be extracted from simple and linear elastic computational analyses, with a set of
models with debonds with angle θd, see [31] for details and computation.

Assuming linearity of the models with the remote tension σ∞, and after a dimensional
analysis of the problem, the dependence of the ERR G(θd) can be expressed as follows defining a
dimensionless ERR Ĝ ,

Ĝ

(
θd;k,m,

µ1

µ2

)
= E∗

(σ∞)2R
G

(
θd;E1,E2,ν1,ν2,σ∞,R

)
, (9)

where R is the particle radius and,

E∗ = 2
1−ν2

1
E1

+ 1−ν2
2

E2

(10)

is the harmonic mean of the plane-strain elastic moduli. The terms k and m in (9) refer to the
two independent bimaterial elastic properties defined in (3) and µ1/µ2 is the ratio of particle to
matrix shear moduli.

The dimensionless expression of G(θd) in (9) allows to reduce the number of computational
analyses and show explicitly the dependence on the particle radius R, making the resulting size
effect explicit. Thus, introducing (9) in (8), ∆Π can be obtained for any radius R and remote
tension σ∞ directly from a set of computations for different values of the debond angle θd,

−∆Π= (σ∞)2 R3

E∗

∫ θd=∆θ

θd=0
Ĝ(θd;k,m)dθd. (11)

Concerning the dissipated energy, it can be calculated following the same strategy: integrating
the fracture energy along all the path of the new crack,

Ed =
∫ θ=∆θ

θ=0
Gc(θ)2πR2 sin(θ)dθ, (12)

where Gc(θ) is the interface fracture energy, that could depend on the point of the interface θ.
Assuming a uniform interface, the main variation in Gc(θ) could come from the variation of the
fracture mode-mixity along the interface and the effect of this variation on Gc(θ). In the context of
the finite fracture mechanics, this effect has been taken into account in various ways, see [36,41]
for a discussion. The expression can be normalized with the value of the interface fracture energy
in pure mode 1, G1c, and the particle radius R,

Ed =G1c2πR2
∫ θ=∆θ

θ=0
Ĝc(θ)sinθdθ. (13)
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In the present case, the dimensionless value of Ĝc(θ) is calculated using the Hutchinson and Suo
phenomenological law [42], which has been shown in [31] to capture very accurately the fracture
energy in a similar system,

Ĝc(φ) = 1+ tan2[(1−λ)φ], (14)

where λ is a dimensionless parameter modulating the influence of the fracture mode-mixity on
the fracture toughness. The termφ is a measure of this mixity, which has been evaluated following
different alternatives in the literature, see [36], Section 4.2, for a discussion. In the present case,
for the reasons given in [36], the value of φ is based on the stress state before the crack onset as
follows:

φ(θ) = tan−1
(
τ(θ)

σ(θ)

)
, (15)

where σ(θ) and τ(θ) are calculated using (2).
Introducing the expressions for the change in potential elastic energy (11) and dissipated

energy (13) in the energy balance in (7), the following expression can be obtained:

(σ∞)2 R

E∗

∫ θd=∆θ

θd=0
Ĝ(θd;k,m)sin(θd)dθd ≥G1c

∫ θ=∆θ

θ=0
Ĝc(θ)sin(θ)dθ. (16)

To express this condition in a form similar to the stress criterion in (5), it is rearranged so that it
is explicitly expressed in terms of the remote tension σ∞ divided by the interface tensile strength
σc,

σ∞

σc
≥ γ

√
g (∆θ) = 1

σc

√
GcE∗

R︸ ︷︷ ︸
γ

√√√√√ ∫ θ=∆θ
θ=0 Ĝc(θ)sin(θ)dθ∫ θd=∆θ

θd=0 Ĝ(θd;k,m)sin(θd)dθd︸ ︷︷ ︸p
g (∆θ)

, (17)

where γ is a brittleness number proposed in [22] and g (∆θ) is a dimensionless function, analo-
gous to s(∆θ) defined for the stress criterion. Similarly, but modulated with γ, this function rep-
resents the value of the remote tension σ∞ required for a certain debond onset with angle ∆θ to
be admissible from the energetic point of view.

2.3. Combining the stress and energy criteria

Once the stress and energy criteria have been developed separately, Leguillon’s postulate [19]
establishes that the debond onset will occur when the conditions for the two criteria are met
simultaneously. Assuming that the remote tension is increased quasistatically from zero to the
value leading to the debond onset, the value of the remote tension σ∞

onset for which it occurs is
the minimum value meeting both criteria, thus given by the next optimization problem

σ∞
onset

σc
= min

∆θ

(
max

{
s(∆θ),γ

√
g (∆θ)

})
, (18)

where it can be observed that the debond angle at onset ∆θ is the optimization variable and is
obtained as a result of the optimization process. The manner in which this problem is solved is
widely discussed in [31].

Note that γ depends explicitly on the particle radius with γ∝ 1/
p

R, so it is expected that, if
the energy criterion plays a role in the optimization problem in (18), a size effect will be predicted.
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Figure 2. Requirements for the design of the specimen used to evaluate the size effect of
the particle on the initiation of the failure mechanism and the observation of this initiation.

3. Specimen design and fabrication

This section is devoted to describe and justify the design and fabrication of the non-standard
specimens proposed and used in the experiments. The design is based on two objectives, as
enumerated in the introductory section: (i) to evaluate the effect of the size of the particle on
the first stages of the failure mechanism and (ii) to directly observe and characterize the failure
sequence in the first stage of the failure mechanism. These two objectives will constrain the
design.

In view of the objectives, some requirements are prescribed for the design of the specimen,
see Figure 2,

• The material of the matrix is required to be transparent, to allow optical observation of
the first stages of the failure mechanism, that are expected to occur at the particle-matrix
interface.

• The specimen should contain only a single particle due to several reasons: first, the
presence of several particles does not allow to fix the observation in detail in the failure,
because it would be difficult to know, a priori, which is the particle around which the
failure will start. The second reason is that in typical particle-reinforced composites,
nearby particle can affect strongly the initiation of the failure mechanism, see e.g. [18,43].
This fact would generate scatter in the experimental results, because it would add the
non-controlled influence of the nearby particles. Thus, the strategy is to approach the
real problem for nearby particles as a perturbation of the failure mechanism for an
isolated particle.

• The particles should be spherical and with a very high quality in terms of dimensional
and geometrical tolerances. Variations from the perfect sphere would generate scatter
in the result, given the strong influence of the shape on the failure initiation [44]. The
particles should be available in different sizes with a high quality in their calibration.

• All the specimen dimensions should keep fixed ratios between them to reduce the
influence of geometrical parameters to one: the particle size.

Based on the above requirements, the following decisions were made in the selection of
materials and elements and in the design:

The spherical particles used for the fabrication of the specimens were stainless steel bearing
balls. They have the advantage of having a very high quality in terms of geometrical and dimen-
sional tolerances. In addition, the surface finishing is very accurate, presenting an extremely low
roughness, necessary for the regular purpose of these elements. Finally, they are available in a
wide range of well-calibrated sizes.
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Figure 3. Schematic of the specimen design.

The matrix should be significantly softer than the particle material. A low-viscosity room-
temperature curing epoxy resin is selected: Resoltech WWA/WWB4. The low-viscosity property
is key in ensuring that the space around the sphere is perfectly filled, avoiding trapped air and
bubbles. The room-temperature curing will allow to control carefully the location of the spherical
particle, which will require, as shown below, a set of auxiliary elements.

The specimen will be subjected to uniaxial tension, thus, the typical bar-type specimen is
selected. In particular, a cylindrical shape is chosen here to keep the axisymmetry inherent to
the spherical particle. Dog-bone or other kind of geometries to increase the extreme sections
are typically included in this type of specimens to promote failure in the central section of the
specimen, where the stresses are better known. However, in this case, the presence of a stiff
particle in the central part of the specimen already introduces a stress concentration. Thus, the
specimen will be totally cylindrical, as can be seen in Figure 3.

In what follows, the optimized fabrication procedure for the specimen is outlined, remarking
the decisions taken to guarantee that the failure behavior of the specimens would be representa-
tive of what was wanted to be observed:

(1) External molds were prepared with different internal diameters, corresponding to the
external diameters required for the specimens. The molds were fabricated from tubes of
Polyvinyl chloride (PVC), typically used in plumbing. After being cut and machined at
the required length, the extremes were closed with PVC pipe plugs and some adhesive,
see Figure 5a. Finally, three holes per specimen were machined, one in the center to
introduce the spherical particle, as will explained later, and two near the extremes to
allow the air to escape during the resin filling, see Figure 5b. After trying several strategies,
this approach proved to be the optimal one. The finished mold can be observed in
Figure 5c.

(2) The steel spheres were washed with alcohol before being placed for the fabrication. The
objective was to achieve a complete and homogeneous adhesion along the interface but



636 Israel García García et al.

Figure 4. Details of the mould proposed for the fabrication.

limiting the adhesion strength, since a high strength could avoid failure initiation at the
interface. Tabiai et al. [13] showed the strong influence of the interfacial bonding on
the qualitative and quantitative progress of the failure mechanism in the problem of
fiber-matrix, which presents many similarities with the present problem. Similar results
were found in [12], where the effect of different surface treatments on this problem
was studied. They found that, in the absence of adhesion, the failure mechanism
is an equatorial crack, so this is an aspect that will be checked in the post-mortem
analysis.

(3) Several strategies were tested to place the spherical particle in the middle of the specimen
during the curing of the epoxy. The optimum solution was to adhere a thin fishing line to
the ball in one extreme and to a small bar in the other extreme, that helped to situate the
spherical particle in the required position during the curing, see Figure 5d. The fishing
line could be considered an imperfection, but it is situated in the equator of the sphere,
far from the pole where it is expected the debond to appear. Since the failure mechanism
will be recorded, it will be possible to evaluate if debond starts at the pole without any
influence of the fishing line.

(4) The bi-component epoxy, Resoltech WWA, is mixed with Resoltech WWB4 in a weight
ratio of 100:40. After mixing for 10 min with a slow stir to avoid bubbles, the epoxy resin
is ready for filling and can begin the curing process. The spherical particle should be
positioned inside the mold using its central hole prior to this, see Figure 4.

(5) All the molds filled with the epoxy resin and the spherical particle adequately placed were
introduced in a climate chamber with the temperature controlled at 35 °C during 20 h,
see Figure 5e. Subsequently, a post-cured stage was carried out at 60° for 4 h. Once both
stages were completed, the temperature was slowly decreased to room temperature and
the molds were extracted from the climate chamber and left to consolidate during 1 week.

(6) The mold was removed by machining the specimen with a lathe and removing the pipe
plugs by cutting the specimen, see Figure 5f. The specimens were machined up to
arrive to the calibrated external diameter planned. Finally, the region near the spherical
particle was finely polished to enhance the transparency, in order to observe the failure
mechanism during the test.

(7) All the specimens were carefully inspected. A total of 4 types of specimens were fab-
ricated with spherical particles of radius 1.5, 2.0, 3.0 and 4.0 mm. Absence of air bub-
bles, correct positioning of the spherical particle, correct filling and dimensional toler-
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Figure 5. Details of the fabrication procedure.

ance were evaluated. The details of the measures are shown in Table 2 along with the test
results. In parallel, a set of cylindrical specimens without particle were fabricated using
exactly the same procedure with external radius of 8.25 mm, in order to evaluate the me-
chanical properties of the epoxy resin employed. One specimen for each set is shown in
Figure 6.

4. Experimental results

The specimens were tested on tensile testing machines INSTRON 8802 (for particle radii 2, 3 and
4 mm) and INSTRON 4482 (for particle radii 1.5 mm and specimens without particle). The length
between the grips was controlled and set to follow the same length-to-particle-radius ratio for
all the specimens. The specimens were subjected to monotonic tensile testing at a low strain
rate, which can be considered quasistatic loading. The strain rate is the same for all the sets of
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Figure 6. Examples of fabricated specimens.

Table 1. Details of the experimental set-up

Particle radius (mm) Free length (mm) Deformation rate (mm/min)
4.0 80.0 1.000
3.0 60.0 0.750
2.0 40.0 0.500
1.5 30.0 0.375

Table 2. Details of the dimensions and results for all the specimens

Specimen Part. radius (mm) Sp. diameter (mm) Stress at failure (MPa) Deb. poles
P8-1 4.0 24.23 10.78 1
P8-2 4.0 24.26 13.95 1
P8-3 4.0 24.05 13.70 1
P8-5 4.0 24.29 14.64 1

P6-1 3.0 17.90 14.08 1
P6-3 3.0 18.02 16.02 1
P6-4 3.0 18.02 22.66 2

P4-1 2.0 11.89 17.71 1
P4-2 2.0 12.07 21.70 1
P4-3 2.0 11.89 21.36 1
P4-5 2.0 11.92 18.38 1

P3-2 1.5 9.32 22.20 1
P3-3 1.5 9.23 23.81 1

specimens, thanks to fixing the deformation rate-to-free-length ratio for all the sets, see Table 1
for details. In this manner, viscous effects, if any, are expected to affect similarly to all sets.

A high-speed visualization system was set and used to observe the first stages of the failure
mechanism. The system is composed by a Photron camera able to record at 0.9 Mfps and a
set of powerful light system. For this test, the camera was set to 216 kfps with a resolution of
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Figure 7. Stress–strain curves for all the specimens.

128×80 pixels. The failure in all the specimens was recorded in order to evaluate the hypothesis
on the failure mechanism, but also to check if the fabrication procedure was correct and was not
affecting the failure in the first stages.

Figure 7 shows the stress–strain curves for all the specimens with particles. The stress repre-
sented corresponds to the engineering stress, i.e. the force measured by the load cell divided over
the initial cross section. The represented homogenized strain corresponds to the displacement
of the moving clamp divided by the initial free length. The curves are grouped for sets. As it can
be observed, the stiffness is more regular for sets with larger particles, which could be due to two
reasons: (i) for larger specimens it is easier to reach accurate levels of fabrication standards and
(ii) stress at failure is lower for larger particles, avoiding the activation of nonlinear phenomena at
higher stress levels. This is in accordance with the observation of a more nonlinear behavior for
the specimens with smaller particles. A possible reason of the behavior observed for the smallest
diameters is the ductility observed by [45] when the triaxiality is decreased. The spherical particle
could have this effect on the stress state for high level of strain. The effect of the triaxiality could
be tested using the proposal by [46].

According to the stress–strain curves, for all the sets and specimens, the results show a total
failure of the specimens after the first failure event. The stress level at this failure event, along
with the real dimensions of the specimens and the post-mortem observation of the symmetry
of the failure, are presented in Table 2. It is interesting to remark that the observed failure was
non-symmetric in all the cases except for specimen P6-4.

Given that all the stages of the failure mechanism occur dynamically, it is necessary to observe
the high-speed recording to visualize the different stages. Figure 8 shows the key frames to
visualize the failure mechanism for the specimen P6-3. In the first frame (a) the interface is
intact. A small debond is observed in the second frame, which progresses along the interface and
migrates towards the matrix in frame (c). This already existing matrix crack progresses quickly



640 Israel García García et al.

Figure 8. Failure sequence observed with the high-speed visualization system for speci-
men P6-3.

along the matrix to reach the free edge in frames (d), (e) and (f). The whole failure sequence
occurs in 88 µs, which shows the highly dynamic character of this failure.

The sequence presented before is representative of all the specimens except for the specimen
P6-4, which is the only one where a symmetric failure in the two poles was found in the post-
mortem observation. To clarify what happened in this case, Figure 9 shows its failure sequence.
As it can be observed, the first stages of the failure mechanisms are the same that for the other
specimens, leading to a non-symmetric total failure of the specimen. However, the subsequent
vibration of the two parts of the specimen generated a debond onset at the other pole, that
slowly progressed along the interface to finally end in the total failure of the matrix dynamically
again. This result confirms the theoretical prediction by the CC-FFM, according to which the
non-symmetric debond in only one of the poles is the preferred solution. This was predicted
in [31] for this problem and physically explained in detail in [35] for a related system.

Figure 10 shows the fracture surface for the specimen P6-3. First, it is interesting to observe
the debond at the spherical particle, perfectly located around the pole. The migration toward
the matrix is also visible and occurs at a distance from the pole that is very uniform. In addition,
the migration seems to have taken place at different points of the interface simultaneously, as
evidenced by the fact that the fracture surface at the matrix presents some steps. This is a
consequence of crack migration towards the matrix at different points of the interface at the same
time. These steps are a consequence of the slight difference in the debond angle at which the
crack migrated. This shows an almost perfect axisymmetry in the problem, allowing to neglect
any effect of the fishing line on the failure mechanism. Finally, the reduction of the step when
the fracture surface approaches the external edge is an evidence of the direction of crack growth,
from the spherical particle to the external boundary.
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Figure 9. Failure sequence observed for the only specimen (P6-4) presenting a 2-debond
fracture surface in the post-mortem analysis.

Figure 11 shows the results of the stress at failure for all the specimens as a function of
the particle radius. As already predicted [44] and observed in some previous works in the
literature [11], the apparent strength increases for smaller particle radii. This is qualitatively in
agreement with the predictions given by the model presented in Section 2. The quantitative
comparison requires the value of certain properties, some of which are represented in Table 3.
The properties of AISI 52100 steel used for bearing balls are nominal values. For epoxy resin,
elastic modulus and tensile strength are extracted from the experimental tests carried out on
specimens without particles. Poisson’s ratio is taken as value of reference and the fracture
toughness is taken from experiments carried out in similar resins in the laboratory.

The values of the fracture toughness and strength of the interface are very difficult to obtain
directly. This fact has motivated the proposal of indirect methods, see e.g. [12,47]. To ensure the
representativeness of the results provided by these methods, it is key to mimic all the conditions
involved in the interface behavior. These conditions, such as surface finish, surface treatment,
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Figure 10. Post-mortem observation of the specimen P6-3, where the spherical particle
can be observed on the right.

Figure 11. Stress at failure as a function of the particle radius. Comparison with the
predictions of the CC-FFM.

Table 3. Material properties for particle and matrix

Material AISI 52100 Steel Resoltech WWA/WWB4 epoxy
Elastic modulus (GPa) 200 2.10

Poisson’s ratio 0.3 0.3
Tensile strength (MPa) - 27.7

Fracture toughness (N/mm) - 0.478

temperature and pressure at curing in the local region of the interface, are difficult to mimic.
That is the reason why, in many cases, it is preferential to employ indirect methods. In this case,
the fact that failure starts at the interface is evidence that fracture toughness and strength are
lower at the interface than in the bulk, as the most stressed point is not located at the interface,
as was discussed by [48], among others. For comparison and following [31], the exponent of the
stress criterion is set to p = 2, the shear-to-tensile interface strength τc/σc = 2, and the sensitivity
parameter to the fracture mode mixity λ= 0.11.
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In view of this, the comparison presented here is made for an extreme case where the tensile
strength and fracture toughness of the interface are the same as those of the epoxy resin, and for
another case where the two properties are half of the corresponding values at the interface. As
can be observed, the results of this second hypothesis agree well with the experiments, whereas
the prediction when the epoxy and the interface are similar in terms of strength and fracture
toughness overestimates the stress at failure, as expected.

The size effect found here has a physical interpretation from the point of view of the CC-FFM,
in particular the energy criterion: When all dimensions are scaled for a given load level, the
energy available to be released increases with the cube of the scale factor (because it is stored
in a volume), whereas the dissipated energy scales quadratically with the scale factor (because it
is associated with a surface). As a result, a large size requires a lower load level to meet the energy
balance of the energy criterion.

The results found here for the size effect are in agreement with the results presented in the
review in [15]. A qualitatively similar size effect was found in [33] when the interface failure is
modeled using cohesive zone model for this region. However, they found that the asymptotic
tendency for the smaller particles is different for CZM and CC-FFM predictions. Whereas
CC-FFM predicts a critical stress proportional to 1/

p
R, the CZM approach gives an asymptotic

tendency proportional to 1/R. These results were found also by other authors, such as [29,49].
In fact, a physical interpretation for this mismatch was proposed in [29]. Even for more complex
models, such as the one proposed in [18], based on predicting ductile damage at the bulk, the
asymptotic tendency for the size effect matches the results for CZM.

5. Concluding remarks

A new type of specimen has been proposed to evaluate the first stages of the failure mechanism
in particle-reinforced composites. This specimen is relatively easy to fabricate and allows visual-
ization of the failure mechanism and verification of the size effect predicted by diverse models in
the literature. The experiments performed on these specimens confirmed a strong size effect on
the failure mechanism.

The experimental results were compared with the predictions of the CC-FFM. The prediction
of a non-symmetric initiation of the failure as a debond in only one of the poles was confirmed
in all the specimens. The tendency of the size effect was correctly captured qualitatively with in-
creasing apparent strength for smaller particle. However, the quantitative comparison requires a
set of interface properties which are not available. They could be obtained in further experimen-
tal campaigns adapting the procedure proposed in [47]. The comparison with some estimated
properties showed a good agreement. In addition, as highlighted in [50], the origins of the size
effect are multiple. The CC-FFM is able to account for the size effect with an energetic origin, but
not for those with a statistical origin. Further developments should include them.

Some authors [51] have highlighted the effect of the viscous phenomena in the mechanical
behavior of the particle reinforced composites. In the experiments presented here, an attempt
has been made to keep this effect from affecting the size-effect results, by setting the deformation
rate directly proportional to the free length of the specimen in order to keep the strain rate as
similar as possible for all the specimens. This allows comparison with the CC-FFM model, which
does not include viscous effects at this time. However, viscous effects could be introduced in the
context of the CC-FFM.

Polymeric matrices can also present a nonlinear mechanical behavior. That could be at the
origin of the nonlinear results observed in Figure 7. The CC-FFM model could be extended also
to take into account this nonlinear effect, in line with the developments in [52,53]. The inclusion
of plasticity could also improve the predictions, see e.g. [18].
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The model described here is based on the assumption of zero-thickness for the interface.
However, the model could be extended to take into account a finite-thickness interface, even
including anisotropy with the expressions from [54]. In this case, the zero-thickness assumption
is very representative of the situation because no surface treatment was implemented during the
fabrication.

Multiaxial effects can play an important role in the initiation of this failure mechanism
in particle-reinforced composites. In this sense, the experiments presented here could be
extended to include multiaxial loading. With this objective, a specimen shape has been proposed
by [34,46] along a detailed stress-field calculation which could be used for an analysis based on
the CC-FFM.
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1. Introduction

The Coupled Criterion (CC), introduced by Leguillon [1], is an approach for predicting crack initi-
ation and associated crack size across various configurations [2]. It is particularly efficient under
linear elastic assumption, as its solution can be obtained from a single calculation, independent
of the material fracture properties. This approach allows for the inverse identification of fracture
properties to be performed as a post-processing step [3], unlike computationally expensive ap-
proaches such as the Cohesive Zone Model (CZM) [4,5] or the Phase-Field (PF) method for frac-
ture [6]. Moreover, the CC provides a deeper understanding of the fracture phenomenon since it
involves studying configurations that are not favorable in order to explain the transition to initi-
ation configurations, based on the combined analysis of the energy and stress criteria. Indeed,
further analysis is needed to clarify the role of each criterion in the initiation process, whether it
is predominantly triggered by energy, stress, or both [7].

Yet, implementing the CC requires the crack path to be pre-determined, which is not necessary
with PF, for example. Several possibilities exist for describing the potential initiation crack
shapes. For instance, following the stress isocontours which is computationally efficient as it
only requires an elastic calculation without cracks [8,9]. Mittelman and Yosibash [10] studied
mode III crack initiation and found that the crack path maximizing the energy release rate, along
the V-notch bisector, did not correspond to the experimental one, whether the crack shape is
circular or elliptical. Instead, they noted that the crack path observed experimentally matched
the maximum normal stress location [11]. Duminy et al. [12] used stress isocontours to describe
interface crack path in nacre-like alumina. In different configurations, stress-isocontours based
crack shapes may not be optimal for the energy criterion, which can drive the initiation of the
crack, see [13–16]. Another solution is to assume the shape of the crack, choosing for instance
a geometric shape, such as in [14,17], to obtain a configurable description of the cracks. Papšík
et al. [18] compared CC solutions of indentation induced-cracking obtained using different crack
paths, starting from the contact surface between the indenter and the sample, thus identifying
the optimal one. Elliptical cracks were assumed in [19] to study crack initiation in layered
ceramics. Nevertheless, the above-mentioned approach does not consider all possible crack
geometries. As a consequence, it is yet not established which initiation crack shape among all
possible crack shapes is the most favorable, i.e., results in the minimum imposed loading at
initiation. In our previous work [20], all possible geometrical debonding shapes were compared
using a 2D model consisting of two neighboring fibers in model macro fiber composites. Stress-
based and energy-based shape solutions, corresponding respectively to the shapes maximizing
either stress or energy conditions, were compared to the optimal CC solution. Stress-based
shapes provided the optimal CC solutions for relatively small interface brittleness numbers. For
larger brittleness numbers, energy-based shapes yielded the optimal CC solution. There exists
a transition zone though, for intermediate brittleness numbers, where neither the stress nor the
energy-based shapes were able to provide the optimal CC solution. A similar methodology for
determining the optimum initiation crack shape in 3D has yet to be developed.

Determining the crack path in 3D is challenging because the third dimension increases
drastically the number of possible crack shapes. To overcome this drawback, García et al. [17]
used configurable rectangles whose dimensions can be varied using two variables. Burhan et
al. [21] investigated configurable semi-elliptical shapes to study interlaminar crack initiation in
composite materials, optimal crack shapes were selected as those minimizing the CC solution.
Interlaminar strength and critical energy release rate were then identified by minimizing the
difference between the CC and experimental test results for both failure stresses and crack
initiation length. Leguillon [8] attempted to determine the crack shapes at an interface corner
based on stress isocontours. Fracture properties identified in 3D were similar to those obtained
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with 2D simulations. However, Doitrand et al. [14] found that stress isocontours-based shapes
did not fulfill the energy criterion in woven composites when the CC solution was found to
be driven solely by the energy condition. In such a configuration, idealized crack surfaces
spanning the whole ply thickness and having straight crack fronts were assumed. These surfaces
may not be the optimal ones compared to energy-based shapes to describe the 3D potential
crack shapes when dealing with energy-driven configurations. With regard to the fiber-matrix
debonding configuration studied previously, stress isocontours-based shapes did not allow the
identification of shear fracture properties because they are mainly subjected to mode I loading,
see Girard et al. [22]. In addition, they provided concave debonding shapes and large debonding
angles that were not observed experimentally. In this sense, energy-based shapes or intermediate
shapes lying in between stress isocontours-based or energy-based ones could better describe
the experimentally observed debonding shapes and allow for the shear fracture properties to be
determined. However, their determination is computationally expensive, as an infinite number
of possible debonding shapes need to be investigated.

A methodology is therefore presented in this article to efficiently determine the optimal 3D
debonding initiation shapes provided that debonding initiates from the fiber pole located at the
free surface as observed experimentally. The experimental configuration consisting of a single
glass fiber embedded in a transparent epoxy matrix is presented in Section 2, together with
the obtained experimental results. Then the CC predictions obtained with the stress-based and
energy-based shapes are compared for a wide range of interface fracture properties in Section 3
to assess the relevance of the stress-based or energy-based shapes in adequately describing
the optimal CC solution. Optimal debonding shapes are then compared to the experimental
observation. Finally, inverse identification of the fracture properties of the fiber-matrix interface
is performed in Section 4 using both approaches to quantify the differences they yield.

2. Experimental characterization of the fiber-matrix debonding

2.1. Sample preparation and testing

The configuration consists in a single glass fiber embedded into an epoxy matrix tensile speci-
men. The geometry and dimensions of the samples are given in Figure 1a.

Front surface Side surface

Fiber

h = 5 mm5 mm

−U
2

U
2

σ∞

40
m

m

y

xz

(a)

Glass fiber

Polished
surfaces

5 mm

Epoxy

(b)

Figure 1. (a) Single fiber specimen geometry, dimensions and testing. (b) As prepared
sample with the glass fiber embedded into an epoxy matrix.
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The isotropic elastic properties of the epoxy matrix (SD2505/SR1500, Sicomin, France) are
determined in-house, using 5 cured samples with the same epoxy mixture as the single-fiber
samples. Tensile tests are carried out on the samples at room temperature under quasi-static
loading with a cross-head speed of 0.18 mm/min. The average elastic properties obtained from
the 5 samples are given in Table 1, together with those of the 1 mm glass fiber supplied by the
manufacturer (quartz glass fiber, McMaster-Carr, USA).

Table 1. Linear elastic properties of the epoxy matrix and glass fiber.

Properties Epoxy Glass fiber
E [GPa] 2.7 ± 0.2 72

ν 0.41 ± 0.04 0.17

Three single fiber samples are fabricated by embedding a 1 mm diameter glass fiber in an
epoxy matrix, denoted sample 1, 2 and 3. The dimensions of the samples are defined for use in a
micro tensile testing machine (see Figure 1a). The fiber is held in place at the intersection of the 2
symmetry axes using a 3D printed support. The surface of the fiber is cleaned with isopropanol.
The matrix is then poured into a silicone mold, where the mold is drilled at the location of the
fiber to allow it to slightly protrude from the final sample. This eliminates the need to polish
the end of the fiber beforehand. Curing time is one month at room temperature. After curing,
the front surface of the sample is lightly polished with fine sandpaper (10 µm grit). The side
surfaces are also polished, first with fine sandpaper (8 µm grit), then using a rotating cotton disc
coupled with a polishing solution to obtain a translucent and smooth side surface. A speckle
pattern is then applied to the front surface to enable 2D Digital Image Correlation (DIC). A dual-
vision system consisting of two perpendicularly positioned cameras (FLIR Grasshopper GS3-U3-
41C6M-C) is installed [23]. The front camera allows DIC close to the fiber-matrix interface, while
the second side camera is used to observe the fiber side.

2.2. Experimental characterization of the debonding initiation and propagation

The geometric characteristics that can be extracted from the two cameras after debonding
initiation are depicted in Figure 2.

h

ℓd

δnn
θd

Debonding
Pole

Equator

y

x
z

Figure 2. Set of geometrical parameters used to describe the debonding geometry.

The debonding can be described by its angle θd at the front surface, corresponding to the angle
between the two tips of the debonding, see [24] for more information about its experimental
determination using the side camera. The quantity δnn corresponds to the maximum normal
opening of the debonding located at the pole of the fiber with respect to the loading direction [22].
The interface opening reflects the distance between the two lips of the debonding and it can be
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determined by performing DIC at the front surface. The debonding length through the thickness
is described by ℓd, which corresponds to the maximum length in the z direction at the pole of
the fiber [23]. Figure 3 illustrates the variation of the different geometric characteristics as a
function of the remote loading applied (σ∞) to the sample 3. The results obtained for sample 3
are representative of all three samples tested, using the same approaches as described above.
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Figure 3. Variation of the geometrical characteristics of the debonding as a function of the
remote loading for the sample 3.

All the debonding characteristics enable the determination of a similar initiation remote stress
around 10 MPa. They evidence a step-wise debonding process. Unstable debonding propagation
phases are followed by either stable propagation phase or debonding arrest. During the unstable
propagation phases, both the debonding length and angle increase, as well as the opening.
During the debonding arrest phase, both the length and angle remain constant contrary to the
opening which increases with an increase in the tensile loading. During the stable propagation
phase, the debonding angle increases while its length remains constant. Table 2 summarizes the
different characteristics magnitude after debonding initiation with the associated remote loading
for the 3 samples.

Table 2. Fiber-matrix debonding geometric parameters obtained experimentally from the
three samples after initiation.

Sample 1 Sample 2 Sample 3
σ∞ [MPa] 7.25 ± 0.04 8.03 ± 0.04 10.04 ± 0.04
θd/2 [deg.] 29 37 40
ℓd/h [-] 0.03 0.02 0.05
δnn [µm] 1.5 ± 1.0 2.1 ± 0.8 2.1 ± 1.0

Accurate debonding topology is also assessed after initiation for one specimen using Com-
puted Tomography (CT), the equipment is manufactured by the Phoenix X-ray company. A voxel
size of 5 µm is achieved. The approach is more challenging than using the dual-vision system
since it requires adding contrast penetrant to highlight the debonding location. Contrast pen-
etrant similar to that in [25] is employed. As a consequence, only one scan is performed, just
after debonding initiation observed using the side camera. The loading is maintained constant
while the penetrant is added. The debonding observed probably has a larger surface area than
that at initiation, having potentially propagated when the penetrant is added. Nevertheless, the



906 H. Girard, A. Doitrand, M. Tosti Umemura, B. Koohbor, R. G. Rinaldi, N. Godin and J. Bikard

shape observed is close to that of the initiation and can therefore still be used as a target for the
experimental-numerical dialogue. Figure 4 presents the experimental debonding topology after
initiation. The debonding front, indicated by the white line, exhibits a convex shape.

Matrix
Fiber

Debonding

x

y

z

Figure 4. Debonding topology observed after initiation using X-ray tomography. The
debonding zone is highlighted using a contrast penetrant while the debonding front is
depicted by a white thick line. The volume of the scan is 3 mm in the x-direction and y-
direction, 5 mm in the z-direction.

3. Determination of the optimal initiation crack shape

This section provides a methodology to determine the optimal initiation debonding shape to be
used when implementing the CC.

3.1. The fiber-matrix interface model

A 3D model is employed to account for the singularity at the free surface of the sample, caused by
the fiber-matrix elastic mismatch. The model is established to compare stress-based and energy-
based crack shapes to describe the potential debonding path. The model consists of either 1/4 or
1/8 simplification of the real geometry, using ten-node quadratic elements under the assumption
of small strain and linear elasticity. A 1/4 simplification is used for the calculation of energy-
based shapes, as it allows a single initiation site to be studied. A second 1/8 simplified model is
used with stress-based shapes as they provide a two-site initiation, i.e., at both free surfaces, so
that additional symmetry can be added to the model [22]. Two mesh convergence studies are
performed since the CC involves both stress and energy conditions. Overall, a difference of less
than 2% is achieved, compared to a converged solution, on the stress fields at the fiber-matrix
interface and the elastic strain energy released for a fixed debonding surface. A mesh size of 20
µm is thus adopted at the fiber-matrix interface.

3.2. Implementation of the CC

The debonding initiation is predicted by means of the CC similar to Mantič [13] and Girard et
al. [16]. The CC combines two conditions to provide the initiation loading, the debonding surface
and shape. The energy condition is based on an energy conservation principle before and after
crack initiation. It is a necessary condition but it is not sufficient. It is similar to the Griffith
criterion but considers an incremental balance instead of a differential one. As a result, the
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variation in the external work forces has to be equal to the variation of other sources of energy
such as:

∆Wk +∆Wel +∆Wd +GcS =∆Wext,

where ∆Wext denotes the external work forces, ∆Wk the kinetic energy, ∆Wel the elastic strain
energy, ∆Wd the energy dissipated into other mechanisms such as plasticity, diffused damage or
friction for instance and GcS the crack surface creation energy, where S is the crack surface and Gc

is the average critical ERR whose calculation is detailed in Section 3.4. A rigorous description of
the energy balance in the thermodynamic context in presented in Dormieux et al. [26]. Different
thermal effect occurring at crack initiation could also be accounted in the energy balance, for
instance local heating zone resulting from the cracking process, sliding, viscous effects. These
effects could be accounted through ∆Wd. However, they are difficult to estimate and would
require the use of a dedicated numerical model or a thermal camera during the experiments.
As a result, crack initiation will be assumed to be isothermal and all dissipated energy will
not be taken into account. Furthermore, although the dissipated energies are not taken into
account in the energy balance, they are in fact accounted for phenomenologically through the
critical ERR during its determination, under the assumption that these effects do not vary with
the crack surface. Dormieux et al. [26] also proposed rigorous bounds for the loading level at
crack initiation and associated observable crack length. They discussed conditions under which
quasi-static crack initiation can be considered. The validity of the quasi-static crack initiation
assumption depends on the variation of the Incremental Energy Release Rate (IERR) Ginc:

Ginc(Γ,σ∞) = ∆Wext −∆Wel −∆Wk

S
=Gc,

where Γ denotes the debonding path and σ∞ the remote tensile stress. Noting that the ERR can
be obtained from the IERR using:

G =Ginc︸︷︷︸
=Gc

+S
dGinc

dS
,

and that Ginc = Gc at initiation. So to ensure a stable crack initiation with G ≤ Gc at initiation,
dGinc

dS has to be lower or equal to 0. This case is detailed in Dormieux et al. [26]. It can be obtained
when Ginc/Gc exhibits a maximum [16] or in the presence of strong singularities [27] for which
deceasing variations of Ginc and G as a function of the crack surface are obtained. In this case,
crack initiation can be studied within the framework of a quasi-static hypothesis with neglected
kinetic energy. On the contrary, if dGinc

dS > 0, G > Gc, unstable crack initiation takes place and
the quasi-static assumption is no longer valid. It would be necessary to take kinetic energy into
account in the energy balance, see [28,29]. Quasi-static crack initiation is assumed in this work
since it can not be quantified experimentally, so the IERR reverts to:

Ginc(Γ,σ∞) = W (0,σ∞)−W (Γ,σ∞)

S
with W denotes the elastic strain energy of the model. As a consequence, only stable crack
initiation can be considered.

The energy condition solely is generally adopted to study the propagation of an already
existing semi-infinite crack in an infinite medium. The latter needs to be complemented by a
stress condition to predict crack initiation. The stress condition must be satisfied at any location
over the entire debonding path Γ before initiation, according to the condition proposed in [1].
This non-local stress condition thus enables its application even if the stress fields are non-
monotonic. A quadratic stress criterion σeq is employed to account for the mode mixity, i.e.,
the normal stress σnn, the in-plane and out-of-plane shear stresses, respectively, σnt and σnz:

σeq (⃗x,σ∞) =
√
σ2

nn (⃗x,σ∞)+ 1
µ2

(
σ2

nt (⃗x,σ∞)+σ2
nz (⃗x,σ∞)

)
,
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where x⃗ is the location vector andµ the shear to tensile strength ratio. As for the energy condition,
this criterion is necessary but not sufficient. These two conditions are combined as follow:{

σeq ≥σc ∀ x⃗ ∈ Γ,

Ginc(Γ,σ∞) ≥Gc(Γ),

where σc is the interface tensile strength.
One of the unknown to be determined in the CC is the initiation crack path. The potential

crack path can be chosen in order to minimize the imposed loading that fulfills (i) the stress
condition, (ii) the energy condition or (iii) both stress and energy conditions.

3.3. Stress-based debonding shapes

Figure 5 illustrates the debonding stress-based shapes whose fronts are defined based on the
normal stress isocontours, superimposed on one-quarter of the fiber-matrix interface. Further
details about the determination and implementation of the stress-isocontours based debonding
shapes can be found in Girard et al. [22].
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Figure 5. Potential debonding shape fronts obtained using normal stress isocontours su-
perimposed on one-quarter of the fiber-matrix interface for varying S.

Following the stress isocontours before initiation, debonding initiates at the fiber pole with
respect to the loading direction and propagates in a concave shape, forming a tunnel for suffi-
ciently large cracks (S > 0.2 mm2). Although only one ratio between fiber diameter and sample
thickness is investigated in this work, the debonding shapes derived from the stress isocontours
will remain similar for fibers that are sufficiently long with respect to their diameter. In the case
of a very thin sample with respect to the fiber diameter, the singularities of the two free surfaces
will influence the isocontours. Irrespective of the crack surface, the potential debonding shapes
given by the stress criterion significantly differ from the one observed using CT (Figure 4). For
small crack surface, the debonding angle given by the stress isocontours is larger than the one
observed experimentally, and for larger crack surfaces the debonding shape is concave, contrary
to the convex shapes observed experimentally. It can thus be concluded that for the studied con-
figuration, the stress-based crack shapes significantly differ from the crack shapes observed ex-
perimentally. This discrepancy suggests the possibility of alternative optimal initiation debond-
ing shapes, which are studied in next sections.
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3.4. Energy-based debonding shapes

Determining energy-based debonding shapes is challenging because it requires computing the
elastic strain energy difference between the states with and without crack. It thus requires one
Finite Element (FE) calculation for a given crack shape and there is theoretically an infinite
number of 3D crack shapes to be evaluated. The determination of energy-based crack shapes
consists in defining the debonding shape that maximizes the IERR to critical ERR ratio for a given
crack surface increment. However, it is not possible to test an infinite number of debonding
shape configurations. Therefore, assumptions about the potential debonding shapes are made
in the following. On the one hand, since the stress criterion reaches a peak at the pole of the
fiber at the free surface, it is likely that the debonding emanates from this location, as presented
in Figure 4. On the other hand, although experimental observations show convex shapes, both
concave and convex shapes are investigated for comparison purposes.

The potential debonding shapes are therefore approximated using a power-law relationship,
involving geometric parameters depicted in Figure 2. The location of the debonding front at
the free surface is determined by the debonding angle (θd), while the debonding length (ℓd)
determines the location at the pole of the fiber through the thickness. The topology of the
debonding front, connecting these two points, can therefore be approximated using a power-law
whose exponent n can vary from 0.6 to 4, see (1), where r is the fiber radius.

z(x) =−
ℓn

d

1−
 x

sin
(
θd
2

)
r

n 1
n

(1)

Figure 6 shows the influence of the three parameters on the topology of the debonding front.
The influence of the debonding angle on the debonding front shape is shown in Figure 6a,

while the exponent and length are arbitrarily fixed. The debonding half-angle θd/2 can be
varied between 10 and 80 degrees to assess a wide range of debonding shapes. The influence
of debonding length is shown in Figure 6b and the power-law exponent in Figure 6c, the other
parameters being fixed. The debonding length varies between 0.05 and 1 mm in Figure 6b.
The variation in exponent (Figure 6c) induces a transition from a concave shape, e.g., for an
exponent smaller than 1, similar to that provided by stress-based shapes, to a convex shape, e.g.,
for an exponent larger than 1, tending towards a squared debonding shape for a large exponent.
Using the above geometrical parameters, a wide range of debonding shapes can be evaluated to
determine the optimal energy-based debonding shapes.

A procedure is established to determine the energy-based debonding shapes by exploring all
possible configurations for each exponent n of the power-law description. The first step consists
in identifying the couples of debonding angle and length leading to the same debonding surface
for a fixed exponent. Figure 7a shows the variation in debonding surface as a function of both
debonding angle and length for another fixed n = 1.5 exponent.

Increasing both the debonding angle and the length leads to increasing debonding surfaces.
Consequently, several couples of angle and length, leading to the same debonding surface, can
be determined using the debonding surface isocontours as shown in Figure 7b. The minimum
debonding surface considered is 0.001 mm2, with surfaces smaller than 0.01 mm2 are not pre-
sented in the sequel for the sake of clarity. Ten (ℓd, θd) couples are selected for each debond-
ing surface isocontour. The different debonding shapes obtained for two selected surfaces of
0.18 mm2 and 0.3 mm2 are shown in Figure 8, noting that only five couples of angles and lengths
are displayed for the sake of clarity.

This illustrates the variation in debonding angle and length for a similar debonding surface.
Noticeably, the debonding shapes corresponding to a surface of 0.18 mm2 show large variations
in length and angle (see Figure 8a). Since a maximum value is set on the length range to conform
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Figure 6. Possible debonding shapes superimposed on the fiber-matrix interface obtained
by varying (a) the debonding angle, (b) the debonding length and (c) the exponent of the
power-law description.
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Figure 7. (a) Variation of the debonding surface as a function of the debonding angle and
length. (b) Debonding surfaces isocontours highlighting the ranges of debonding angle and
length couples leading to a similar debonding surface.
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Figure 8. Debonding shape with varying couples of debonding angle and length obtained
for a similar debonding surface of (a) 0.18 mm2 and (b) 0.3 mm2.

to experimental observations, smaller variations are encountered for a surface of 0.3 mm2 (see
Figure 8b).

The IERR corresponding to each couple can be evaluated by FE using a mesh that includes
a debonding profile corresponding to the area delimited by a given debonding front. The
debonding shape is projected onto the fiber-matrix interface so that the mesh topology matches
the geometrical configuration. As a consequence, one FE mesh is created for each debonding
front configuration.

The average critical ERR is calculated using the Hutchinson and Suo [30] relationship, which
depends on the mode mixity ψ. A condition is applied to the mode mixity to consider only shear
when the interface undergoes compression, see Girard et al. [16] for more details. Mode mixity
is evaluated locally which gives a local value of Gc that is averaged on the anticipated crack path,
see (2):

Gc(Γ) = 1

S

∫ Γ

GIC

[
1+ tan2[(1−λ)ψ(⃗x)

]]
dx dy dz. (2)

The parameter λ is related to a mode II to mode I critical ERR ratio, see [2].
The IERR to critical ERR ratio variation is shown in Figure 9a as a function of θd for each

selected (ℓd, θd) couples and varying debonding surfaces, which values are differentiated using
the same color code as Figures 7 and 8.

Overall, for a given debonding surface, there exists a (ℓd, θd) couple that maximizes the energy
criterion, i.e., the IERR to critical ERR ratio, indicated by a round marker. Consequently, these
couples lead to the geometrical configuration that is the most favorable from an energy point
of view. The maximum of IERR to critical ERR ratio obtained from each surface is shown in
Figure 9b, with a similar marker color, as a function of the corresponding debonding surface.
It yields the maximum value of IERR that can be attained as a function of the crack surface for
given exponent n = 1.5 and λ= 0.2 parameter.

The debonding angle and length couples that maximize the IERR to critical ERR ratio are
shown in Figure 10a. These couples therefore correspond to the most energetically favorable
geometrical configuration. Since only the debonding initiation is studied here, the angle and
length of debonding do not necessarily have to increase monotonically. For instance, a decrease
in the debonding angle is observed as the debonding surface increases, see Figure 10a for surfaces
close to 0.4 mm2 (ℓd close to 0.8 mm).

The configuration corresponding to the favorable debonding shape is superimposed onto the
fiber-matrix interface in Figure 10b. The debonding remains localized near the free surface fiber
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Figure 9. (a) IERR to critical ERR variation obtained for different debonding surfaces as a
function of the debonding angle. The maximum is indicated by a marker for each surface.
(b) Maximum IERR to critical ERR obtained for each debonding surface.

It yields the maximum value of IERR that can be attained as a function of the crack surface for
given exponent 𝑛 = 1.5 and 𝜆 = 0.2 parameter.

The debonding angle and length couples that maximize the IERR to critical ERR ratio are
shown in Figure 10a. These couples therefore correspond to the most energetically favorable
geometrical configuration. Since only the debonding initiation is studied here, the angle and
length of debondingdonot necessarily have to increasemonotonically. For instance, a decrease
in the debonding angle is observed as the debonding surface increases, see Figure 10a for
surfaces close to 0.4 mm2 (ℓd close to 0.8 mm).

Theconfigurationcorresponding to the favorabledebonding shape is superimposedonto the
fiber-matrix interface in Figure 10b. Thedebonding remains localizednear the free surface fiber
pole for small surface areas. For a larger debonding area, there is a more pronounced increase
in debonding length with respect to the angle.

The debonding shapes shown in Figure 10b are those that maximize the energy condition.
However, they are obtained for a fixed power-law exponent 𝑛. Thus, the optimum energy
conditions obtained for different power-law exponents can be compared to determine the
configurationswhichmaximize the energy conditions. Figure 11 shows the variation in the IERR
to critical ERR ratio obtained for different exponents. It is found that a 𝑛 = 1.5 exponent yields
the most favorable debonding shapes from an energy point of view whatever the debonding
surface and 𝜆 values explored.

The fiber-matrix interface undergoes both opening and shear modes simultaneously. Con-
sequently, 𝜆 can influence the loading required to fulfill the energy condition. Figure 12a shows
the influence of 𝜆 on the magnitude of the IERR to critical ERR ratio.

The opening critical ERR 𝐺IC is fixed while the shear critical ERR 𝐺IIC increases, leading to a

Figure 9. (a) IERR to critical ERR variation obtained for different debonding surfaces as a
function of the debonding angle. The maximum is indicated by a marker for each surface.
(b) Maximum IERR to critical ERR obtained for each debonding surface.

pole for small surface areas. For a larger debonding area, there is a more pronounced increase in
debonding length with respect to the angle.

The debonding shapes shown in Figure 10b are those that maximize the energy condition.
However, they are obtained for a fixed power-law exponent n. Thus, the optimum energy condi-
tions obtained for different power-law exponents can be compared to determine the configura-
tions which maximize the energy conditions. Figure 11 shows the variation in the IERR to critical
ERR ratio obtained for different exponents. It is found that a n = 1.5 exponent yields the most
favorable debonding shapes from an energy point of view whatever the debonding surface and λ
values explored.

The fiber-matrix interface undergoes both opening and shear modes simultaneously. Conse-
quently, λ can influence the loading required to fulfill the energy condition. Figure 12a shows the
influence of λ on the magnitude of the IERR to critical ERR ratio.

The opening critical ERR GIC is fixed while the shear critical ERR GIIC increases, leading to a
decrease in λ. The critical ERR in mode II appears to influence the profile of the energy criterion
over the full range of the debonding surface, suggesting that small variations in mode mixity are
encountered on the different debonding shapes. Overall, increasing GIIC leads to a decrease in
the level of the energy criterion. Consequently, a larger loading is required to fulfill the energy
criterion as GIIC increases, see Figure 12b. However, the difference in required loading induced
by a variation in λ is small, less than 0.5 MPa for a fixed debonding surface. Consequently, the
shear component appears to be negligible on the energy-based shapes determined.

Although shear has little influence on the loading required to fulfill the energy condition, it
can influence the (ℓd, θd) couples that describe the energy-based shapes. Figure 13a shows the
(ℓd, θd) couples corresponding to energy-based shapes for two extreme λ of 0.01 and 0.8.

For a relatively small debonding area (ℓd < 0.3 mm and θd/2 < 45 deg.), λ has no influence
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Figure 10. (a) Debonding angle and length couples corresponding to the maximum in
IERR to critical ERR ratio in Figure 9a, with the colors corresponding to the debonding
surfaces. (b) Optimal potential debonding shapes determined from an energy point of
viewwith an exponent of 1.5, superimposed onto the fiber-matrix interface (gray surface).
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Figure 10. (a) Debonding angle and length couples corresponding to the maximum in IERR
to critical ERR ratio in Figure 9a, with the colors corresponding to the debonding surfaces.
(b) Optimal potential debonding shapes determined from an energy point of view with an
exponent of 1.5, superimposed onto the fiber-matrix interface (gray surface).
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Figure 11. Variation of the optimal IERR to critical ERR ratio as a function of the debonding
surface for different power-law exponents, emphasizing the optimal exponent of 1.5 for the
defined λ= 0.2.

on the energy-based debonding shape, which mainly undergoes opening mode. However, for
a larger debonding surface, smaller λ results in both decreasing θd and increasing ℓd. This
difference can be explained by the stress shear component that is higher close to the fiber
equator, i.e., at large debonding angles. Consequently, the increase in the critical ERR in mode II
makes debonding initiation for a large angle less favorable than for a small GIIC. This is illustrated
in Figure 13b, where the optimum debonding shapes obtained for three different debonding
surfaces and the two extreme values of λ are superimposed with the field of variation in mode
mixity at the fiber-matrix interface. Overall, mode mixity is similar to that observed with a front
2D modeling (see Girard et al. [16]) for a sufficiently large distance from the free surface and
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Figure 13. (a) Debonding geometrical parameters (ℓd, θd) corresponding to the energy-
based debonding shapes for two extremes values of λ. (b) Energy-based shapes obtained
for three surfaces and two λ values highlighting the influence of the mode mixity (whose
variation is superimposed on the fiber-matrix interface) on the debonding shapes.

it is affected by the singularity at the free surface. As with debonding shapes based on stress
isocontours, the fiber diameter to sample thickness ratio should not affect energy-based shapes
for a fiber that is sufficiently long in relation to its diameter.
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3.5. Energy-based vs stress-based: CC solution

Once the potential initiation debonding shapes based on stress isocontours or energy are deter-
mined, the CC can be implemented. The loading required to fulfill one or other of the criteria
(σ∞

σ ,σ∞
G ) is compared in Figure 14 on the basis of the stress isocontours-based and energy-based

debonding shapes for two brittleness numbers:

γ= 1

σc

√
GICE∗

r
, (3)

where E∗ denotes the harmonic mean of the effective elastic moduli of the two constituents. The
λ and µ parameters are selected on the basis of those identified in [16]. The minimum loading for
which both criteria are fulfilled is the initiation loading and the corresponding debonding surface
is the initiation crack surface, which are indicated by the round marker in Figure 14.

For both stress-based and energy-based debonding shapes, the stress condition increases
monotonically since the equivalent stress decreases with the debonding surfaces. The energy
condition obtained with the energy-based debonding shapes monotonically decreases, unlike
the one obtained using the stress-based shapes which provides local minima. Overall, the stress-
based shapes result in the most favorable solution in terms of stress conditions, whatever the
debonding surface considered, consistently with their definition. On the contrary, the energy
condition provided by energy-based shapes is smaller than that of stress-based shapes, whatever
the debonding surface. For a relatively small brittleness number (Figure 14a), the energy-based
shapes provide the most favorable configuration compared to that provided by the stress-based
shapes. This differs from the results obtained in 2D [20], where the stress-based shapes are
the optimal debonding shapes for a small brittleness numbers, i.e., smaller than 1. In 3D, the
energy condition, which is significantly larger for the stress-based shapes, appears to control
debonding initiation even for a small brittleness number. The stress-based and energy-based
shapes provide debonding initiation surfaces with relative difference of 140%. For a relatively
large brittleness number (Figure 14b), the energy-based debonding shapes also lead to the most
favorable configuration for predicting debonding initiation. The stress-based shapes require
a larger loading to fulfill the energy condition. A similar result was obtained in 2D for large
brittleness numbers [20]. The debonding initiation configuration (surface Sc) obtained for the
stress-based and energy-based debonding shapes and the two brittleness numbers are compared
in Figure 14. For a small brittleness number, the stress-based surface remains close to the free
surface with a debonding angle spanning over the whole fiber circumference. The energy-based
surface has a smaller angle and length, thus a smaller surface than stress-based surface. The
difference between the two debonding initiation surfaces becomes more pronounced as the
brittleness number increases, as shown in Figure 14d. The stress-based surface provides a tunnel
between the two free surface debondings. In contrast, the energy-based surface shape is similar
to that obtained with a small brittleness number, with increased surface area.

Similarly, the debonding initiation surfaces obtained using stress-based and energy-based
shapes are compared for a range of interface brittleness numbers, see Figure 15a. The brittleness
number range is selected to ensure that the CC solution is provided by the intersection of both
stress and energy conditions.

For interface brittleness numbers smaller than 2, the initiation surfaces predicted by the two
approaches are in the same order of magnitude. However, for large brittleness number, the
initiation surfaces predicted by the stress isocontours approach is larger than those provided
by the energy-based debonding shapes. This phenomenon is caused by the tunneling effect of
the stress-based shapes, which induces a sharp increase in the debonding surface for solutions
triggered by the energy condition. The remote stress required to fulfill the CC is assessed in
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Figure 14. Required loading to fulfill both the stress (solid lines) and energy (dashed
lines) criteria obtained using the stress-based and energy-based shapes. Two interface
brittleness numbers are investigated, (a) a relatively small one γ= 0.5 and (b) a relatively
large one γ= 3. Comparison of the debonding initiation surfaces (Sc) obtained in (a) and
(b), respectively (c) and (d).

Figure 15b, for the same range of brittleness number as Figure 15a, so that the relevancy of
the stress isocontours approach in predicting the optimal CC solution can be evaluated. The
stress-based shapes yield larger initiation remote stress than the energy-based ones whatever the
brittleness number over the range 0.3–8. In fact, it is observed that the energy-based debonding
shapes are close to the ones that allow fulfilling the CC for a minimum imposed loading, as they
yield differences smaller than 0.1% in the initiation remote loading compared to these optimum
solutions.

For relatively small interface brittleness numbers (γ< 1), limited difference of less than 15% is
made by the stress-based shapes. For intermediate brittleness numbers (1 < γ< 6), the difference
reaches a peak to 30% caused by energy driven solutions. The difference decreases to 15%
for larger brittleness numbers (γ > 6). The differences in initiation loading are larger than in
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Figure 15. (a) Debonding initiation surfaces and (b) corresponding loading predicted by
the stress-based and energy-based shapes.

2D, where it remains smaller than 5% whether stress-based or energy-based crack shapes are
used [20].

3.6. Comparison with experimental observations

Initiation debonding shapes are now compared to the ones observed experimentally just after
initiation. The debonding side views are shown in Figure 16a and Figure 16c just after initiation
for sample 1 and 3, respectively. Note that these two samples represent two independent cases
subjected to the same experimental conditions. The debonding zone in each case is highlighted
with white pixels, similar to Uddin et al. [23].

Three brittleness numbers are selected and their corresponding debonding shapes are super-
imposed on the zoomed experimental side view, see Figure 16b and Figure 16d. On the one hand,
there are energy-based shapes that correspond to the experimental debonding angle and length
after initiation for a given range of brittleness numbers. For sample 1, experimental observations
yield an upper limit of 0.6 as an acceptable γ, and 1.2 for sample 3, otherwise excessive debond-
ing angles are encountered. These restrictions are applied to the inverse identification in the fol-
lowing. Energy-based shapes are able to reproduce the experimental debonding configuration,
in terms of angle, length and shape. On the other hand, as pointed out previously, stress-based
shapes significantly overestimate the debonding angle, regardless of γ, while accurately predict-
ing the debonding length, for a range of γ. The upper limit of the acceptable γ range based on the
experimental debonding length can be determined as 0.56 for sample 1 and 0.65 for sample 3.
Nevertheless, the shape provided by the stress isocontours does not capture the experimentally
observed debonding zone, overestimating the debonding area whatever the brittleness number.
This corroborates the fact that shapes based on stress isocontours are not optimal for the con-
figuration studied, while not providing the optimum CC solution in terms of debonding shape.
Similar observations are obtained for sample 2.
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Figure 16. (a) Side view of the debonding just after debonding initiation. The debonded
area is highlighted using a threshold and the white pixels. (b) Debonding shapes ob-
tained with the CC and several brittleness numbers for both stress-based and energy-based
shapes, corresponding to the red and blue shaded areas, superimposed on the side view.

4. Inverse identification of the interface fracture properties

The couples of tensile strength and critical ERR in mode I identified leading to equivalent remote
stress (σ∞) to the experimental one can be identified. The identification is made on the basis
of the energy-based debonding shapes with λ = 0.13 and µ = 1. Since the mode II has no
influence at initiation, the λ and µ values are kept constants for the inverse identification as
their influence is negligible. As a results, no shear fracture properties are identified. In addition,
stress-based debonding shapes are also used for the inverse identification. Similarly, no shear
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fracture properties can be identified, see [22]. Once the range of fracture properties are identified,
additional restrictions can be applied to the range of properties identified on the basis of the
geometrical parameters obtained experimentally, whose values are given in Table 2, and shown
in Figure 16. The initiation surface provided by the CC can be either smaller than or equal
to the arrest surface observed experimentally, as unstable debonding propagation can occur,
see Section 3.2. The initiation surface reverts to the arrest surface when initiation is driven
by the maximum of Ginc/Gc. However, the energy-based debonding shapes yield Ginc/Gc that
increases monotonically for the brittleness numbers identified so that no stable debonding can
occur after initiation, see Dormieux et al. [26] or Girard et al. [16] for the determination of the
crack initiation surfaces bounds. Similarly, when the CC solution is given by the intersection of
both stress and energy conditions, further debonding propagation takes place after initiation.
Therefore, without the use of a high-speed camera, the experimentally observed debonding
surface after initiation actually corresponds to the arrest surface that has potentially already
propagated. The geometrical parameters shown in Table 2 therefore serve as an upper limit to
those obtained using the CC and therefore allow the identified couples of fracture properties to be
restricted, as explained in Section 3.6. It is worth recalling that, except for the debonding opening,
the determination of the debonding angle and length is limited by the pixel size (see [23]).
The results derived from these two quantities may therefore be underestimated as sub-pixel
phenomena may have occurred. Consequently, the maximum uncertainties in the calculation
of the debonding opening is considered for the restriction of the identified fracture properties.
The restricted identified properties are summarized in Table 3.

Table 3. Interface fracture properties identified for sample 1, 2 and 3 and a µ ratio of 1 and
λ= 0.13.

Sample 1
σ∞ [MPa] 7.25 ± 0.04

Stress-based Energy-based
γ 0.3 - 0.56 0.3 - 0.60

σc [MPa] 11.9 - 16.8 13.0 - 20.7
GIC [J/m2] 2.7 - 4.2 3.9 - 5.8

Sample 2
σ∞ [MPa] 8.03 ± 0.04

Stress-based Energy-based
γ 0.3 - 0.5 0.3 - 0.74

σc [MPa] 13.9 - 18.6 12.4 - 22.9
GIC [J/m2] 3.3 - 4.9 4.8 - 8.2

Sample 3
σ∞ [MPa] 10.04 ± 0.04

Stress-based Energy-based
γ 0.3 - 0.65 0.3 - 1.16

σc [MPa] 14.8 - 23.3 11.1 - 29.8
GIC [J/m2] 5.2 - 8.9 7.6 - 15.8

The debonding angle is not taken into account for restrictions applied to properties identified
with the stress-based shapes. Overall, similar strength ranges are identified between the stress-
based and energy-based shapes, regardless of the sample, in contrast to the critical ERR in
mode I. Smaller critical ERR are identified using stress-based shapes due to less favorable energy
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conditions. The fracture properties identified are in line with those identified in [16], although
the epoxy system and glass fiber used are different.

5. Conclusion

The stress-based or energy-based debonding shapes are used to assess the fiber-matrix debond-
ing initiation shape using the CC on an epoxy single glass fiber specimen under transverse ten-
sion. Energy-based shapes require additional effort to be determined because they require all
possible shape configurations to be compared. On the basis of experimental observation, restric-
tions are made about the initiation location and the shape description. A power-law with an ex-
ponent of 1.5 is found to be optimal regardless of the critical ERR in mode II. Overall, the critical
ERR in mode II has a negligible influence on the magnitude of the IERR to critical ERR ratio. The
predicted debonding shape results in a smaller angle with larger length with increasing critical
ERR in mode II, due to increased mode mixity in the vicinity of the fiber equator.

Energy-based shapes provide the optimal solution regardless of the brittleness number. The
stress-based shapes overestimate the optimal CC solution by up to 15% for either small (γ < 1)
or large (γ > 6) brittleness numbers. Larger differences, up to 30%, are encountered for inter-
mediate brittleness numbers (1 < γ < 6). The energy condition causes this difference, the latter
being less favorable using stress-based shapes, especially for intermediate brittleness numbers,
where the energy condition triggers the CC solution. Energy-based debonding shapes provide
a debonding topology consistent with the experimental observations, predicting the length, an-
gle and the opening of the debonding compatible with those measured experimentally. Stress-
based shapes are unable to provide an accurate shape with respect to experimental observation.
It should be noted that the results obtained depend on the configuration studied (e.g., geometry,
materials, boundary conditions). Therefore, the approach presented must be reproduced in each
configuration in order to determine whether stress-based or energy-based shapes are optimal. In
addition, the determination of energy-based shapes must be simplified using mathematical ex-
pressions, as their calculation is computationally expensive. Additionally, the debonding surface
predicted by the CC corresponds to the initiation surface that is likely to propagate after initiation
to the arrest surface. Further study of debonding propagation would be required, which could be
approximated using an algorithm that iteratively varies the debonding front to obtain a constant
stress intensify factor at the front for different increasing debonding surfaces.

Inverse identification is carried out on the basis of the stress-based and energy-based debond-
ing shapes. Only the opening fracture properties are identified, since shear fracture properties
slightly influence the CC solution for small surface such as the ones observed experimentally.
The two approaches give similar fracture properties in terms of tensile strength, while the differ-
ence becomes more pronounced in terms of critical ERR. Admissible tensile strengths ranging
from 11 to 30 MPa and a mode I critical ERR of 4 to 16 J/m2 are identified with the energy-based
debonding shapes for the three samples. Further refinement of the interface fracture properties
range could be obtained by determining the critical ERR based on the debonding propagation
stage.
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laminates by 3D finite fracture mechanics”, Compos. B. Eng. 95 (2016), pp. 475–487.
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1. Introduction

Interface cracks are present in many types of heterogeneous materials and structural elements,
such as composites, multilayers, and polycrystals (e.g., metals, ceramics, rocks, ice, and solar
cells), at different scales, from nanoscale to macroscale. Interface cracks in laminates and multi-
layers are commonly referred to as delaminations, and in polycrystals as intergranular fractures.
As follows from the seminal contributions to the theory of interface cracks by Comninou and
co-workers [1–4], there is often a relevant contact zone adjacent to an interface crack tip. Such
configurations are usually analyzed by means of the so-called contact model of interface cracks,
contrary to the widely used open model of interface cracks introduced by Williams [5], and fur-
ther developed in [6–11] among others. It should be noted that the crack tip solution of the open
model has a very peculiar oscillatory character associated with the complex singularity expo-
nent λ for non-zero values of the Dundurs bimaterial parameter β ̸= 0, i.e. for dissimilar materi-
als, with an infinite number of traction oscillations and an infinite number of overlapping zones
very near the crack tip. For a comprehensive review of both the contact and open models of inter-
face cracks, see [12–16]. Recall that in all these works a perfectly bonded interface is considered,
i.e., the traction equilibrium and displacement compatibility are fulfilled along the undamaged
interface part. The same hypothesis is considered in the present work.

In many engineering problems the contact zone adjacent to the interface crack tip is negligibly
small, so the Small-Scale Contact (SSC) assumption proposed by Rice [9] is adequate, allowing
to apply the open model of interface cracks, as comprehensively studied by Hutchinson and
Suo [10] for isotropic bimaterials and Banks-Sills [17] for anisotropic bimaterials. However, there
are also many practical applications where the size of the near-tip contact zone is relevant in
comparison with some characteristic length of the problem, e.g., the interface crack size or the
adjacent lamina thickness, and the SSC hypothesis is not valid, so the Comninou contact model
of interface cracks must be applied.

In the frictionless case, see Leblond [18] for a review of this problem, the size of the contact
zone adjacent to the crack tip can be estimated quite accurately as shown in [12,19,20].

In the friction case, frictional sliding takes place in the near-tip contact zone, which leads to
a specific crack tip solution studied for the first time by Comninou [2] for isotropic bimaterials,
considering the Coulomb law of friction. See [4,16,21–36], for subsequent studies on various
aspects of this problem. A remarkable feature of this interface crack tip solution with frictional
sliding at the crack tip is that, for dissimilar materials with a nonzero value of the Dundurs
parameter β ̸= 0, the stress singularity is weaker than that appearing in a classical crack in
a homogeneous material, as shown by Comninou [2] for a stationary crack under monotonic
loading, and in the general case of an interface crack propagating quasi-statically by Audoly [27].
See also [26,35,36], for an analysis of interface cracks in anisotropic bimaterials. This is consistent
with the physical intuition that friction can only make the stress state at the crack tip less severe,
i.e. less singular. Thus, the singularity exponent λ for an interface crack between dissimilar
materials with a sliding frictional contact zone at the crack tip is greater than 0.5, 0.5 < λ < 1,
whereas λ = 0.5 for a crack in a homogeneous material or an interface crack between similar
materials with β = 0. Following [37] we will refer to this kind of stress singularity as weak
singularity.

A fundamental consequence of this weak stress singularity in frictional interface cracks is that
the Energy Release Rate (ERR) vanishes for such cracks. Considering the two basic options for
computing ERR, either the Irwin [38] crack closure integral to compute the incremental ERR
G(∆a) due to a small crack advance ∆a > 0, or the Rice[39] J-Integral along a small circular path
of radius δ> 0 enclosing the crack tip, both lead to essentially the same conclusion, namely, the
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vanishing incremental ERR [24,25]

lim
∆a→0

G(∆a) = 0, (1)

and the vanishing J-integral, which is path-dependent due to the frictional dissipation in the
contact zone [21,22,27–29],

lim
δ→0

J (δ) = 0. (2)

In addition, Leblond and Frelat [30] showed that the Stress Intensity Factors (SIFs) tend to zero
for vanishing extension of a kink crack from such a frictional interface crack.

These observations raise the fundamental question of how to predict the propagation of such
cracks and indeed how such interface cracks can propagate, see [21,22,24,25,28,30]. In the past,
several proposals have been introduced to address this issue by establishing a suitable fracture
criterion. Deng [22], in view of the vanishing J-integral with decreasing radius of the integration
path δ→ 0, suggested that the SIF KII should be used instead as a better measure of the fracture
driving force.

Sun and Qian [24] and Qian and Sun [25] considered the released energy due to a fixed finite
crack extension∆a in their crack closure integral. A similar assumption of a fixed crack extension
was made by Graciani et al. [33], although a different approach was used for the crack closure
integral computation. In fact, these works [24,25,33] are related to the so-called Theory of Critical
Distances (TCD) [40], which could also be applied to assess the initiation of propagation of such
a frictional interface crack, although to the best of the authors’ knowledge, no work has been
reported in the literature attempting this. Audoly [28] proposed to use the J (δ)-integral for a
usually very small Barenblatt’s [41] length δc. However, the meaning of using J (δc) is not clear as
it represents the dissipation due to the frictional sliding behind the crack tip along the a priori
existing crack faces (extrinsic toughness) and does not include the energy available for breaking
interface bonds in front of the crack tip (intrinsic toughness).

Another widely developed and thoroughly studied way to overcome this difficulty is to con-
sider an imperfect interface with a cohesive constitutive law [42–49], assuming a gradual increase
of the friction effect with the gradual increase of the interface damage. See [50], for a review of
coupling Cohesive Zone Models (CZM) and frictional contact.

Focusing hereinafter on perfectly bonded interfaces, the key observation regarding the J-
integral is that, considering an infinitesimal growth of a frictional interface crack between dis-
similar materials (β ̸= 0), the energy flowing into the crack tip region circumvented by the inte-
gration path is completely consumed by the frictional dissipation along the parts of crack faces
inside this crack tip region. Thus, such J-integral is path independent assuming fixed endpoints
of the integration path, cf. [31,51]. In view of the above, we can conclude that an infinitesimal
growth of such interface crack with frictional sliding contact zone adjacent to the crack tip, and
thus with the vanishing ERR, G = 0, is not possible.

As mentioned above, by relaxing the hypothesis of classical fracture mechanics of an infinites-
imal crack growth by allowing finite crack advances∆a, and calculating the so-called incremental
ERR G(∆a), makes it possible to avoid the above difficulty associated with the null ERR resulting
from an infinitesimal advance of such frictional interface crack in (1). Therefore, the aim of the
present article is to introduce some new ideas by further developing the original proposal of a
finite crack extension ∆a by Sun and Qian [24], see also Graciani et al. [33]. The main concept is
based on:

(1) Considering a finite crack advance, instead of the infinitesimal crack advance assumed
in the classical Linear Elastic Fracture Mechanics (LEFM), as Hashin [52] proposed in the
framework of Finite Fracture Mechanics (FFM), see also [24,33].
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(2) The Coupled Criterion (CC), coupling the classical stress criterion (in terms of the inter-
face shear strength τc) and the incremental energy criteria (in terms of the fracture en-
ergy in Mode II GIIc) in the framework of FFM, proposed by Leguillon [53] and later by
Cornetti et al. [54], see Weissgraeber et al. [55] and Doitrand et al. [56], for a review of CC-
FFM. Thus, only finite crack extensions with sufficiently high stresses acting along the
path of this extension are considered when looking for the minimum load fulfilling both
stress and incremental energy criteria. Thus, the length of such crack extension becomes
a structural parameter, a function of the whole problem configuration, instead of being
fixed as considered in previous works [24,33].

Noteworthy, the present work differs from the first application of CC-FFM to the propagation
of interface cracks, in mixed mode and with a non-zero Dundurs parameter β ̸= 0, developed by
Mantič [57], because in that work the open model of interface cracks was considered, with an
oscillating singularity associated with a complex singularity exponent λ.

In Section 2, the most singular term in the asymptotic expansion of the crack tip solution is an-
alyzed. Several approaches to compute the incremental ERR are presented and compared in Sec-
tion 3. Section 4 discusses the application of the fracture criterion considering a finite crack ex-
tension and different methods for the incremental ERR calculation. The Coupled Criterion (CC)
is used in Section 5 to predict the propagation of a frictional interface crack. Finally, some con-
cluding remarks are made in Section 6.

2. Asymptotic solution in the vicinity of an interfacial crack tip with friction

Consider two isotropic and linearly elastic adherents perfectly bonded along a straight interface,
except for a debonded region where an interface crack of length a is located. Assuming the
plane-strain hypotheses, a 2D model can be used to study such configuration. For simplicity,
unit thickness is assumed. Focusing on the right crack tip with a frictional sliding contact zone
on the left and a perfectly bonded interface on the right, the Cartesian and polar coordinates
systems, (x, y) and (r,θ), centered at this crack tip denoted as O, will be used as shown in Figure 1.
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open
crack

crack in
contact
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Figure 1. Near-tip elastic solution in the vicinity of a frictional interfacial crack tip.
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Considering the polar coordinate system, Comninou [2] obtained the following asymptotic
elastic solution in plane strain, for the interface tractions and the relative tangential displace-
ment, in the vicinity of the frictional interfacial crack tip, for r → 0,

σx y (r,0) = KII(2πr )(λ−1), (3)

σx y (r,±π) = KII cos[(1−λ)π](2πr )(λ−1), (4)

σy y (r,±π) =−KIIβsin[(1−λ)π](2πr )(λ−1), (5)

∆ux (r ) = KII
sin[(1−λ)π]

Êλ(2π)1−λ rλ = ux (r,π)−ux (r,−π), (6)

where KII is the SIF. The real singularity exponent λ can be obtained from the interfacial friction
coefficient f and the Dundurs bimaterial parameter β by

λ= 1− 1

π
arccot( f β). (7)

The Dundurs bimaterial parameter β is defined as

β= µ1 (κ2 −1)−µ2 (κ1 −1)

µ1 (κ2 +1)+µ2 (κ1 +1)
, (8)

where µ1 and µ2 are the shear moduli of the materials, and the Kolosov constants κ1 and κ2 are
defined by the Poisson ratios ν1 and ν2 as κm = 3 − 4νm , with m = 1,2. Recall that β = 0 for
identical or similar materials, and β ̸= 0 for dissimilar materials.

The bimaterial stiffness parameter Ê in (6) is defined as

1

Ê
= 1−β2

2

[
1−ν2

1

E1
+ 1−ν2

2

E2

]
, (9)

where E1 and E2 are the Young moduli of the materials.
As shown in [2,26,27,30] there is only one allowable direction of sliding near the crack tip

given by the condition f β > 0. Then, the expression (7) leads to 0.5 < λ < 1, which means that
stress singularity at the crack tip is weak, i.e. weaker than in a classical crack in a homogeneous
material, cf. [2,37]. Some of the consequences of this weak stress singularity were discussed in
the introduction.

For the sake of simplicity and without loss of generality, it will be assumed that β > 0, which
can be interpreted as the subscript 1 denoting the stiffer material and the subscript 2 denoting
the softer material. Then, assuming this material definition, the friction coefficient should be
positive f > 0. Notice that in this case KII > 0.

3. Incremental ERR in an interfacial crack with friction

In this section, the so-called incremental ERR associated to a finite crack extension ∆a along the
interface of two materials will be derived. The aim is to apply it in the prediction of such crack
propagation by the CC-FFM. Let us consider Problems A and B, depicted in Figure 2, respectively,
corresponding to an interface crack of length a, Problem A, and the same interface crack after a
relatively small crack extension of length∆a has taken place, Problem B. For simplicity, a straight
crack under plane strain conditions is considered as in the previous section.

As shown in Figure 2, a local Cartesian reference system located at the crack tip is employed in
each problem, with the x coordinate oriented in the direction of crack propagation, to define
the components of the stress tensor and the relative displacement, while a polar reference
system, also located at the crack tip, will be employed to define the point locations. For the
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sake of simplicity, the following notation will be used to denote the near-tip stresses and relative
displacements, with i , j = x, y and 0 < ρ <∆a,

σA+
i j =σA

i j (ρ,0), σA−
i j =σA

i j (∆a −ρ,π), (10)

σB+
i j =σB

i j (ρ,0), σB−
i j =σB

i j (∆a −ρ,π), (11)

∆uB
i = uB

i (∆a −ρ,π)−uB
i (∆a −ρ,−π). (12)

Problem A 1

2

1

2

Problem B

𝑎 Δ𝑎 𝑎 Δ𝑎

𝜃
𝑟

𝑦

𝑥 𝜃
𝑟

𝑦

𝑥

Figure 2. Interfacial crack and reference systems. Problem A before crack extension.
Problem B after crack extension.

3.1. Incremental ERR by Graciani et al. [33]

By generalizing the Irwin crack closure integral procedure [38] to interface cracks with friction,
cf. [51], the balance of mechanical energy leads to the following expression giving the energy
available for crack propagation can be evaluated as

G̃II(∆a)∆a =U A −U B +∆W A→B
e+f , (13)

where G̃II(∆a) is the incremental ERR in Mode II and U A and U B are the elastic strain energies
per unit thickness, respectively, stored in the system in Problems A and B, and ∆W A→B

e+f is the
work per unit thickness carried out by the external forces, including the frictional forces along
the (existing) crack faces, during crack propagation.

In this section G̃II(∆a) will be evaluated from the near-tip elastic solution, for an interface
crack with frictional sliding contact zone, depicted in Figure 3, using a virtual crack propagation
technique in presence of frictional sliding contact and a generalization of the Irwin crack closure
integral [38], cf. [33]. Notice that the crack faces are in frictional contact during the virtual
extension of the crack, thus only the tangential components of the virtual stresses contribute
to the variation of the strain energy in the process. Therefore, only the shear component of the
stresses and the relative sliding between crack faces are depicted in Figure 3. However, for the
sake of clarity, the Mode II propagation has been represented in Mode I fashion.

Starting from the situation described in Problem A depicted in Figure 3, in a first stage, the
interface ahead of the crack tip is virtually clamped along a certain length ∆a.

Subsequently, in the second stage, the interface is externally cut, thus the interfacial stresses
along the virtually clamped length denoted as σA+

i j are transformed into external stresses applied
by the virtual grips. No energy variation is observed at these two stages since no change in the
displacements takes place.

Finally, in the third stage, the virtual grips are released in a way that the applied stressesσA+
i j are

linearly transformed into σB−
i j , i.e., into the near-tip contact stresses corresponding to Problem B.

Given that the final situation is identical to Problem B, the relative displacements at the virtual
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Figure 3. Local elastic solution along the near-tip interface region. Problem A before crack
extension. Problem B after crack extension.

grips are given by ∆uB
i . Note that the receding nature of this frictional contact problem has been

tacitly considered in the previous analysis. It is well known that in general in a receding contact
problem its solution is a homogeneous function of degree 1 of a positive scalar factor governing
some proportional boundary conditions, i.e., the problem solution behaves linearly with respect
to such scalar factor.

The procedure described above permits evaluating the elastic strain energy stored in Prob-
lem B as:

U B =U A +∆W A→B
e+f +∆W A→B

v , (14)

where ∆W A→B
v is the (negative) work carried out by the virtual stresses during the virtual crack

extension.
Introducing (14) into (13) gives the following expression for G̃II(∆a)

G̃II(∆a) =− 1

∆a
∆W A→B

v . (15)

The work per unit area W A→B
v and the released energy per unit area G̃II (∆a) at each interface

point within the crack extension ∆a are defined as

∆W A→B
v =

∫ ∆a

0
W A→B

v dρ, (16)

G̃II(∆a) = 1

∆a

∫ ∆a

0
G̃II (∆a)dρ. (17)

In view of Figure 4, G̃II (∆a) and W A→B
v can be written as

G̃II (∆a) =−W A→B
v = 1

2

[
σA+

x y +σB−
x y

]
∆uB

x , (18)

and, therefore, the incremental ERR is given by

G̃II(∆a) =− 1

∆a
∆W A→B

v = 1

2∆a

∫ ∆a

0

[
σA+

x y +σB−
x y

]
∆uB

x dρ. (19)

If the crack extension ∆a0 is sufficiently small in comparison with the crack length, ∆a0 ≪ a, the
near tip solutions of Problem A and Problem B can be identified as

σ+
x y ≡σA+

x y , (20)

σ−
x y ≡σA−

x y
∼=σB−

x y , (21)

∆ux ≡ uA
x

(
∆a0 −ρ,π

)−uA
x

(
∆a0 −ρ,−π)∼=∆uB

x . (22)

Consequently, G̃II (∆a0) can be obtained from the solution of a single problem as

G̃II (∆a0) = 1

∆a0

∫ ∆a0

0
G̃II (∆a0)dρ = 1

2∆a0

∫ ∆a0

0

[
σ+

x y +σ−
x y

]
∆ux dρ. (23)
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Figure 4. Work per unit area done by the virtual stresses at each interfacial point within the
crack extension ∆a.

Remark. In this section, a linear transition between the states A and B is considered, despite the
generally non-linear character of a frictional contact problem. However, as will be demonstrated
below, this linear transition can be considered as a valid approximation of the actual fracture
process under the assumption that the interface crack is frictionally sliding in the same direction,
as given by the Comninou contact model in the states A and B, in a neighbourhood of the
interface crack tip, denoted as V , which is sufficiently large compared to the new crack segment
∆a. In this situation, the frictional contact conditions along the interface contact zone in V
become linear conditions. Consider a scalar parameter α changing from 0 to 1, α ∈ 〈0,1〉, which
can be used to define a convex combination of the displacement and stress solutions in these
states as

uα
i = (1−α)uA

i +αuB
i , (24)

σαi j = (1−α)σA
i j +ασB

i j . (25)

A similar convex combination of the relative displacement along the new crack segment ∆a can
be defined as

∆uα
i = (1−α)∆uA

i +α∆uB
i =α∆uB

i , (26)

where in the last equation it has been considered that ∆uA
i = 0 because of the perfect interface

bonding along ∆a in the state A.
Consider ∆uα

i as the imposed relative displacements along the new crack segment ∆a, see
Section 3.1 for details. Since the frictional sliding contact conditions are satisfied in V by
both elastic solutions in the states A and B, these conditions are also satisfied by their convex
combinations uα

i and σαi j due to the linear nature of these contact conditions in V . Applying
the Saint-Venant principle to the self-balanced load changing with α along the relatively small
segment ∆a, we can assume that the stress solutions in the states A and B, as well as their convex
combinations (σA

i j , σB
i j and σαi j ), are approximately the same along the outer boundary of V ,

which is sufficiently far from ∆a. Therefore, these convex combinations are sufficiently accurate
approximations of the exact solution of the full problem, for a given ∆uα

i , within V , especially
near the crack tip. This seems to justify the linear transition assumed in this section. □
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3.2. Incremental ERR by Sun and Qian [24]

Following the Irwin crack closure integral approach [38], Sun and Qian [24] proposed a slightly
different approach to evaluate the incremental ERR associated to a small but finite characteristic
interface crack extension with friction, denoted in the following as ĜII(∆a), respecting the
notation in [24]. The approach proposed in [24] is somewhat related to the analysis in [51] for
frictional cracks in a homogeneous material. According to [24], see also [16], ĜII (∆a0) can be
obtained as

ĜII (∆a) = 1

∆a

∫ ∆a

0
ĜII (∆a)dρ = 1

2∆a

∫ ∆a

0

[
σA+

x y −σB−
x y

]
∆uB

x dρ. (27)

Sun and Qian [24] use an energy balance in which external forces and the frictional forces are
considered separately

ĜII(∆a) = U A −U B

∆a
+ ∆W A→B

e

∆a
−Gd(∆a), (28)

where U A and U B are the elastic strain energies, respectively, stored in the system in Problems A
and B, ∆W A→B

e is the work carried out by the external forces and Gd(∆a) is the dissipation energy
rate, associated with the frictional sliding of the existing and newly created crack faces in contact,
during crack propagation. The dissipation energy rate due to frictional sliding is given by

Gd(∆a) =GN
d (∆a)+Ge

d(∆a), (29)

where

GN
d (∆a) = 1

∆a

∫ ∆a

0
G N

d (∆a)dρ (30)

is associated with the newly formed crack surface, and Ge
d(∆a) is associated with the existing

crack surfaces that are in contact. Therefore,

∆W A→B
e+f =∆W A→B

e −Ge
d (∆a)∆a. (31)

and
G̃II (∆a) = ĜII (∆a)+GN

d (∆a) . (32)

Then, in each point of the newly formed crack surface it holds that

G N
d (∆a) =σB−

x y ∆uB
x , (33)

as it is depicted in Figure 5, and

GN
d (∆a) = 1

∆a

∫ ∆a

0
σB−

x y ∆uB
x dρ. (34)

If the crack extension is sufficiently small in comparison with the crack length, ∆a0 ≪ a, then in
view of (20) and (21)

ĜII (∆a0) = 1

∆a0

∫ ∆a0

0
ĜII (∆a0)dρ = 1

2∆a0

∫ ∆a0

0

[
σ+

x y −σ−
x y

]
∆ux dρ, (35)

where σ+
x y , σ−

x y and ∆ux are defined in (20)–(22).

Remark. When analyzing the Finite Element (FE) procedure proposed in [16,24] for energy
calculation, the following expressions can be inferred for the incremental ERR, and the dissipated
energy rate due to friction along the newly formed crack advance,

ĜFE
II (∆a) = 1

2∆a

∫ ∆a

0

[
σA+

x y + f σA+
y y

]
∆uB

x dρ, (36)

and

GN,FE
d (∆a) = 1

2∆a

∫ ∆a

0

[
− f σA+

y y − f σB−
y y

]
∆uB

x dρ = 1

2∆a

∫ ∆a

0

[
− f σA+

y y +σB−
x y

]
∆uB

x dρ, (37)
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Figure 5. Energies released and dissipated at each interfacial point within the crack exten-
sion ∆a.

where f > 0 is the friction coefficient, and compressive stresses σA+
y y < 0 and σB−

y y < 0 are as-
sumed. Somewhat surprisingly, these expressions differ from those in (27) and (34), respec-
tively. Nevertheless, it is easy to check that the relationship (32) remains valid, i.e., G̃II (∆a) =
ĜFE

II (∆a)+GN,FE
d (∆a). Thus, the expressions (34) and (37) represent different estimations of the

dissipation energy rate due to frictional sliding along the newly forming crack extension and,
consequently, ĜII (∆a) and ĜFE

II (∆a) represent different estimations of the incremental ERR.
The following interpretation to the expression of the incremental ERR in (36) can be given:

σA+
x y + f σA+

y y represents the elastic restoring shear traction before crack extension ∆a, which
decreases to zero during this crack extension. □

3.3. Comparison of different approaches for large interface cracks and small crack ad-
vances

For a sufficiently large crack in absence of friction, that is, when f → 0 and∆a0 ≪ a, both G̃II (∆a0)
and ĜII (∆a0) tend to the Irwin classical expression of the incremental ERR [38]

GII (∆a0) = 1

2∆a0

∫ ∆a0

0
σ+

x y∆ux dρ. (38)

Notwithstanding, it must be noticed that the most significant effect of friction is not associated
to the appearance of the frictional stresses σ−

x y in (23) or (35), but to the fact that the asymptotic
behavior of the crack tip solution changes, according to the expressions given in Section 2.

In the frictionless case the square root stress singularity with λ = 0.5 appears at the crack tip,
and consequently GII (∆a0) tends to a constant positive value when crack extension vanishes (i.e.,
when ∆a0 → 0). In the presence of friction, it holds that 0.5 < λ < 1 and, consequently, both
G̃II (∆a0) and ĜII (∆a0) vanish when the crack extension vanishes.

Introducing the first term of Comninou’s asymptotic solution (3)–(6) into the definitions of
G̃II (∆a0), ĜII (∆a0) and GII (∆a0) leads to the following asymptotic power-law expressions

G̃II (∆a0) = c̃(λ)
K 2

II

Ê
(∆a0)(2λ−1) . (39)

ĜII (∆a0) = ĉ(λ)
K 2

II

Ê
(∆a0)(2λ−1) , (40)

GII (∆a0) = c(λ)
K 2

II

Ê
(∆a0)(2λ−1) , (41)
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where

c̃(λ) = c(λ)+ cB(λ), (42)

ĉ(λ) = c(λ)− cB(λ), (43)

and

c(λ) = sin[(1−λ)π]

2λ(2π)2(1−λ)

[
Γ(λ)Γ(1+λ)

Γ(1+2λ)

]
, (44)

cB(λ) = sin[(1−λ)π]

2λ(2π)2(1−λ)

[
cos[(1−λ)π]

2λ

]
, (45)

where Γ( · ) is the gamma function. Notice that (∆a0)(2λ−1) → 0 when ∆a0 → 0 and 0.5 < λ. The
dimensionless auxiliary functions c(λ), c̃(λ), ĉ(λ), and cB(λ) are represented in Figure 6.
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Figure 6. Coefficients c(λ), ĉ(λ), c̃(λ), and cB(λ) used in the asymptotic expressions of
GII (∆a0), ĜII (∆a0) and G̃II (∆a0).

4. Evaluation of the incremental ERR for a finite crack extension

Due to the weak stress singularity at the frictional interface crack tip, when the crack exten-
sion vanishes, ∆a0 → 0, the three estimations of the incremental ERR, G̃II (∆a0), ĜII (∆a0) and
GII (∆a0), presented in the previous sections vanish as well.

Since the incremental ERR is dependent on the crack extension, a characteristic finite crack
extension ∆ac must be employed as discussed in Section 1. Depending on the approach em-
ployed for estimation of the incremental ERR, the following criteria may be used for assessing
crack propagation

G̃II (∆ãc) = G̃c, (46)

ĜII (∆âc) = Ĝc, (47)

GII
(
∆ac

)=Gc. (48)

If∆ac is sufficiently small in comparison with the crack length a, in view of the relations shown
in (41)–(45), certain relations may be established between the different characteristic finite crack
extensions∆ãc,∆âc and∆ac, if the critical ERRs (fracture energies) G̃c, Ĝc and Gc, are considered
equal to the critical ERR of the material GIIc.
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Conversely, if a characteristic finite crack extension is considered in the material and∆ãc,∆âc

and ∆ac are defined equal to this characteristic finite crack extension, the expressions in (39)–
(45) allow relationships to be established between G̃c, Ĝc and Gc which allow criteria defined
in (46)–(48) to provide identical predictions for crack propagation.

5. Determination of the critical finite crack extension and the critical SIF using CC for
large cracks

Although the use of a characteristic finite crack extension as a material parameter controlling
crack propagation may have physical sense in some materials, cf. [40], the use of a critical
interface strength τc and a critical Mode II strain energy release rate GIIc are commonly employed
in crack propagation criteria of closed cracks. This is the case, e.g., of CZMs [42–50].

The use of the Coupled stress and energy Criterion (CC) of the Finite Fracture Mechanics
(FFM) proposed by Leguillon [53] and later by Cornetti et al. [54], allows establishing an unam-
biguous definition of the critical finite crack extension ∆ac as a structural parameter for a fric-
tional interface crack.

If a pointwise stress criterion is used in the considered finite crack extension ∆a0, cf. [53],
and the incremental ERR proposed in this paper, G̃II (∆a0), defined in (23), is used for the energy
criterion, the CC establishes that crack propagation will take place if the following inequalities
are simultaneously fulfilled

σA
x y (ρ,0) ≥ τc for 0 < ρ <∆a0 (49)

and
G̃II (∆a0) ≥GIIc. (50)

If the first singular term of the near-tip asymptotic solution is dominant along the crack
extension, both criteria can be written in terms of KII, yielding

σA
x y (∆a0,0) = KII(2π∆a0)(λ−1) ≥ τc (51)

and

G̃II (∆a0) = c̃(λ)
K 2

II

Ê
(∆a0)(2λ−1) ≥GIIc, (52)

where it has been considered that σA
x y (ρ,0) decreases when ρ increases.

The critical values of KII and ∆a0, denoted as KIIc and ∆ac, can be obtained from the solution
of the system of equations

σA
x y (∆ãc,0) = τc and G̃II (∆ãc) =GIIc, (53)

which yields

∆ãc = (2π)2(λ−1)

c̃(λ)

GIIcÊ

τ2
c

(54)

and
K̃IIc = (2π∆ãc)(1−λ)τc. (55)

Thus, ∆ãc is a multiple of the Irwin length for interface cracks in shear GIIcÊ/τ2
c .

The following non-dimensional variables can be defined using these critical values K̃IIc and
∆ãc

K̃ n
II =

KII

K̃IIc
and ∆ãn

0 = ∆a0

∆ãc
, (56)

which allows rewriting the CC in the following non-dimensional form, cf. [57]:

K̃ n
II ≥

(
∆ãn

0

)(1−λ) (57)

and
K̃ n

II ≥
(
∆ãn

0

)( 1
2 −λ

)
. (58)
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Figure 7. Representation of the non-dimensional form of the coupled stress and energy
criterion (CC) for 0.5 <λ< 1.

The non-dimensional form of the CC is depicted in Figure 7 for three different values ofλ in the
range 0.5 <λ< 1. The lower limit curves of the stress criterion and the energy criterion represent
the values of K̃ n

II and ∆ãn
0 that respectively fulfil the equalities in (57) and (58). Consequently,

for each value of λ, crack propagation would take place for K̃ n
II and ∆ãn

0 pairs located above the
corresponding curves of the stress and energy criteria.

Since, for all λ in the range 0.5 < λ< 1, the stress criterion lower limit increases with ∆ãn
0 and

the energy criterion lower limit decreases with ∆ãn
0 , the minimum value of K̃ n

II for which crack
propagation can take place is K̃ n

II = 1 and the corresponding crack extension would be ∆ãn
0 = 1.

In other words, the minimum value of K̃II for which crack propagation can take place is K̃IIc

and the corresponding crack extension would be ∆ãc.
Notice that, in view of the evolution of the lower limit curves of the stress criterion and the

energy criterion shown in Figure 7, for all λ in the range 0.5 < λ < 1 the CC for a frictional crack
can be written in the following pointwise stress criterion form

σA
x y (∆ãc,0) ≥ τc with ∆ãc = (2π)2(λ−1)

c̃(λ)

GIIcÊ

τ2
c

. (59)

Notice that, when λ→ 1, corresponding to f →+∞, it holds that G̃II (∆a0) → 0, for a fixed∆a0,
and ∆ãc →∞, and, consequently, crack propagation is not possible in that case.

For the opposite limit case, that is, for λ= 0.5, which corresponds either to a frictionless crack
or to the case of similar materials with the Dundurs parameter β= 0, the lower limit curve of the
energy criterion becomes a horizontal line, K̃ n

II = 1, see Figure 8. Consequently, the minimum
value of K̃ n

II for which crack propagation can take place is K̃ n
II = 1 and the corresponding crack

extension would be any∆ãn
0 value in the range 0 ≤∆ãn

0 ≤ 1. In other words, if the energy criterion
is fulfilled, infinitesimal or finite crack extensions can take place. The maximum extent of the
crack extension is given by

λ= 0.5 =⇒ ∆ãc =∆ach = 1

2π

GIIcÊ

τ2
c

. (60)

Although the incremental ERR proposed in this paper, G̃II (∆a0), has been used for the deriva-
tion of the CC for a frictional interface crack, analogous formulations can be obtained evaluating
the incremental ERR using either GII (∆a0) or ĜII (∆a0), just by replacing coefficient ĉ(λ) by either
c(λ) or c̃(λ), respectively. Conclusions obtained using G̃II (∆a0) hold for the other approaches but
yielding different critical values of KII and∆a0, namely K IIc and∆ac, or K̂IIc and∆âc, respectively.
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Figure 8. Representation of the non-dimensional form of the coupled stress and energy
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Figure 9. Critical crack extensions given by the different approaches for evaluating incre-
mental ERR in the coupled stress and energy criterion (CC).

Critical crack extensions∆ac, ∆âc and∆ãc are compared in Figure 9 assuming the same value
of GIIc, Ê and τc for all three approaches. When λ= 0.5 ( f β= 0) the three different critical crack
extensions yield the same characteristic length ∆ach.

Considering that the critical interface strength τc and the critical Mode II energy release
rate GIIc are material parameters, for sufficiently large cracks, criterion in (59) allows predicting
crack growth, considering that G̃II (∆ãc) is the incremental ERR associated with crack propaga-
tion. Analogous expressions can be easily obtained for predicting crack growth considering that
either GII(∆a0) or ĜII (∆âc) are the incremental ERRs associated with crack propagation. A de-
tailed comparison of the aforementioned approaches for determining the incremental ERR asso-
ciated with a frictional interfacial crack propagation with experimental results or with numerical
predictions obtained with different approaches lies beyond the scope of this work.

Nevertheless, Graciani et al. [33] used G̃II (∆a0), with a prescribed critical extension ∆a0 =
1µm, to obtain the friction coefficient and the critical Mode II ERR of glass fibre/matrix inter-
face by the best fit between numerical predictions with boundary elements and experimental
results of the single fibre fragmentation test, yielding GIIc = 12.12J/m2 and f = 1. Using these
values, crack propagation was simulated using a FE model with bilinear cohesive elements (with
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τc = 110MPa) and frictional contact along the fibre/matrix interface, yielding a remarkably good
agreement. Introducing these fibre/matrix interfacial properties (along with the elastic proper-
ties of the materials given in [33]) into (54) gives a value of ∆ãc = 1.16µm. The good agreement
between ∆ãc and the prescribed critical extension ∆a0 used in [33] supports the use of FFM with
the CC to assess frictional interfacial crack growth, using G̃II (∆ãc) to determine incremental ERR
associated to crack propagation.

6. Concluding remarks

A few concluding remarks are given below to summarise and clarify the results presented and to
offer new perspectives on the modelling of frictional interface crack propagation.

(1) A challenging problem of cracks with a relevant frictional contact zone near the crack tip
propagating along a perfectly bonded interface between dissimilar linear elastic materials is
addressed. The Coulomb friction law is considered in the contact zone between the cracks
faces. Since the classical Griffith criterion, which assumes infinitesimal crack growth, cannot
be applied to determine the load for which such crack will grow because a null ERR is always
obtained, a novel approach using the Coupled Criterion (CC) of Finite Fracture Mechanics
(FFM) [53–57] is developed to solve the problem and to determine the critical load associated
with crack propagation. To this end, the incremental ERR GII(∆a) and the critical crack
extension ∆ac associated with crack propagation are used.

Finite crack advances ∆a are considered, resulting in nonzero incremental ERR values.
To compute the incremental ERR, the main issue is to properly account for the energy
dissipated by friction along the contact zone between the crack faces due to a finite crack ad-
vance∆a. Two approaches for computing the incremental ERR from the near-tip solution are
considered. In the first one, proposed in [33], all the energy released along the segment ∆a is
taken into account in the evaluation of the incremental ERR denoted as G̃II(∆a), while in the
second one, previously proposed in [24], an estimate of the energy dissipated due to friction
along∆a is excluded from the incremental ERR, thus resulting in a different estimation of the
incremental ERR denoted as ĜII(∆a). A third option is also studied in which the incremental
ERR GII(∆a) is calculated ignoring friction effects. The critical values of the incremental ERR
and the associated critical crack extension are determined using the CC of FFM.

Special attention is paid to the case where the most singular term in the asymptotic series
of the solution at the crack tip governs the elastic solution along the segment ∆a before the
crack advance. In this case, closed-form expressions for the incremental ERR, the critical
crack advance ∆ac and the critical Stress Intensity Factor (SIF) KIIc have been derived for
the three aforementioned approaches, showing that the three approaches can be formulated
in a unified form. A straightforward comparison of these three approaches is then given,
leading to three different definitions of the apparent critical fracture energies G̃c, Ĝc and Gc,
corresponding to the same critical fracture energy of the material GIIc, which result in the
same critical load associated with crack propagation obtained from the three approaches.

The limit cases of zero and infinite friction coefficient are briefly analyzed showing that,
in the former case, the critical crack advance ∆ac is an upper limit for all possible crack
advances, while, in the latter case, no crack advance is possible due to infinite frictional
energy dissipation.

(2) Note that the three approaches introduced for calculating the incremental ERR in Mode II
provide three different ways of defining the fracture toughness for frictional interface
cracks GIIc, each leading to a different value of GIIc. Of the two possible basic dissipation
mechanisms ahead of the crack tip — the energy spent in forming a new crack segment ∆a
and the energy spent in frictional sliding along this new crack segment — these approaches
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consider the latter differently. In the first approach, no energy is spent in frictional sliding
along ∆ac resulting in G̃IIc. In the second approach, the energy spent in frictional sliding
remains constant as the relative tangential displacement increases, giving ĜIIc. In the third
approach, the energy spent in frictional sliding increases linearly with the relative tangential
displacement, resulting in G IIc.

However, it has been shown that, under the assumption that the critical finite crack
advance ∆ac is sufficiently small compared to other characteristic lengths in the problem,
e.g., the crack length, so that the most singular term in the asymptotic expansion of the
crack tip solution governs the solution in the neighbourhood of the crack tip of radius ∆ac,
these three approaches are equivalent in the sense that, using the coherent values of GIIc and
incremental ERR, essentially the same predictions can be expected for the propagation of
frictional interface crack.

Nevertheless, it would be worthwhile trying to discriminate between these approaches
by comparing their predictions in situations where ∆ac is not small compared to other
characteristic lengths of the problem and the friction coefficient can differ.

(3) The presented procedure is also well suited for computational modeling of stepwise propa-
gation of frictional interface cracks as in each step of the computational process the present
approach based on CC predicts a finite crack advance as a function of the overall problem
configuration.

(4) The present approach could be applied to several experimental tests on both the macro and
micro scales. Typical tests developed for the measurement of Mode II fracture toughness GIIc

of an interface in macroscopic specimens include Three-Point and Four-Point End-Notched-
Flexure (3P- and 4P-ENF) [58,59]. For an analysis of the influence of friction on delamination
propagation, see [60]. Single fibre tests developed to measure GIIc of the fibre-matrix interface
in microscopic specimens involving just one fibre. In the Single Fibre Fragmentation Test
(SFFT), accounting for the effect of friction is crucial for an accurate measurement of GIIc,
as demonstrated in [33,61,62]. In the future, it would be interesting to monitor delamination
propagation in 3P- or 4P-ENF tests using digital image correlation (DIC) to characterize the
displacement field near the crack, detect the crack tip, and compute the critical SIF KIIc at
crack propagation.

(5) Although the present approach has been developed for isotropic materials, it could in prin-
ciple also be used for anisotropic materials, by taking into account the results of the re-
cent study of asymptotic solutions at the front of frictional interface cracks in anisotropic
bimaterials under generalised plane strain in [35,36]. However, the present approach must
be adapted to each specific configuration as described in [35,36]. This involves taking into
account whether a plane of elastic symmetry in the bimaterial coincides with the interface
plane or is perpendicular to the crack front.

Consider first the case of an orthotropic bimaterial with a plane of elastic symmetry
coinciding with the interface plane, and another perpendicular to the crack front. In this case,
the present approach can be applied quite straightforwardly by replacing the asymptotic
solution in Section 2 by its orthotropic counterpart in [35,36].

However, adapting the present approach to more general configurations would be more
involved, as it would need to consider the specific features of the asymptotic solution at the
crack front, as described in [35,36]. For instance, in the case of a bimaterial with a single
plane of elastic symmetry coinciding with the interface plane, the out-of-plane components
of displacements and stresses must be considered as well. Considering the results in [35,36],
we can conjecture that there will be a competition between two fracture modes: Mode ii
the crack propagation by finite advances associated with a sliding direction corresponding to
λ> 0.5, with zero ERR but positive incremental ERR (somewhat similar to Mode II in isotropic
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or orthotropic bimaterials, but with different angle of sliding), and Mode iii an infinitesimal
crack propagation associated with a sliding direction corresponding toλ= 0.5, with a positive
ERR (somewhat similar to Mode III in isotropic or orthotropic bimaterials, but with different
angle of sliding). A generalisation of the present approach could be used to compute the
incremental ERR in the Mode ii. The overall problem configuration, mainly determined by
the specimen geometry, the (direction of) applied loads and the material properties, would
govern the above described competition.
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[18] J.-B. Leblond, “Basic results for elastic fracture mechanics with frictionless contact between the crack lips”, Eur. J.
Mech. A Solids 19 (2000), pp. 633–647.
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[62] E. Graciani, V. Mantič, F. París and J. Varna, “Fiber–matrix debonding in composite materials: axial loading”, in
Modeling damage, fatigue and failure of composite materials (R. Talreja and J. Varna, eds.), Woodhead Publishing,
2016, pp. 117–141.

https://jtcam.episciences.org/11072




Comptes Rendus. Mécanique
2025, Vol. 353, p. 339-357

https://doi.org/10.5802/crmeca.285

Review article / Article de synthèse

Review of the matched asymptotic approach
of the coupled criterion

Revue de l’approche asymptotique du critère couplé

Sara Jiménez-Alfaro ,∗,a,b, Israel García García ,c and Aurélien Doitrand ,d

a Department of Civil and Environmental Engineering, Imperial College London,
Exhibition Road, London, SW7 2AZ, UK

b Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1
3PJ, UK

c Departamento de Mecánica de Medios Continuos y Teoría de Estructuras, Escuela
Técnica Superior de Ingeniería, Escuela Politécnica Superior, Universidad de Sevilla,
Camino de los Descubrimienos s/n, 41092 Sevilla, Spain
d Université Lyon, INSA-Lyon, UCBL, CNRS, MATEIS, UMR5510, F-69621
Villeurbanne, France

E-mails: sara.jimenezalfaro@eng.ox.ac.uk, s.jimenez-alfaro@imperial.ac.uk
(S. Jiménez-Alfaro), israelgarcia@us.es (I. G. García), aurelien.doitrand@insa-lyon.fr
(A. Doitrand)

Abstract. Matched Asymptotics is a powerful mathematical technique with broad applicability in various
engineering fields. One of its key uses is in Fracture Mechanics, where it provides accurate approximations
in the vicinity of the crack tip with low computational complexity. This method can be seamlessly integrated
with the Coupled Criterion (CC), which enables the prediction of crack nucleation and propagation in brittle
materials. Hence, this paper deeply explains how the MA technique can be applied together with the CC in
the context of Fracture Mechanics, providing a detailed literature review of the advances made in the last
decade.

Résumé. Les développements asymptotiques raccordés constituent une technique mathématique puissante,
largement applicable dans divers domaines de l’ingénierie. L’une de leurs principales utilisations se situe
en mécanique de la rupture, où ils permettent d’obtenir des approximations précises à proximité de la
pointe des fissures tout en maintenant une faible complexité de calcul. Cette méthode peut être intégrée
de manière fluide au critère couplé (CC), qui permet de prédire l’amorçage et la propagation des fissures
dans les matériaux fragiles. Cet article explique comment la technique des développements asymptotiques
raccordés peut être utilisée conjointement avec le critère couplé dans le cadre de la mécanique de la rupture,
tout en offrant une revue détaillée de la littérature sur les avancées réalisées au cours de la dernière décennie.

Keywords. Matched asymptotic expansion, Coupled criterion, Fracture mechanics.

Mots-clés. Développement asymptotique raccordé, Critère couplé, Mécanique de la rupture.

Funding. European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-
Curie grant agreement No. 861061-NEWFRAC, Iberdrola Foundation under the Marie Sklodowska-Curie
Grant Agreement No 101034297, Ministerio de Ciencia e Innovación de España (Project PID2020-117001GB-
I00/AEI/10.13039/501100011033).

Manuscript received 29 October 2024, revised and accepted 14 January 2025.

∗Corresponding author

ISSN (electronic): 1873-7234 https://comptes-rendus.academie-sciences.fr/mecanique/

https://doi.org/10.5802/crmeca.285
https://orcid.org/0000-0001-7657-2388
https://orcid.org/0000-0002-3894-5304
https://orcid.org/0000-0003-1000-3507
mailto:sara.jimenezalfaro@eng.ox.ac.uk
mailto:s.jimenez-alfaro@imperial.ac.uk
mailto:israelgarcia@us.es
mailto:aurelien.doitrand@insa-lyon.fr
https://comptes-rendus.academie-sciences.fr/mecanique/


340 Sara Jiménez-Alfaro et al.

1. Introduction

The matched asymptotic (MA) expansion method is an approach that enables solving an equa-
tion or a system of equations [1–5]. It is well adapted to solve singularly perturbed differential
equations, for which different approximate solutions are determined, each of which being ac-
curate for a given part of the domain under investigation. These solutions are then combined to
give a single approximate solution that is accurate for the whole domain under investigation. The
domain may generally be divided into two subdomains. In the first one, the solution (called the
outer solution) is accurately approximated by an asymptotic series representing a regular pertur-
bation (i.e. by setting to zero a small parameter representing, e.g., a singular perturbation). The
second one consists of a region in which this first approximation is inaccurate, due to perturba-
tion terms that are not negligible. This constitutes the inner solution. The outer and inner solu-
tions are then combined through a process called “matching” in such a way that an approximate
solution for the whole domain is finally obtained.

Asymptotic expansions were used to define the elastic constitutive law of the homogeneous
equivalent material of a composite when a tangential slip is allowed on the fiber/matrix inter-
face [6]. It was shown that a limit slip coefficient exists beyond which the stiffness of the material
rapidly decreased. They were also used in the framework of homogenization as an alternative
to the multiple scalings approach [7, 8]. MA expansions were used in combination to the sin-
gularity theory to determine the elastic displacements and stress fields corresponding to a class
of junctions between rods and bulk bodies modeled as a flexible clamping in the framework of
two-dimensional elasticity [9]. Leguillon analysed the problem of crack branching in a homo-
geneous elastic but non isotropic material. Based on asymptotic expansions, the energy release
rate was computed and a revisited Griffith’s criterion including anisotropic fracture properties
was suggested [10]. Sicsic and Marigo studied the propagation of a crack band and derived the
conditions for which it behaves like a Griffith’s crack [11]. MA expansions were also used to study
the behavior of interface cracks, for instance to further analyse the “Cook and Gordon” [12] in-
terface debonding effect ahead of a primary crack [13], edge debonding in laminates [14] or to
analyze the role of residual thermal stresses on the crack deflection or penetration at a bimaterial
interface. The 2D and 3D singularities at a bimaterial interface were derived [15], also consider-
ing contact and friction between two anisotropic materials [16]. The mode III asymptotic expan-
sions for a crack in or along a joint enabled defining an apparent toughness of the interface to
be used for crack propagation [17]. It was also used to derive the stress intensity factors near an
angular point on the front of an interface crack [18].

Moreover, the character of the stress singularity at the tip of a classical crack in a homogeneous
material was approximated by an asymptotic series for cracks in Mode I, Mode II and Mode
III. The first two modes were studied in the work of Williams [19], which is well known by
the scientific community, since asymptotic solutions for free–free, clamped–clamped and free–
clamped boundary conditions are given therein.

MA expansions are particularly relevant when studying fracture and especially crack initiation
in a structure. Indeed, the latter can be studied in the framework of MA expansions as the
unbroken problem corrected by the crack that initiates (provided its smallness with respect to
the structure characteristic dimensions). This idea was actually made effective by Leguillon [20,
21] who proposed to study crack initiation by coupling a stress criterion and an energy criterion.
This approach has spread and is now a common way to study crack initiation, as evidenced
by numerous applications summarized in the two review papers [22, 23]. The CC can be
implemented through several ways, for instance by solving an implicit equation if analytical
solutions can be provided for the stress fields and the energy release rate variation as a function
of the crack surface [22, 24–26]. A second way to implement the CC is through finite element
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Figure 1. V-notched three-point bending specimen subjected to a force F with a crack
(length ℓ) initiating at the V-notch tip. Notice that e represents the notch depth.

(FE) simulations of the full structure under investigation including the crack that initiates [27–
30]. In cases where analytical solutions are not available and so as to achieve a numerically more
efficient approach than full FE implementation, an effective way to implement the CC is to use
MA expansions. The objective of this paper is to give an overview of the matched asymptotic
approach of the CC. We first recall the general idea (Section 2) and the formulation (Section 3) of
the MA approach. Then, we describe its numerical implementation (Section 4) and provide some
application examples (Section 5).

2. The idea behind matched asymptotics

Before presenting the mathematical formalism of the matched asymptotic (MA) approach of the
Coupled Criterion (CC), this section is dedicated to provide the philosophy behind it to further
understand how it can be set up and define the main required ingredients. In the sequel, the CC is
formulated under linear elasticity and small deformation assumptions. Both inertial effects [31,
32] or dissipation mechanisms other than cracking that may occur during initiation, such as, e.g.,
plasticity [33], diffuse damage [34] or viscous effects, are disregarded. The MA approach of the
CC is useful to efficiently study the problem of a small crack initiating in a complex structure
subjected to a mechanical or thermal loading. The objective is to determine the loading level at
which the crack is likely to initiate as well as the initiation crack length. As a matter of example,
we consider the problem of a crack of length ℓ that initiates at the tip of a V-notch (angle β)
in a specimen loaded under three-point bending (Figure 1). Notice that this technique is only
valid provided ℓ is smaller than a characteristic dimensions of specimen (ℓ≪ e in Figure 1), an
initial assumption that should be checked after the implementation, once the actual value of ℓ is
obtained using the coupled criterion.

2.1. The coupled criterion

The main idea behind the CC arises from the following observations:

• Considering an energy criterion only, it enables assessing the propagation of a crack
based on the material critical energy release rate Gc [35–37] but generally fails to study
its initiation.

• Considering a stress criterion only, it enables assessing crack initiation based on the
material tensile strength σc except in the presence of a singular point.

Stress and energy criteria thus appear as complementary and their combination enables assess-
ing crack initiation in many configurations. The stress criterion of the CC is a condition estab-
lished in the initial domain before crack initiation (thus without crack). It states that the stress
normal to the future crack path must be larger than the material strength attained under a simi-
lar principal stress state. For instance, it reverts to comparing the opening stress to material ten-
sile strength under uniaxial tensile loading. For the sake of simplicity, we will consider a brittle
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material that exhibits a Rankine strength surface in the sequel, which enables defining the ma-
terial strength surface based on a single parameter, its tensile strength. The stress criterion thus
requires the calculation of the stress field before crack initiation. In the vicinity of a V-notch, the
stress tensor actually writes as an expansion in powers of r , William’s expansion in this case since
it is a singularity, Taylor’s expansion for a smooth stress field:

σ= K rλ−1s(θ)+o(rλ−1), (1)

where r and θ are polar coordinates, λ is the characteristic exponent of the singularity and s is
the stress function derived from the characteristic mode of the singularity u. The characteristic
exponent and mode of the singularity are obtained by solving an eigen-value problem [2] . The
parameter K is the Generalized Stress Intensity Factor (GSIF) of the singularity, it represents the
magnitude of the loading around the V-notch. Notice that in (1) only the dominant term has been
represented, assuming that it is real and has multiplicity one, due to the symmetry of the problem
represented in Figure 1. However, this is not the case of mixed mode loadings, for example, where
two or more singular terms should be considered, with the associated GSIFs.

The energy criterion of the CC is obtained from the energy equilibrium between the states
prior to and after crack initiation. The crack surface creation energy GcS, where S is the crack
surface, must be balanced by the variation in external force work (Wext) and in elastic strain
energy (Wel) so that:

∆Wel +GcS =∆Wext (2)

When solving the CC, the objective is to determine the initiation crack surface Sc and initiation
imposed loading (for instance the initiation force Fc based on the example provided in Figure 1)
by simultaneously fulfilling both stress and energy criteria. We thus need (i) one calculation
on the structure without the crack to compute the stress fields and (ii) several calculations with
different crack surfaces to establish the energy equilibrium. If we are considering small cracks in
a large structure, this may be computationally costly as fine meshes are required in the area close
the crack location. The MA approach provides an alternative and efficient method to apply the
CC, which is described in the sequel. Notice that in a bidimensional problem (2) can be expressed
as

∆Wel +Gcℓ=∆Wext (3)

where ℓ is the newly created crack length (a priori unknown). At the initiation imposed loading
ℓ = ℓc, the initiation crack length. Moreover, it is important to highlight that in problems where
there are notches or pre-existing cracks, the crack nucleation is frequently determined by the
initiation GSIFs of the singularity, denoted as Ki. These parameters depend on the initiation
imposed loading and the geometry of the problem. In the problem represented in Figure 1, there
is only one leading term, see (1), and therefore only one initiation GSIF.

2.2. The matched asymptotic approach

The MA approach of the CC is based on the fact that the crack can be considered as a small
perturbation to the elasticity problem where the structure is subjected to a given loading. It
consists in successively considering two problems to be solved at two scales. The first problem,
solved in the so-called outer domain, is obtained by considering the full structure and neglecting
the crack that initiates. In complement, the second problem focuses only on the inner domain
around the crack initiation point, independently of the whole structure under investigation. The
final solution is then obtained by matching both problems to obtain the stress and energy balance
required for the CC application.
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Figure 2. (a) Outer domain where the crack is disregarded, the contour Γ can be used to
calculate the Generalized Stress Intensity Factor acting at the V-notch for a given force F .
(b) Inner domain where the whole structure is disregarded, the normalized crack length
is 1 and the arrows represent the imposed asymptotic displacement fields prescribed at a
fictitious boundary sufficiently far from the crack.

Outer domain. In the outer problem, the perturbation (i.e. the crack) is neglected and a solution
of the problem without perturbation is provided in the outer domain (i.e. the structure without
crack). This solution is valid everywhere except in a zone near the crack initiation location, for
which a correction to this solution must be brought. The outer domain corresponding to the
example given in Figure 1, is shown in Figure 2a. In the outer domain, the loading is described
in terms of prescribed displacement or force. Then, the GSIF of the singular point (here, the V-
notch tip) can be calculated for a given applied force or displacement. Under the assumptions
of small deformation and linear elasticity, the GSIF is proportional to the imposed force. For
a given imposed force, the GSIF can be computed using a contour integral [2] on a closed
path surrounding the singular point (e.g., Γ in Figure 2a). The GSIF calculation based on the
contour integral can be implemented in 3D [38] or in 2D for isotropic [21, 39] or anisotropic [40,
41] materials, for multi-material configurations [40, 42–44], or even based on displacement
fields measured experimentally by digital image correlation [45]. Other approaches also exist
to compute the GSIF, such as the quasidual function method [46, 47], least square fitting [48] or
an extraction from the strain energy density [49]. The solution obtained in the outer domain is
valid except near the crack initiation location, which requires a correction representative of the
initial problem (Figure 1).

Inner domain. The correction to the solution obtained in the outer domain without the pertur-
bation is obtained through the second problem which is solved in the inner domain. It consists in
focusing only in a zone near the crack initiation location, providing a detailed description of the
crack around the singular point, regardless of the entire structure itself. The inner domain thus
corresponds to the singular point that would lie in an infinite medium and would be subjected
to remote asymptotic displacement or stress fields. The prescribed loading is thus described in
terms of GSIF. An example of inner domain corresponding to the problem depicted in Figure 1 is
shown in Figure 2b. In the inner domain, the space variables are normalized with respect to the
crack length so that the normalized initiation crack length is 1. Since the whole structure geome-
try and boundary conditions are disregarded in the inner domain, the asymptotic displacement
fields are prescribed as boundary conditions in order to obtain the stress and energy balance re-
quired to solve the CC. The solution derived in the inner domain is thus accurate in a zone near
the crack initiation location.

Matching inner and outer problem solutions. Solving the problems in the outer and inner
domains yields two solutions (displacement fields) that accurately represent the initial problem
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Figure 3. Examples of configurations: (a) Inclusion, (b) crack ahead of a V-notch or (c) cav-
ity close to a free edge, that can be studied applying the MA approach of the CC. For display
purposes in the representation ℓ is purposely not small compared to any dimensions of the
structure.

of the structure containing a small crack respectively far from and close to the crack initiation
location. Matching both solutions also requires a common description of the applied loading.
Since it is only described by the GSIF in the inner domain, it justifies the need of calculating
the relation between the GSIF and the applied force or displacement in the outer domain. The
next step in the MA approach consists in combining both solutions to finally solve the initial
problem. This is done by matching both displacement fields in a zone that is (i) sufficiently far
from the singular point in the inner domain and (ii) sufficiently close to it in the outer domain.
The matching conditions finally enable obtaining the stress and energy balance corresponding
to the initial problem under investigation (Figure 1) and further apply the CC for studying crack
initiation.

Solving the CC. The matching of the inner and outer problem solutions provide a general solu-
tion that is accurate over the whole domain under investigation. It yields the displacement fields
in the whole structure in presence of a crack. It thus enables calculating the stress fields before
crack initiation (Equation (1)) as well as the elastic strain energy variation due to crack initiation
(Equation (2)) for a given loading. It finally yields all the ingredients required to solve the CC. The
remaining step consists in determining the minimum imposed loading and the corresponding
crack length for which both stress and energy conditions are fulfilled.

3. Formulation of the approach

The matched asymptotic expansion is used in mechanical engineering to predict the solution,
i.e. the displacement field Uℓ(x1, x2) (where (x1, x2) represents the Cartesian coordinates) in the
vicinity of an element that can be an inclusion, a crack or a cavity, see Figure 3. This element
is frequently called perturbation, since it is assumed that its size ℓ is small compared to any
dimensions of the structure.

As an example to illustrate the formulation of the problem, a small cavity located at the tip of
a V-notched is considered, see Figure 4, where the notation of the problem that is approximated
is represented. The domain Ωℓ has an outer contour Γ = ΓV ∪ΓN ∪ΓD ∪Γℓ. The contour ΓD is
characterized by an imposed displacement Ū , whereas the contours ΓN , ΓV and Γℓ have a stress-
free boundary conditions. The notation ΓV is referred to the contour of the V-notch and Γℓ to the
one of the small perturbation.

Hence, the set of equations that defines the actual problem is

−∇x · σℓ = 0 inΩℓ, (4)

σℓ = C : ∇xUℓ, (5)

σℓ ·n = h̄ on ΓN , (6)
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Figure 4. Representation of the notations in (a) the inner domaine and (b) the outer
domain for the example of a cavity ahead of a V-notch.

σℓ ·n = 0 on ΓV ∪Γℓ, (7)

Uℓ = Ū on ΓD, (8)

where ∇x is referred to the coordinates system of the actual domain x1, x2. In the MA approach, a
twofold representation of Uℓ(x1, x2) is proposed in the form of an outer and an inner expansion.
Notice that it is assumed that the specimen is in the absence of body forces.

Outer expansion. In this approximation, the actual solution is represented as

Ul (x1, x2) =U0(x1, x2)+·· · (9)

where U0(x1, x2) is the solution of the same elasticity problem considering that the perturbation is
not observable in the domain, i.e., solved in an unperturbed domainΩ0. As an example, Figure 4b
represents Ω0 associated with the actual domain of Figure 4a. The second term in (9) denoted
with an ellipsis is a “small correction” that decreases to 0 as ℓ→ 0. The solution U0(x1, x2) is a
good approximation of Uℓ(x1, x2) far away from the perturbation. For this reason, it is called the
outer field. The set of equations that defines U0(x1, x2) is

−∇x · σ0 = 0 inΩ0, (10)

σ0 = C : ∇x U0, (11)

σ0 ·n = h on ΓN , (12)

σ0 ·n = 0 on ΓV, (13)

U0 = Ū on ΓD. (14)

Notice that a better approximation of the outer expansion can be achieved by considering
higher order terms. Particularly, Leguillon et al. considered the second outer term in [50].

Inner expansion. A second expansion can be used to approximate the actual solution by intro-
ducing the change of variables yi = xi/ℓ and ρ = r /ℓ. In the limit when ℓ→ 0 we obtain an un-
bounded domainΩin in which the dimensionless characteristic length of the perturbation is now
equal to 1, see Figure 5 as an example, where the chosen characteristic length is the diameter of
the cavity.

The inner expansion is therefore expressed as

Uℓ(x1, x2) =Uℓ(ℓy1,ℓy2) = F0(ℓ)V0(y1, y2)+F1(ℓ)V1(y1, y2)+·· · (15)
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Figure 5. Scheme of the inner problem.

The set of equations related to the two terms V0(y1, y2) and V1(y1, y2) are

−∇y · σ̃0 = 0 inΩin,

σ̃0 = C : ∇y V0

σ̃0 ·n = 0 on ΓV ∪Γℓ

−∇y · σ̃1 = 0 inΩin,

σ̃1 = C : ∇y V1

σ̃1 ·n = 0 on ΓV ∪Γℓ
The problems indicated above are well-posed when the so-called matching conditions are added
to these sets of equations. As a results, it is obtained an inner expansion that is a good approxi-
mation of the actual solution Uℓ(x1, x2) in the neighbourhood of the perturbation.

Matching conditions. Since the outer expansion is a good approximation of the actual solution
far away from the location of the perturbation and the inner expansion is a good approximation
in the vicinity of the perturbation, there must exist an intermediate region where both expansions
are valid. In that region the matching conditions are defined. The behaviour of the far field near
the origin can be described by an expansion in powers of the distance to the singular point r , that
can be the Taylor’s expansion in the case of a smooth stress field or the Williams’ expansion in
case of a singularity. Assuming the example of the cavity in a V-notch highlighted in Figure 4, the
William’s expansion can be applied, normally expressed in polar coordinates as

U (r,θ) =U (0,0)+K rλu(θ)+o(rλ), (16)

assuming that the dominant term is real and have multiplicity one. The matching conditions can
be expressed as

F0(ℓ)V0(y1, y2) ≈ U (0,0), when ρ→∞ (17)

F1(ℓ)V1(y1, y2) ≈ Kℓλρλu(θ), when ρ→∞ (18)

where the term ≈ means “behaves like” and ρ = r /ℓ=
√

y2
1 + y2

2 . It can thus be set:

F0(ℓ) = 1 and V0(y1, y2) ≈U (0,0), when ρ→∞ (19)

F1(ℓ) = Kℓλ and V1(y1, y2) ≈ ρλu(θ). when ρ→∞ (20)

However, it can be shown that the matching condition over V1(y1, y2) does not fulfill the Lax-
Milgram theorem, since it has an infinite energy in the unbounded domain Ωin, while it should
decrease to 0 at infinity to have a finite energy. For this reason, the superposition principle is
applied,

V1(y1, y2) = ρλu(θ)+ V̂1(y1, y2) (21)

where V̂1(y1, y2) is the solution to a well-posed problem. The set of equations that defines the
new term V̂1(y1, y2) is:

−∇y · σ̂1 = 0 inΩin,

σ̂1 = C : ∇y V̂1,
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Figure 6. FEM model of the outer domain problem.

σ̂1 ·n = 0 on Γℓ,

V̂1 ≈ 0 as ρ→∞,

σ̂1 ·n = −C : ∇y
(
ρu(θ)

) ·n on ΓV

Note that the terms V̂1(y1, y2) and V1(y1, y2) are independent of the global geometry and the
applied load, that are included in the GSIF K . Finally, it yields a new expression for the inner
expansion, where V̂1(y1, y2) has finite energy at infinity,

Uℓ(x1, x2) =Uℓ(ℓy1,ℓy2) = F0(ℓ)U (0,0)+Kℓλ
[
ρλu(θ)+ V̂1(y1, y2)

]
+o(ℓλ). (22)

The MA approach thus enables determining the displacement field accounting for the pertur-
bation by the initiation crack length. It yields all the ingredients required to compute the initi-
ation loading and crack length by further implementation of the CC, i.e. the stress field before
crack initiation and the elastic strain energy release due to the crack.

4. Numerical implementation of the matched asymptotic approach

The strategy outlined and described in previous sections can be implemented using the typi-
cal computational tools employed in solid mechanics, such as the Finite Element Method and
the Boundary Element Method. In this work, the applications will focus on the Finite Element
Method, but the idea directly applies to other computational methods. The numerical imple-
mentation will be applied initially to the problem described in Figure 1 as a simple case and af-
ter it will be extended to more complex cases, where some other aspects have to be taken into
account.

As described in Section 2.1, the implementation of the coupled criterion requires the evalua-
tion of the stress and energy criteria separately. Thus, the objective of the numerical implemen-
tation of the MA will be the evaluation of these two criteria. Following the strategy of the MA
approach, two domains, inner and outer, are used for this objective. The numerical implementa-
tion will consist on using the Finite Element Methods to compute the necessary elastic solutions
in the two domains. Some of them will be used to impose matching between the two domains
and others to obtain the stresses or the change in elastic strain energy necessary to evaluate the
stress and energy criteria.

In this sense, the steps of a CC analysis assisted by MA and FEM for the problem described in
Section 2.1 are the following:

(1) Generation of a FEM model of the outer domain without crack. The mesh should be
fine enough around the V-notch in order to approximate accurately the displacement
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solution around this point, see Figure 6. The minimum required mesh size can be
determined based on a mesh convergence analysis.

(2) Computation of the outer domain model for a certain load. If the problem can be
considered linear, i.e. material behavior and boundary conditions are linear and it is
possible to assume small deformations, the solution will be linear with the load. In this
case, a unit load can be applied and the results obtained can be multiplied by the load to
get any result.

(3) The displacements uFE(ρ,θ) and traction vector t FE(ρ,θ) in the vicinity of the V-notch are
extracted from the outer-domain model in a closed contour around (noted Γ), typically
a circle. Since this first problem contains a V-notch, these results can be directly used to
compute the value of the GSIF by using the property of orthogonality of modes through
the next contour integral:

K ≈
∫
Γ t FE(ρ,θ) ·ρλu−(θ)− t−(ρ,θ) ·uFE(ρ,θ)dΓ∫
Γ t (ρ,θ) ·ρλu−(θ)− t−(ρ,θ) ·ρλu(θ)dΓ

, (23)

where u(θ) is the displacement function of the singular mode corresponding to the
exponentλ and the GSIF K and u−(θ) is the corresponding dual one. The traction vectors
t and t− respectively correspond to the displacement functions of the singular and dual
modes. Once K is known, the stresses before the crack initiation (necessary for the
evaluation of the stress criterion) can be extracted directly from the singular expansion,
assuming the crack length at initiation is sufficiently small compared with the size of the
region governed by the first term of the William’s expansion.

(4) Generation of a FE model of the inner domain with crack, see Figure 7. The external
radius should be much larger than the crack length. Typically, the dimensionless crack
length is set to 1, and the external radius should be at least 200. The displacements given
by the singular mode are prescribed at the external boundaries.

(5) Two versions of this model are computed:
(a) Submodel 0: This submodel corresponds to the state just before the crack initiation.

The two crack faces (and then their corresponding nodes) are tied to each other, in
order to model the situation without crack.

(b) Submodel 1: This submodel corresponds to the state just after the crack initiation.
Crack faces are stress-free.

From these two submodels, the change in potential elastic energy∆Wel necessary for the
evaluation of the energy criterion (Equation (2)). Several strategies can be used:
(a) Crack closure technique: The change in potential elastic energy can be obtained

by the work of the virtual forces necessary to close the cracks for problems with
displacement control loading. Assuming linearity in the process, the change in
potential elastic energy can be computed with the following expression:

∆Wext −∆Wel =
∫
Γcrack

1

2
t 0+ · (u1+−u1−)dΓcrack. (24)

where t 0+ is the traction vector at the submodel 0 at one of the crack faces, named
positive. The terms t 1+ and t 1− refer to the displacements at the positive and the
opposite faces respectively in the submodel 1. In case of the existence of force
control loads, the below expression should include the work done by the external
forces during crack closure. The fact of having to take into account the external
forces takes away the advantages of this technique, so the next technique would be
recommended in case of force control loading.
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(b) Technique based on the change in the work of the external forces applied at the
external boundary. The change in potential energy can be computed by:

∆Wext −∆Wel =
∫
Γext

1

2
(t 0u1 − t 1u0)dΓext, (25)

where t 0 and t 1 are the traction vectors at the external boundary in the submodels
0 and 1 respectively. In both strategies, it is more convenient to extract the nodal
forces directly from the FEM results and multiply them by the nodal displacement,
instead of computing the contour integral.

(c) Technique based on the change in elastic strain energy: This technique is based
on computing directly the change in elastic strain energy. This is especially useful
when the problem is displacement controlled, otherwise it will be necessary to add
the work done by external forces during crack initiation. Thus, the next general
expression is:

∆Wext −∆Wel =
∫
ΓN

1

2
t
(
u1 −u0)dΓ+

∫
Ω

1

2

(
σ0 : ε0 −σ1 : ε1

)
dΩ (26)

where ΓN corresponds to the boundary with Neumann boundary condition. The
first term would vanish in case of displacement control.

(6) Since in this problem ℓ is the only characteristic length and the space variables are made
dimensionless with respect to ℓ in the inner domain, the dimensionless crack length in
the inner domain is 1. Therefore, it is only needed to compute ∆Wel for a dimension
crack length of 1. In fact, according to the Dimensional Analysis of the inner domain, the
change in potential elastic energy in this problem should follow the next expression:

∆Wext −∆Wel =
K 2

E
ℓ2λAh (27)

where h is the thickness, and A is a dimensionless parameter that can be obtained by the
steps described before for a unit imposed GSIF K . In case other characteristic lengths are
present in the inner domain, such as a blunt notch radius rb, or other unknown about the
crack initiation geometry, such as deviation angleα, the term A becomes a dimensionless
function that contains this dependence in terms of dimensionless parameters, such as
rb/ℓ or α. In next sections more complex problems will be presented in this sense.

(7) Once the value of K is estimated, the coupled criterion of the finite fracture mechanics
can be applied in a quite straightforward manner:

• Stress criterion: Combining the first term of the expression in (1) and the condition
outlined for the stress criterion, this criterion can be expressed as:

K rλ−1s(θ) ≥σc∀ r, 0 É r É ℓ (28)

Since for singular cases (λ< 1) this function is decreasing with r , this condition can
also be also written as:

Kℓλ−1s(θ) ≥σc. (29)

• Energy criterion: Combining the expression in (27) with the condition in (2), the
energy criterion can be expressed as:

K 2

E
ℓ2λAh ≥Gcℓh (30)

The two criteria have to be fulfilled simultaneously. In this case, since the left term
in Equation (29) is a decreasing function of ℓ and the left term in Equation (30) is an
increasing function of ℓ, the minimum value of K for which the two conditions are
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Figure 7. FEM model of the inner domain problem.

fulfilled is given solving the conditions as two equations with two unknowns ℓ and K .
The solution, for a critical length ℓi, is:

ℓi = GcE s(θ)2

Aσ2
c

(31)

and for the critical GSIF Ki,

Ki =
(
GcE

A

)λ−1 (
σc

s(θ)

)2λ−1

(32)

Since Ki is directly proportional to the external load, the critical load for crack initiation can be
calculated directly from the critical value for Ki.

5. Implementation in complex cases and examples

Previous sections were dedicated to present the MA approach of the CC in a relatively simple 2D
configuration involving a single length parameter (the crack length) under opening mode, such
as in [51]. In this section, we provide a detailed overview of more complex configurations and
examples to thoroughly demonstrate the full potential of the MA approach.

5.1. Cases with two lengths involved

The problem under investigation may involve more than one characteristic length parameter. An
emblematic example is the case of crack initiation at the tip of a blunted V-notch [39, 52, 53],
including as length parameters both the V-notch radius rV and the crack length ℓ. In such kind of
problems, one must choose which parameter will be used for the inner expansion. The correction
of the outer expansion will thus be obtained either in the inner domain where the initiation
crack length is 1 and the dimensionless V-notch radius is rV/ℓ, or in the inner domain where
the V-notch radius is 1 and the dimensionless initiation crack length is ℓ/rV. Either approach is
strictly equivalent, so that the final solution is independent of the choice of the normalization
parameter. The normalization parameter can thus be chosen for practicality reasons, such as the
use of a single (expansion with respect to the V-notch radius) instead of several FE meshes and
calculations (expansion with respect to the crack length). Other examples of the MA approach
with at least two length parameters include crack initiation at a shallow notch [54], a blunted
U-notch [55, 56], or a pore crack initiation [57, 58].



Sara Jiménez-Alfaro et al. 351

5.2. Mixed mode loading

Considering mixed mode loading crack initiation means that the outer and inner expansions
involve more than one term in the form K j rλ j u j (θ), such as for instance:

U (r,θ) =U (0,0)+Karλa ua(θ)+Kbrλb ub(θ)+·· · . (33)

This is classically encountered when studying mixed opening and shear mode crack initiation,
for instance at a V-notch in 2D [51, 53, 59–61] or in 3D [56, 62]. Higher order terms, such as
the T-stress, may also be involved for instance when studying 2D crack deviation [63] or 3D
crack front segmentation into facets [64]. In such configurations, the stress field is composed
of the sum of the terms corresponding to each mode. The elastic strain energy (and thus the
Incremental Energy Release Rate) is the sum of terms corresponding to each mode (in the form
α j K j r 2λ j ) as well as coupling terms (in the form α j k K j Kk rλ j +λk ). These terms can be computed
either by directly prescribing mixed-mode loading boundary conditions in the inner domain, or
successively prescribing single-mode loading boundary conditions then using the superposition
principle.

5.3. Interface cracking

The MA of the CC can be applied to study crack initiation at an interface between two materials,
possibly in presence of a singular point [59, 65]. The characteristic exponent and correspond-
ing mode depend on the elastic property contrast and singularity geometry [66, 67]. It may even
result in complex characteristic exponents and modes [68], which does not prevent the imple-
mentation of the MA approach as the displacement field remains real but may requires the ma-
nipulation of complex numbers. Applications of the MA of the CC to interface cracking include
bimaterial joint failure [69–72] with the consideration of residual stresses [73], crack initiation
in microelectronics structures [74, 75], bond failure of a SiC–SiC brazed assembly [76] and crack
deflection in layered ceramics [77] or ceramic matrix composites [78].

5.4. Comparison with other models

The MA approach of the CC was compared to other fracture models such as Cohesive Zone
Model (CZM), Phase Field (PF) approach for fracture, Thick Level Set (TLS) and Strain Energy
Density (SED) approach. It was shown that the MA approach of the CC and Dugdale CZM yielded
similar initiation GSIF when applied to predict crack initiation at a V-notch [79, 80], which was a
particular case of the more general result that the CZM traction-separation profile corresponding
to the CC actually depends on the geometry, the type of loading, the cracking mechanism and
the adopted stress criterion [23]. The comparison between the TLS and the matched asymptotic
approach of the CC revealed similar apparent strengths for all cases provided the assumptions of
the MA approach are satisfied [81], as well as a dependence of the TLS results to the choice of the
stress decrease as a function of the crack opening. This dependence can be put in parallel to the
traction-separation profile of CZM so that one stress decrease function could be identified in the
TLS to retrieve the CC results. Abaza et al. [82] showed that the PF regularization length could
be calibrated so that the apparent SIF at crack nucleation were similar to those obtained with the
CC. Similar variations of the apparent SIF at crack nucleation in notched ceramic specimens were
then obtained for different notch geometries using CC and PF. The SED and CC comparison in the
case of a V-notch loaded under in-plane shear revealed that the analytically computed initiation
GSIF were proportional to powers of KIc andσc for both methods. The proportionality factor was
a function of the notch angle for the CC whereas it was a function of the Poisson’s ratio for the



352 Sara Jiménez-Alfaro et al.

SED approach. Basing the control volume over which the strain energy density was averaged,
both approaches predicted similar apparent SIF at crack initiation [83].

5.5. 3D

There is no restriction regarding the 3D implementation of the MA approach [84]. The displace-
ment field is based on 3D William’s expansions [85, 86] which takes the same general form as the
2D one. The 3D singular exponent and associated eigenmode can be computed in a similar way
to the 2D one [2, 87]. The main difference compared to the 2D case is related to the dual mode.
If the primal mode is rλu(θ,φ), then the dual mode is r−λ−1u−

3D(θ,ϕ) in 3D instead of r−λu−
2D(θ)

in 2D. Otherwise, the space coordinates expansion is also performed with respect to a character-
istic length parameter, which can be chosen as the crack extension in a given direction [56, 64,
84] or with respect to the square root of the crack surface [62]. Overall, the CC has takes the same
form as in 2D and the same contour integral can be used to compute the GSIF [38], except that
the integration domain is a 2D surface in the volume encompassing the singular point instead
of a 1D curve in a surface. The main difficulty for the 3D CC application is the crack shape de-
termination. A 2D crack can generally be described by its length and angle, but there is an infi-
nite number of possible 3D crack surface. Even assuming a planar crack path, this plane must
be determined, which can be done for instance by maximizing the stress criterion [56] or based
on both stress and energy requirements by minimizing the initiation loading [64]. Then, in the
crack plane there is still an infinite number of 2D curves to describe the crack front. An option
to overcome this difficulty is to adopt a parameterized description of the crack shape [62, 64] or
derive the crack shapes from the stress isocontours [56].

5.6. Other applications

Some works including the MA approach of the CC also cover studying the presence of a process
zone or damage zone ahead of a V-notch or a crack [88–90]. It also provided a robust method
for small crack detection based on displacement fields measured by digital image correlation [50,
91]. Several works about ceramic failure were also proposed, such as cracking in layered ceram-
ics [92], platelet-based ceramics [41, 93, 94] or surface defects in polycristalline ceramics [95].
Other works concerned brittle fracture size effect [96], strength anisotropy of 3D printed mate-
rials [97], multicracking of a stiff inclusion in a soft matrix [98] or elliptical hole-induced crack
initiation [99].

6. Conclusions and further developments

Crack initiation is an unsolved problem in Linear Elastic Fracture Mechanics, that does manage
correctly to predict crack propagation in diverse material systems. However, crack initiation re-
quires the employment of more complex, computational costly and controversial tools. This re-
view shows how Matched Asymptotics and the Coupled Criterion of the Finite Fracture Mechan-
ics have been combined in the literature to predict crack initiation near stress singularities, such
as V-notches or multimaterial corners, or related to, such as U-notches.

The main advantages of this combination are: (i) it allows to obtain predictions with a very
low computational cost, where typically only linear models are involved and quasianalytical
expressions can be obtained for the load prediction, (ii) The results are easily generalized for
variations in material properties and even geometry, (iii) it is physically based, thus results can
be interpreted, explained and tailored following a physical reasoning and finally (iv) according to
the literature review it presents a good agreement with experiments.
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The main disadvantages are (i) the solutions are still limited to crack length at onset that has
to be very small compared with the characteristic lengths of the problem and (ii) it is necessary
to introduce special assumptions when nonlinearities are involved.

Other methods have been used to predict crack initiation in the stress singularities or in
the problems target of the combination of matched asymptotics and finite fracture mechanics:
Cohesive Zone Models (CZM) prescribe a cohesive law between a pair of surfaces, relating force
and separation, see e.g. [80]. This method is very versatile and presents good agreement with
experiments, but requires setting crack geometry before initiation and typically involve nonlinear
computational models. In the last decades gradient-damage-based models such as that named
Phase Field have been extensively developed. These models are based on the regularization of
the crack through a regularization length. It has been proven that when this length vanishes, the
result of LEFM is recovered. Then, for V-notches and related problems, these models present the
same problems as LEFM. To overcome this issue, several strategies have been proposed, such as
assuming that the regularization length is a material parameter [100], defining a CZM [101], or
understanding this regularization length in the context of the CC [90].

Declaration of interests

The authors do not work for, advise, own shares in, or receive funds from any organization
that could benefit from this article, and have declared no affiliations other than their research
organizations.

Dedication

The manuscript was written through contributions of all authors. All authors have given approval
to the final version of the manuscript.

Acknowledgments

This paper is entirely dedicated to our friend and colleague, Pr. Dominique Leguillon.
SJ-A and IGG acknowledge the funding received from the European Union’s Horizon 2020 re-

search and innovation programme under Marie Sklodowska-Curie grant agreement No. 861061-
NEWFRAC. SJ-A also acknowledges the Iberdrola Foundation under the Marie Sklodowska-Curie
Grant Agreement No 101034297. IGG also acwnoledges the support of Ministerio de Ciencia e
Innovación de España (Project PID2020-117001GB-I00/AEI/10.13039/501100011033).

References

[1] M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press: New York, 1964.
[2] D. Leguillon and E. Sanchez-Palencia, Computation of Singular Solutions in Elliptic Problems and Elasticity,

Wiley: USA, 1987.
[3] P. Lagerstrom, Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathematical Sciences, Springer:

Berlin, 1988.
[4] J. Kevorkian and J. Cole, Multiple scale and singular perturbation methods, Springer Science & Business Media:

New York, 2012.
[5] R. O’Malley, The Method of Matched Asymptotic Expansions and Its Generalizations, Historical Developments in

Singular Perturbations, Springer: Cham, 2014.
[6] F. Lene and D. Leguillon, “Homogenized constitutive law for a partialy cohesive composite material”, Int. J.

Solids Struct. 18 (1982), no. 5, pp. 443–458.



354 Sara Jiménez-Alfaro et al.

[7] A. Bensoussan, L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. Studies in Mathematics
and its Application, North-Holland: Amsterdam, 1978.

[8] D. Leguillon, “Comparison of matched asymptotics, multiple scalings and averages in homogenization of
periodic structures”, Math. Models Methods Appl. Sci. 07 (1997), no. 05, pp. 663–680.

[9] D. Leguillon and E. Sanchez-Palencia, “Approximation of a two dimensional problem of junctions”, Comput.
Mech. 6 (1990), pp. 435–455.

[10] D. Leguillon, “Asymptotic and numerical analysis of a crack branching in non-isotropic materials”, Eur. J. Mech.
Solids 12 (1993), pp. 33–51.

[11] P. Sicsic and J. Marigo, “From gradient damage laws to Griffith’s theory of crack propagation”, J. Elast. 113 (2013),
no. 1, pp. 55–74.

[12] J. Cook and J. Gordon, “A mechanism for the control of crack propagation in all-brittle systems”, Proc. R. Soc. A
282 (1964), pp. 508–520.

[13] D. Leguillon, C. Lacroix and E. Martin, “Interface debonding ahead of a primary crack”, J. Mech. Phys. Solids 48
(2000), no. 10, pp. 2137–2161.

[14] D. Leguillon, “A method based on singularity theory to predict edge delamination of laminates”, Int. J. Fract. 100
(1999), no. 1, pp. 105–120.

[15] D. Leguillon and E. Sanchez-Palencia, “On 3D cracks intersecting a free surface in laminated composites”, Int. J.
Fract. 99 (1999), no. 1, pp. 25–40.

[16] D. Leguillon, “Interface crack tip singularity with contact and friction”, C. R. Acad. Sci. IIB 327 (1999), no. 5,
pp. 437–442.

[17] D. Leguillon and R. Abdelmoula, “Mode III near and far fields for a crack lying in or along a joint”, Intl J. Solids
Struct. 37 (2000), no. 19, pp. 2651–2672.

[18] J. Leblond and D. Leguillon, “The stress intensity factors near an angular point on the front of an interface crack”,
Eur. J. Mech. A Solids 18 (1999), no. 5, pp. 837–857.

[19] M. Williams, “Stress singularities resulting from various boundary condition sinangular corners of plates inex-
tension”, J. Appl. Mech. 19 (1952), pp. 526–528.

[20] D. Leguillon, “A criterion for crack nucleation at a notch in homogeneous materials”, C. R. Acad. Sci. IIB 329
(2001), no. 2, pp. 97–102.

[21] D. Leguillon, “Strength or toughness? A criterion for crack onset at a notch”, Eur. J. Mech. A Solids 21 (2002),
no. 1, pp. 61–72.

[22] P. Weißgraeber, D. Leguillon and W. Becker, “A review of finite fracture mechanics: crack initiation at singular
and non-singular stress raisers”, Arch. Appl. Mech. 86 (2016), no. 1–2, pp. 375–401.

[23] A. Doitrand, T. Duminy, H. Girard and X. Chen, A review of the coupled criterion, preprint, 2024. Online at https:
//hal.science/hal-04023438.

[24] A. Sapora, A. Torabi, S. Etesam and P. Cornetti, “Finite Fracture Mechanics crack initiation from a circular hole”,
Fatigue Fract. Eng. Mater. Struct. 41 (2018), no. 7, pp. 1627–1636.

[25] P. Cornetti and A. Sapora, “Penny-shaped cracks by Finite Fracture Mechanics”, Int. J. Fract. 219 (2019), pp. 153–
159.

[26] T. Methfessel, C. El Yaakoubi-Mesbah and W. Becker, “Failure analysis of crack-prone joints with Finite Fracture
Mechanics using an advanced modeling approach for the adhesive layer”, Int. J. Adhesion Adhesives 130 (2024),
article no. 103608.
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Abstract. In this work, we propose an incremental variational approach to study the coupling between gra-
dient damage, thermoelasticity and heat conduction phenomena. To this end, we first extend the thermo-
dynamics of linear thermoelasticity to incorporate gradient damage phenomena. After carefully introducing
the concept of kinetic entropy to describe the interaction between thermoelasticity and heat conduction, this
extension is implemented to establish a four-field incremental energy minimization procedure. By consider-
ing a suitable kinetic entropy approximation, the latter is then consistently reduced to a three-field (displace-
ment, damage, and absolute temperature) dependency, numerically implemented by means of a staggered
optimization algorithm. Applications consisting in a study of the cracking of a plate under thermal shocks
are considered. The approach is shown to deliver reliable predictions, based on comparison to available ex-
perimental observations which is also provided.

Résumé. Dans ce travail, nous proposons une approche variationnelle incrémentale pour étudier le cou-
plage entre les phénomènes d’endommagement non local, thermoélasticité et conduction thermique. À cette
fin, nous étendons d’abord le cadre thermodynamique de la thermoélasticité linéaire afin d’y intégrer les
phénomènes d’endommagement non local. Après avoir soigneusement introduit le concept d’entropie ciné-
tique pour décrire l’interaction entre thermoélasticité et conduction thermique, cette extension est mise en
œuvre pour établir une procédure de minimisation de l’énergie incrémentale à quatre champs. En considé-
rant une approximation adaptée de l’entropie cinétique, cette procédure est ensuite réduite de manière cohé-
rente à une dépendance en trois champs (déplacement, endommagement et température absolue), mise en
œuvre numériquement au moyen d’un algorithme d’optimisation alternée. Des applications sont proposées,
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consistant en l’étude de la fissuration d’une plaque soumise à des chocs thermiques. L’approche montre sa
capacité à fournir des prédictions fiables, une comparaison avec les observations expérimentales disponibles
étant également présentée.

Keywords. Gradient damage model, thermoelasticity, heat conduction, thermodynamics-based formulation,
incremental variational approach.
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1. Introduction

Thermoelasticity theory describes the interaction between deformations and temperature varia-
tions in materials and constitutes a fundamental framework in the physics of continuous media.
The first variational formulation of coupled linearized thermoelasticity can be traced back to the
pioneering work of [1] (see also [2]), which was based on the thermodynamics of irreversible pro-
cesses and employed Fourier’s law for heat conduction. This approach has been later followed
and extended by several works, such as [3–8]. These studies contributed to a systematic treat-
ment of the coupled equations governing mechanics and heat conduction. However, most of
these approaches do not provide a variational framework; that is, they do not allow for the con-
struction of an energy functional whose minimization allows to rigorously yield the field equa-
tions of linear thermoelasticity. As a result, and strictly speaking, models proposed in this frame-
work do not possess a fully variational structure; rather, they fall within the scope of so-called
quasi-variational formulations (see for instance [9,10]). An alternative formulation of thermoe-
lasticity has been proposed by [11] who distinguished three types of coupled thermoelasticity
models among which Type II which is of particular interest for variational formulation due to the
fact that its heat conduction law is dissipationless (at the difference of Fourier law). A system-
atic analysis of these three Green–Naghdi types of models has been done by [12]. These stud-
ies highlight the lack of a truly well-established variational formulation for coupled linear ther-
moelasticity with Fourier type heat conduction, and they also lack an explicit recognition of the
need for thermodynamics-based variational formulations capable of accounting for the coupling
between thermoelasticity, heat conduction, and dissipative phenomena.

To address the issue of establishing variational formulations in presence of thermomechanical
couplings, [13] proposed an incremental variational approach based on thermodynamics of
irreversible processes. Their approach consists in introducing an integration factor that is based
on a time rescaling of the dissipation potential (see also [14]). This factor, expressed as the
ratio of the external temperature to the equilibrium temperature, must remain equal to one
throughout the system at equilibrium. Essentially, the equality of these two temperatures acts
as an internal constraint in the variational analysis, which relaxes at equilibrium and enables
the incorporation of strong coupling between damage and thermal mechanisms during entropy
production. Independently, in the same year, [15] proposed a time-discretization scheme, in a
study on shape memory alloys, to obtain solutions to the incremental problem by optimizing the
corresponding functional F . Following these works, a series of studies have been proposed in the
incremental variational setting. Among them, particular attention can be paid to [14,16,17] and
more recently [18–20]. Note also the study by [12] who also attempted to provide an incremental
variational formulation for the three types of Green and Naghdi’s thermoelasticity models.

Despite their interest, these approaches still need to be extended in order to account for non-
local dissipative mechanisms such as in plasticity or damage processes. The present study aims
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to extend the incremental variational formulation to non local damage models for which there is
no equivalent publication, except for [20], in which a four-field mixed variational approach was
recently proposed without numerical implementation nor simulation.

Coming to the coupling between gradient damage with thermoelasticity, it has attracted
increasing attention, particularly for simulating thermomechanical degradation phenomena
such as thermal shock-induced cracking. This has led to a variety of modeling strategies, mainly
based on phase-field methods, where the temperature field is often assumed to be known,
typically obtained from an independent solution to the heat equation. This simplification
allows for a variational formulation restricted to the displacement and damage fields. In this
context, one may mention the works of [21–24], in which the evolution of the temperature
field is solved independently of the mechanical problem. The resulting thermal field is then
used as a prescribed input in the phase-field model. Another class of models, such as those
proposed in [25–28], lacks a variational structure and does not rigorously integrate damage within
a thermoelastic coupling framework.

In the present study, by taking advantage of thermodynamics of irreversible processes, we
aim at developing variational gradient damage models with coupled thermoelasticity. Moreover,
based on some experimental data (see for instance [29]) and following [15], the intrinsic contri-
bution of the damage in the heat production could be neglected. In this perspective, the above
mentioned integration factor will not be considered in the corresponding variational analysis.
Consequently, the variational structure which is preserved and addressed herein corresponds to
a so-called moderate coupling between the damage and thermoelasticity. This is of course an
approximation but will lead to easier calculations which are expected to yield sufficiently accu-
rate predictions. It is important to emphasize that this moderate coupling framework still ac-
counts for the influence of thermoelasticity on entropy evolution, which remains affected by the
presence of damage.

The paper is organized as follows. Based on the framework of thermodynamics of irreversible
processes, we develop in Section 2 an incremental variational principle for the coupled problem,
which involves four fields: displacement, damage, temperature, and the so-called kinetic entropy.

The latter is then carefully approximated in each increment that allows to reduce and express
the incremental variational principle as based on functional of the three former fields. This
formulation is further applied in Section 3 to obtain a variational model for the concerned
coupled system.

Finally, by making use of a staggered optimization algorithm, we apply the proposed model
to simulate cracking of a plate under thermal shocks loadings. A comparison to available
experimental observations of [30] is also provided.

2. General formulation of incremental variational principle for the coupled problem

This section deals with a thermodynamics based formulation of an incremental variational
framework for gradient damage process coupled with thermoelasticity as well as heat conduc-
tion. We assume that the material is subject to infinitesimal strains and small temperature varia-
tions.

2.1. Thermodynamics of the coupling between linearized thermoelasticity and gradient
damage

Let us consider a continuum medium, denoted by Ω, for which the global form of the first and
second principles of thermodynamics are classically expressed as:

Ė =−P int +Pcal; Ṡ ≥
∫
Ω

r

T
dΩ−

∫
∂Ω

q ·n

T
dS (1)
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where E is the global internal energy; P int accounts for the power of internal work including
that of possible microforces; Pcal symbolizes the calorific power received by the system, which
is furnished by the external heat supplies per unit volume, denoted by r , and per unit surface,
denoted by q ; S gives the global entropy; n is the unit outward normal on the boundary of ∂Ω
and T the local absolute temperature.

In order to incorporate the gradient damage mechanism, we mainly rely on the work of [31] by
introducing the internal variables such as the damage, denoted byα, and its gradient∇α, with the
latter characterizing the non-local effect of damage. In this context, the power of interior forces
not only requires the classical term σ : ε̇, where σ denotes the Cauchy stress tensor; ε̇ is the rate
of the linearized strain tensor ε = ∇s u (with u the displacement vector and ∇s the symmetric
gradient operator), but also incorporates the microscopic forces associated to damage α and its
gradient ∇α, which are respectively denoted by Yα and Y ∇α. One has then:

P int =−
∫
Ω
σ : ε̇dΩ−

∫
Ω

(
Yαα̇+Y ∇α ·∇α̇

)
dΩ. (2)

As classically, let us introduce the Helmholtz free energy per unit volume, denoted by w , a
function of the state variables, such that:

w := w(ε,T,α,∇α). (3)

Note that w is separately convex with respect to ε, α and ∇α, but concave with respect to T .
The state laws which furnish the reversible forces are then derived as (see Appendix A):

σnd = ∂w

∂ε
; s =−∂w

∂T
; Y nd

α = ∂w

∂α
; Y nd

∇α = ∂w

∂∇α (4)

with s the entropy per unit volume of the solid. The superscripts “nd” denotes the non-dissipative
part of the related thermodynamic forces.

Also, the Clausius–Duhem inequality (positivity of the dissipation) can be derived as:

D =σ : ε̇− ẇ − sṪ +Yαα̇+Y ∇α ·∇α̇︸ ︷︷ ︸
Dint

−∇T

T
·q︸ ︷︷ ︸

Dth

≥ 0. (5)

This local dissipation D can be classically decomposed into two parts: the intrinsic dissipation
Dint and the thermal dissipation due to heat conduction Dth.

Since the strain field ε is non-dissipative in thermoelasticity, it follows that the dissipative
component of the associated thermodynamic force vanish, i.e. σd =σ−σnd = 0. Consequently,
eq. (5) reduces then to:

D = Y d
αα̇+Y d

∇α ·∇α̇︸ ︷︷ ︸
Dint

−∇T

T
·q︸ ︷︷ ︸

Dth

≥ 0 (6)

where Y d
α and Y d

∇α are the dissipative thermodynamic forces of α and ∇α, satisfying Y d
α =

Yα−Y nd
α and Y d

∇α = Y ∇α−Y nd
∇α, respectively.

To characterize the evolution of dissipative systems in the context of Generalized Standard
Materials (GSM) framework [32], one can resort to the dissipation potential, denoted by ϕ.
Following [13], and in the case of a coupling between thermoelasticity and gradient damage, a
joint form can be adopted:

ϕ

(
α̇,∇α̇,−∇T

T
;α,∇α,T

)
=ϕM (α̇,∇α̇;α,∇α)−ϕT

(
−∇T

T
;T

)
(7)

whereϕM andϕT respectively correspond to the damage dissipation and that of heat conduction.
The latter owns the positiveness of the dissipation associated with heat conduction. Note that
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both ϕM and ϕT are convex with respect to their respective arguments. It follows from eq. (7)
that ϕ is convex with respect to α̇ and ∇α̇, but concave with respect to −∇T /T . One has:1

Y d
α = ∂ϕ

∂α̇
; Y d

∇α = ∂ϕ

∂∇α̇ ; q = ∂ϕT

∂
(−∇T

T

) (8)

Concerning the dissipative processes, we recall that the corresponding dissipation potential is
assumed to take a joint form (see eq. (7)), wherein the damage dissipation potential ϕM and
that of the thermal conduction ϕT are combined but remain decoupled. Since this study aims
to provide a first attempt at formulating an incremental variational framework for modeling
gradient damage mechanisms coupled with thermoelasticity and heat conduction, a moderate
coupling framework, as mentioned in Section 1, is adopted, in which the damage process affects
the entropy evolution only through the thermoelastic potential.

For more details on the thermodynamic formulations presented above, readers are referred to
Appendix A. In the following part of this section, inspired by [13] (see also [14]), a rate form of the
total energy functional which involves the two above potentials will be proposed. Its integral over
the time increment will allow to construct an incremental energy functional. Stationarity of the
latter will allow to establish the solution of the concerned coupled problem.

2.2. Incremental variational principle

Let us consider a system subjected to some mechanical and/or external thermal actions. Specif-
ically, the mechanical loads could be composed of surface forces T applied on the Neumann
boundary ∂TΩ and an external displacement u on the Dirichlet part ∂uΩ, where ∂TΩ∪∂uΩ= ∂Ω
and ∂TΩ∩ ∂uΩ=;. Concerning the external thermal charge, the boundary of the medium could
be subjected to a heat supply Q on its Neumann surface ∂QΩ and prescribed temperature T on
the Dirichlet border ∂TΩ, for which we have ∂QΩ∪ ∂TΩ= ∂Ω and ∂QΩ∩ ∂TΩ=;. Furthermore,
a body force per unit volume, denoted by F , can be considered. It follows that the external power
functional reads (see also [13]):

Pext :=
∫
Ω

F · u̇ dΩ+
∫
∂TΩ

T · u̇ dS +
∫
∂QΩ

Q log
T

T0
dS. (9)

Since we consider the Helmholtz free energy, it may be more appropriate to consider the
temperature field to be in equilibrium at any given time t . Yet, due to thermal diffusion, heat
tends to enter the material point and alter its entropy, which corresponds to some kinetic
behaviors. To describe this process, we assume that the entropy change occurs at a non-
equilibrium state, denoted as time t−. In this perspective and inspired by recent work by [33]
on the coupling between gradient damage, poroelasticity, and fluid flow in porous media, we
distinguish between equilibrium entropy s and a so-called kinetic entropy, denoted by ŝ, which
must be equivalent at equilibrium states at time t . Furthermore, the reversible process of the
concerned open system is described by the power ẇ + ŝṪ . Following [13,14], and inspired by [34]
for elasto(visco)-plasticity, [35,36] for gradient plasticity, or [37], etc., let us introduce the rate
form of total energy functional for damage coupled with thermoelastic behavior:

Π(u̇, Ṫ , s, α̇;T ) =
∫
Ω

ẇ(ε̇, Ṫ , α̇,∇α̇)+ ŝṪ +ϕ
(
α̇,∇α̇,−∇T

T
;α,∇α,T

)
dΩ−Pext. (10)

Remark 1. Regarding the concept of kinetic entropy, note that the overall system is thermody-
namically open due to the presence of external heat sources and/or fluxes. At the local scale, each

1In the case where the potential ϕ is not differentiable, one should refer to the notion of subdifferential ∂ϕ, e.g. the
evolution law for α then taking the form: Aα ∈ ∂α̇ϕ. The irreversible force Aα is said to belong to the sub-gradient of ϕ
at the considered point.
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material point is assumed to be in a thermodynamically non-equilibrium state at time t− due to
the thermal diffusion, whereby heat tends to enter the point and modify its entropy. The same
material point is then considered to reach equilibrium at time t . The characterization of this ki-
netic entropy will be done in the following by considering eqs. (12) and (13) in the variational
point of view.

We now proceed to establish an incremental variational problem in order to reduce the time-
dependent nature such that the solution is expected to be given by the optimization of an
incremental total energy functional. Specifically, the total time path [t0, t f ] is discretized into
a sequence of time steps: t0 = 0, . . . , tn , tn+1, . . . , tN = t f . The state at each step is determined by
consistently optimizing within each time interval [tn , tn+1]. Given the known state (εn ,Tn , ŝn ,αn)
at time tn , we seek to find the corresponding unknown state (εn+1,Tn+1, ŝn+1,αn+1) at tn+1. In
this context, we define the following functional to characterize the incremental evolution:

In(εn+1,Tn+1, ŝn+1,αn+1) =
∫ tn+1

tn

Π(u̇, Ṫ , ŝ, α̇;T )dt . (11)

Taking variation of eq. (11) respectively respect to u, T and α, and enforcing the stationarities
tn+1 yield (see Appendix B for details):

divσn+1 +F n+1 = 0; ∀ x ∈Ω
σn+1 ·n = T n+1; ∀ x ∈ ∂TΩ

ŝn+1 = sn+1; ∀ x ∈Ω
Yα|n+1 −divY ∇α|n+1 = 0; ∀ x ∈Ω
Y ∇α|n+1 ·n = 0; ∀ x ∈ ∂Ω

(12)

and in the interval [tn , tn+1]:

˙̂s +div
q

T
= 0; ∀ x ∈Ω

q ·n =Q; ∀ x ∈ ∂QΩ[
∂ϕ

∂α
− d

dt

(
∂ϕ

∂α̇

)]
−div

[
∂ϕ

∂∇α − d

dt

(
∂ϕ

∂∇α̇
)]

= 0; ∀ x ∈Ω[
∂ϕ

∂∇α − d

dt

(
∂ϕ

∂∇α̇
)]

·n = 0; ∀ x ∈ ∂Ω
Ṫ = 0; ∀ x ∈Ω

(13)

eqs. (12) furnish the Euler–Lagrange equations of In and the Neumann boundary conditions at
tn+1, while eqs. (13) allow to determine the optimization path. Their derivation is presented
in detail in Appendix B. All of them are expressed thanks to the thermodynamics potentials
allowing to take into account the non-local damage effects. Essentially, these equations make In

to be stationary in [tn , tn+1]. Let us suppose the thermodynamics potentials as classically being
quadratic, and recall their convexity as discussed in Section 2.1. It follows that In must be convex
with respect to un+1 and αn+1 but concave with respect to Tn+1. We can hence establish the
following incremental variational principle:

(un+1,Tn+1, ŝn+1,αn+1) = Arg inf
u′

n+1,α′
n+1

statT ′
n+1, ŝ′n+1

{
In(u′

n+1,T ′
n+1, ŝ′n+1,α′

n+1)
}

(14)

with (un+1,Tn+1, ŝn+1,αn+1) henceforth the estimate of the expected solution and (u′
n+1,

T ′
n+1, ŝ′n+1, α′

n+1) denoting the admissible fields of the displacement, the absolute temperature,
the kinetic entropy as well as that of the damage, respectively.
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2.3. A reduced form of the variational scheme

As demonstrated above, the application of the incremental variational principle (14) necessitates
the calculation of the optimization path, whose numerical implementation might be performed
via a fully implicit algorithm. However, as discussed in [38] (see also [13,33]), this path calculation
could be treated as avoidable except for some particular case. Instead, a weak quantification of In

that aligns with the field equations at tn+1 could be sufficient. From this perspective, we employ
backward Euler approximations for the following rate fields:

u̇ ≃ un+1 −un

∆t
; α̇≃ αn+1 −αn

∆t
; Ṫ ≃ Tn+1 −Tn

∆t
; (15)

where ∆t = tn+1 − tn .
Recall that, as aforementioned, the entropy simultaneously presents some equilibrium and

kinetic behaviors at any given time.2 In this perspective and in the context of incremental
variational framework, we assume that the entropy is considered to be in a non-equilibrium (i.e.,
kinetic) state at time tn , and it relaxes to an equilibrium state at tn+1. The continuity of ŝ in time
dimension makes:

ŝ ≃ sn =−∂w

∂T
(un ,Tn ,αn ,∇αn). (16)

This expression actually corresponds to an optimization of the kinetic entropy over the previous
increment. Indeed, as shown for instance in [39], the kinetic entropy ŝ can be approximated at
any time within the interval [tn , tn+1), except at the final time tn+1, which is considered here
as the stationary state to be determined. In summary, this type of approximation, as will be
demonstrated in the following, ensures a consistent representation of the coupled constitutive
relations and guarantees satisfactory convergence as ∆t → 0. By considering eqs. (3), (7), (15)
and (16) and making use of the rectangular rule for the time integration of ϕ as well as the term
of thermal boundary condition, the incremental energy In can be calculated as:

In(un+1,Tn+1,αn+1) ≃
∫
Ω

(wn+1 −wn)+ sn(Tn+1 −Tn)dΩ+∆t
∫
Ω

(ϕM
n+1 −ϕT

n+1)dΩ

−
∫
Ω

F n+1 · (un+1 −un)dΩ−
∫
∂TΩ

T n+1 · (un+1 −un)dS −∆t
∫
∂QΩ

Qn+1 log
Tn+1

Tn
dS. (17)

Let us compute the variation of eq. (17) with respect to un+1,Tn+1,αn+1; the stationarity gives:

div
∂wn+1

∂εn+1
+F n+1 = 0; ∀ x ∈ ∂Ω

∂wn+1

∂εn+1
·n −T n+1 = 0; ∀ x ∈ ∂TΩ

Tn+1

− ∂wn+1
∂Tn+1

− sn

∆t
+div

∂ϕT
n+1

∂
(−∇Tn+1

Tn+1

) = 0; ∀ x ∈Ω

∂ϕT
n+1

∂
(−∇Tn+1

Tn+1

) ·n −Qn+1 = 0; ∀ x ∈ ∂QΩ

(
∂wn+1

∂αn+1
+ ∂ϕM

n+1

∂α̇n+1

)
−div

∂wn+1

∂∇αn+1
+ ∂ϕM

n+1

∂∇α̇n+1
=O (∆t ); ∀ x ∈Ω(

∂wn+1

∂∇αn+1
+ ∂ϕM

n+1

∂∇α̇n+1

)
·n =O (∆t ); ∀ x ∈ ∂Ω.

(18)

2Specifically, the entropy is kinetic at the non-equilibrium state t− and equilibrium at t .
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Furthermore, by considering eqs. (4) and (8), (18) can be readily recast into:

divσn+1 +F n+1 = 0; ∀ x ∈Ω
σn+1 ·n −T n+1 = 0; ∀ x ∈ ∂TΩ

Tn+1
sn+1 − sn

∆t
+div q n+1 = 0; ∀ x ∈Ω

q n+1 ·n −Qn+1 = 0; ∀ x ∈ ∂QΩ

Yα|n+1 −divY ∇α|n+1 =O (∆t ); ∀ x ∈Ω
Y ∇α|n+1 ·n =O (∆t ); ∀ x ∈ ∂Ω

(19)

which are the governing equations (equilibrium, heat equations, damage criterion) and Neu-
mann boundary conditions associated to un+1,Tn+1,αn+1, respectively.

Recalling the convexity of In(un+1,Tn+1,αn+1) with respect to un+1 and αn+1 and the concav-
ity with respect to Tn+1, the incremental variational principle of eq. (14) could be reduced into
the following form as three fields dependent, such that:

(un+1,Tn+1,αn+1) = Arg inf
un+1

′,αn+1
′ sup
Tn+1

′

{
In(u′

n+1,T ′
n+1,α′

n+1; ŝ)
}

(20)

ŝ being aforehand identified in the current increment.

3. A variational model for coupled thermoelasticity with gradient damage

This section aims to apply the established incremental variational principle to a gradient damage
model coupled with thermoelasticity and heat conduction. As mentioned before, we assume the
material undergoes infinitesimal deformations and small temperature variations. Accordingly,
the formulation of the variational model will rely on the choice of a suitable Helmholtz free
energy, a damage dissipation potential, and the Fourier potential for heat conduction.

3.1. Helmholtz free energy and dissipation potentials

We propose as:

Helmholtz free energy for linear thermoelasticity:

w(ε,T,α) = 1

2
ε :C(α) : ε− s0T − (T −T0)β(α) : ε− c(α)

2T0
(T −T0)2 (21)

where C(α), β(α), c(α) are respectively the stiffness tensor, the second order tensor of
linear thermal expansion and the heat capacity. A priori, all these material parameters
are affected by the damage.

Next, the reversible thermodynamic forces obtained from the state laws read:

σ=C(α) : ε− (T −T0)β(α);

s − s0 =β(α) : ε+ c(α)

T0
(T −T0);

Y nd
α = ∂w

∂α
;

Y nd
∇α = 0.

(22)

Dissipation potential: Let us recall that the dissipation potential is considered as in a joint form
of the damage dissipation potential ϕM and that for thermal conduction ϕT (see eq. (7)).
Following [33,40], the dissipation potential ϕM is chosen:

ϕM (α̇,∇α̇;α,∇α) = Yc (α)α̇+2l 2
0 w1∇α ·∇α̇ (23)
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where Yc (α) denotes the critical damage energy at current state, l0 is the material internal
length and w1 the first threshold in energy release rate that can be identified from
different damage descriptions (e.g. [41] for AT1 model and [42] for AT2 model).

In addition to satisfying the classical requirements (being a positive scalar-valued
function, convex with respect to its arguments, and minimal when the arguments van-
ish), ϕM is positively homogeneous of degree 1 and have the following remarkable prop-
erty. Indeed, it corresponds to the so-called simple dissipative systems,3 for which the to-
tal dissipated energy until the current time is function only of the current value of internal
variables.

Owing to this property, it readily follows that:∫ tn+1

tn

ϕM (α̇,∇α̇;α,∇α)dt = w1l0

[
ω(αn+1)−ω(αn)

l0
+ l0

(∥ ∇αn+1 ∥2 − ∥∇αn ∥2)]. (24)

It is worthy to note here that eq. (24) allows to obtain a closed-form expression of
the related incremental dissipation due to the simple dissipative process without the
approximation made in eq. (17). Nevertheless, the incremental variational method
proposed in Section 2 remains applicable to more general cases.

Coming now to the dissipation potentialϕT corresponding to thermal dissipation, we
assume the validity of the Fourier potential to describe heat conduction:

ϕT
(
−∇T

T
;T

)
= T

2

(
−∇T

T

)
·k ·

(
−∇T

T

)
= ∇T ·k ·∇T

2T
(25)

where k is the isotropic thermal conductivity tensor that is assumed here as constant.
Since small temperature variations are considered, the force term in the Fourier

potential can be approximated as (see for instance [14]):

−∇T

T
≃−∇T

Tr
(26)

with Tr a reference temperature that is supposed to be the initial temperature T0. Ad-
ditionally, we consider that ϕT is parametrically affected by T0. Then, eq. (25) can be
readily reduced as:

ϕT
(
−∇T

T0
;T0

)
= T0

2

(
−∇T

T0

)
·k ·

(
−∇T

T0

)
= ∇T ·k ·∇T

2T0
. (27)

3.2. Derivation of the incremental functional In for the proposed variational model

As discussed in Section 2, the non-dissipative process of the concerned system is described by
ẇ + ŝṪ , in which the kinetic entropy was approximated as ŝ ≃ sn . From this assumption, one has:

ŝ ≃−∂w

∂T
(εn ,Tn ,αn) = s0 +β(αn) : εn + c(αn)

T0
(Tn −T0)

which can be reported as sn in the incremental energy functional (17).
As mentioned before, this choice ŝ ≃ sn is one of the possible approximations for describing

the kinetic entropy. In order to well incorporate the effect of damage on the thermoelastic
degradation during the variational calculation, we assume henceforward that the dependence
of β(α) and c(α) on the damage field α in the current increment is incorporated through a semi-
implicit scheme, such that:

ŝ ≃ s0 +β(αn+1) : εn + c(αn+1)

T0
(Tn −T0) (28)

3See [43] for an account of simple dissipative systems.
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which also corresponds to

wn ≃ 1

2
εn :C(αn) : εn − s0Tn − (Tn −T0)β(αn+1) : εn − c(αn+1)

2T0
(Tn −T0)2. (29)

It is important to note here that this approximation is variationally consistent.
In the increment [tn , tn+1], these two equations lead to:

ŝṪ ≃ ŝ
Tn+1 −Tn

∆t
= Tn+1 −Tn

∆t

[
s0 +β(αn+1) : εn + c(αn+1)

T0
(Tn −T0)

]
(30)

and

wn+1 −wn ≃ 1

2
εn+1 :C(αn+1) : εn+1 − 1

2
εn :C(αn) : εn − (Tn+1 −Tn)s0

−β(αn+1) :
[
(Tn+1 −T0)εn+1 − (Tn −T0)εn

]− c(αn+1)

2T0
(Tn+1 −Tn)(Tn+1 +Tn −2T0) (31)

Still in the context of small temperature variations, the external power functional expressed in
eq. (9) can be reduced into:

Pext :=
∫
Ω

F · u̇ dΩ+
∫
∂TΩ

T · u̇ dS +
∫
∂QΩ

Q
T −T0

T0
dS. (32)

Gathering eqs. (23), (24), (27), (30), (31) and (32), the incremental energy functional given
by (17) can be recast in the form:

In(εn+1,αn+1,Tn+1) =
∫
Ω

[
1

2
εn+1 :C(αn+1) : εn+1 − (Tn+1 −T0)β(αn+1) : (εn+1 −εn)

− c(αn+1)

2T0
(Tn+1 −Tn)2

]
dΩ

+
∫
Ω

w1l0

[
ω(αn+1)−ω(αn)

l0
+ l0

(∥ ∇αn+1 ∥2 − ∥∇αn ∥2)]dΩ

−∆t
∫
Ω

∇Tn+1 ·k ·∇Tn+1

2T0
dΩ−

∫
Ω

F n+1 · (un+1 −un)dΩ

−
∫
∂TΩ

T n+1 · (un+1 −un)dS −∆t
∫
∂QΩ

Qn+1
Tn+1 −T0

T0
dS.

(33)

Note that in the context of variational optimization, the quantities that depend only on the state
at tn can be treated as constants in the above equation. Moreover, due to the form of the state
and dissipation potentials expressed by (21), (23) and (27), it can be readily understood that this
incremental energy functional is quadratic in each of its arguments and convex with respect to
un+1 andαn+1, but concave with respect to Tn+1. Hence, the resolution of the concerned problem
can be achieved by applying the incremental variational principle (20). We provide below the
governing equations and corresponding boundary conditions, which are obtained based on the
variational calculus of eq. (33) with respect to un+1, Tn+1 and αn+1:

div
[
C(αn+1) : εn+1 − (Tn+1 −T0)β(αn+1)

]+F n+1 = 0; ∀ x ∈Ω[
C(αn+1) : εn+1 − (Tn+1 −T0)β(αn+1)

] ·n −T n+1 = 0; ∀ x ∈ ∂TΩ

c(αn+1)
Tn+1 −Tn

∆t
+T0β(αn+1) :

εn+1 −εn

∆t
−divk ·∇Tn+1 = 0; ∀ x ∈Ω

(−k ·∇Tn+1) ·n +Qn+1 = 0; ∀ x ∈ ∂QΩ

∂wn+1

∂αn+1
+w1

∂ω(αn+1)

∂αn+1
−2w1l 2

0∇2αn+1 = 0; ∀ x ∈Ω
(2w1l 2

0∇αn+1) ·n = 0; ∀ x ∈ ∂Ω

(34)

with ∇2 the Laplacian operator.
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4. Numerical implementation and application

In this section, we deal with a numerical implementation procedure for the proposed variational
model coupling gradient damage, thermoelasticity and heat conduction. Since its total energy
functional (33) includes a quadratic term of the product between ∇u and α, In is hence sepa-
rately but not globally convex with respect to them. This makes the corresponding global mini-
mization unachievable. However, this issue does not arise between the displacement u and the
temperature field T . For this reason, the variational optimization is performed through a semi-
staggered algorithm, which is implemented in this work with the open-source computing plat-
form FEniCS [44]. This approach is then applied to the study of plate cracking under thermal
shocks in quasi-static conditions.

4.1. Numerical algorithm

In order to make the above mentioned semi-staggered optimization in the current increment
[tn , tn+1], we first switch off the damage variation, such that α := αn , and solving the following
stationary problem where the thermoelasticity and heat conduction process are coupled:

(un+1,Tn+1) = Argstatu′
n+1,T ′

n+1
{

I th
n (u′

n+1,T ′
n+1;αn)

}
. (35)

By considering eq. (33) and neglecting the constant terms, I th
n can be explicitly expressed as:

I th
n (εn+1,Tn+1;αn) =

∫
Ω

[
1

2
εn+1 :C(αn) : εn+1 − (Tn+1 −T0)β(αn) : (εn+1 −εn)

− c(αn)

2T0
(Tn+1 −Tn)2

]
dΩ−∆t

∫
Ω

∇Tn+1 ·k ·∇Tn+1

2T0
dΩ−

∫
Ω

F n+1 · (un+1 −un)dΩ

−
∫
∂TΩ

T n+1 · (un+1 −un)dS −∆t
∫
∂QΩ

Qn+1
Tn+1 −T0

T0
dS. (36)

Next, we estimate the damage solution αn+1 from the following minimizer:

αn+1 = Argminα′
n+1

{
I dam

n (α′
n+1)

}
(37)

where

I dam
n (αn+1) =

∫
Ω

[
1

2
εn+1 :C(αn+1) : εn+1 − (T n+1 −T0)β(αn+1) : (εn+1 −εn)

− c(αn+1)

2T0
(T n+1 −Tn)2 +w1l0

(
ω(αn+1)

l0
+ l0 ∥ ∇αn+1 ∥2

)]
dΩ (38)

where the bar superscript denotes the optimization of un+1 and Tn+1 computed from eq. (35).
Specifically, eq. (35) is solved by using the NonlinearVariationalSolver module in the open-

source DOLFIN [45], which allows an automatic iteration in each time increment with user-
defined tolerances of absolute and relative errors as well as the maximal number of iterations,
etc. Moreover, mixed finite elements of Lagrange type, i.e. CG1 and CG2 elements, are adopted
to discretize the corresponding mixed function space that includes the temperature and the
displacement fields. For the damage minimization problem (37), linear Lagrange finite elements
(i.e. CG1 elements) and the PETScTAOSolver of DOLFIN are utilized. Note that the latter allows to
numerically enforce the damage irreversibility condition, i.e. α̇≥ 0, by uploading its lower bound
at each endpoint of increment, such that α ∈ [αmin,1] with αmin ← αn+1. The whole numerical
procedure is shown in Algorithm 1.
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Algorithm 1: Semi-staggered algorithm proposed and implemented for the model in
[t0, t f ]

Input: {u0, α0, T0} at t0

Output: {un ,αn ,Tn} at t = t1, . . . , tn , tn+1, . . . , tN = t f

Set initial and boundary conditions;
Initialize t = t0; set final time t f , absolute tolerance errtol and calculate the constant time

increment ∆t = t f −t0

N ;
Initialize the increment counter with n = 0;
while t ≤ t f do

t = tn+1 = t0 + (n +1)∆t ;
Initialize an iteration counter with i = 0; set (u0

n+1,α0
n+1,T 0

n+1) := (un ,αn ,Tn);
repeat

Compute (ui+1
n+1, T i+1

n+1) with (ui
n+1, T i

n+1) by solving eq. (35)
Compute αi+1

n+1 with αi
n+1 from minimization of eq. (37)

i = i +1;
until ∥ui+1

n+1 −ui
n+1∥2 < errtol and ∥T i+1

n+1 −T i
n+1∥2 < errtol and ∥αi+1

n+1 −αi
n+1∥2 < errtol;

update (un ,αn ,Tn) ← (un+1,αn+1,Tn+1);
update the lower bound of phase field αmin =αn+1.

end

4.2. Application to plate cracking under thermal shocks

This section is devoted to the numerical simulation of plate cracking under thermal shock
conditions. For application purpose, we consider, as classically C(α) = g (α)C0 with g (α) the
degradation function that is taken as g (α) = (1 −α)2 and C0 the stiffness tensor of the sound
solid. Having in hand this expression, the dilatation tensor can be computed as β(α) = C(α) : a
with a the constant tensor of linear thermal expansion (thermal strain tensor). The heat capacity
c is also taken constant. As studied in [28] (see also Figure 1), we consider a rectangular plate with
a length L = 25mm and a height H = 9.8mm. The plate is initially at a temperature, denoted by
T0, whose value depends on the specific test conditions. The right edge of the plate is constrained
with zero horizontal displacement to account for the symmetry of the problem, while the other
boundaries remain free of stress. A temperature TB = 300K is applied to these free boundaries to
induce the thermal shock process with a temperature drop, such that ∆T = T0 −TB .

The material parameters are summarized in Table 1 which can also be found in [28].

Figure 1. Geometry and boundary conditions of the quenching test on ceramics [30].
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Table 1. Material parameters for numerical quenching test reported by [28].

Parameter Name Value Unit

E Young’s modulus 340 GPa
ν Poisson coefficient 0,22 –

Gc Critical fracture energy 42.47 J/m2

κ Thermal conductivity 300 W(mK)
c Specific heat capacity 0.775 J/(kgK)
a Thermal expansion coefficient 8 ·10−6 K−1

l0 Internal length of damage 0.092 mm

4.2.1. AT1-type gradient damage model applied to the quenching test

Numerical simulations are carried out by employing the AT1-type damage model. This model
is defined by a linear damage function ω(α) =α, and an elastic energy density given by w1 = 3Gc

8l0
.

To investigate the impact of thermal loading on crack nucleation and propagation, we perform
numerical simulations for two initial temperatures T0 = 550K and 880K, corresponding to ∆T =
250K and ∆T = 580K on the stress free boundaries, respectively.

Figure 2 shows the temperature field T as well as damage field α at times t = 1µs and t = 10µs
for∆T = 250K. It is observed that the temperature field evolves more rapidly near the boundaries
of the plate due to a high thermal gradient. This phenomenon leads to a progressive cooling of
the plate, starting at the thermal shock boundaries and propagating inward. Concerning cracking
(represented by strongly localized damage zone withα= 1), it occurs at the boundaries subjected
to thermal shock and logically propagates inward. Smaller cracks appear between larger ones,
and their propagation is hindered by the presence of the latter.

Figure 3 illustrates the different fields at t = 10µs for another temperature variation ∆T =
580K.

By comparing with Figure 2, the localized damage zone is shown to be more pronounced.
It is also observed that cracks, particularly smaller cracks, become more numerous when the
temperature variation ∆T = 580K. This is due to a more intense thermal effect at this time
t = 10µs in the plate (see Figure 3(a)). Moreover, we show in Figure 4 the contour of the horizontal
displacement, denoted by ux , at t = 10µs respectively for∆T = 250K and 580K. These horizontal
displacement fields show jump at the location of vertical cracks. Note that the amplitude of the
displacement is different for the two thermal shock conditions.

Finally, it is worth noting that at a sufficiently early time (e.g., t = 0.01µs), no crack appears
under the thermal shock load of ∆T = 250K. In contrast, at the same time, cracks are already
nucleated under the higher thermal load ∆T = 580K, which induce displacement discontinuities
on the two sides of them. Readers are referred to Appendix C for more details about this effect.

4.2.2. Comparison to experimental observations

In this section, for comparison purpose, we present numerical predictions by the developed
model to experimental data reported by [30]. To this end, we adopt the AT2 model (dissipation
function ω(α) = α2 and ω1 = Gc

2ℓ0
). This choice is justified only by the fact that the thermoelastic

parameters considered for the simulations are taken from [28], who also used an AT2-type model
to compare their numerical results with the same experimental observations.

The configuration chosen is the same as that previously considered with the AT1 model. The
temperature imposed on the edges is: TB = 300K. The initial temperatures are set to T0 = 550K,
680K and 880K. These values respectively correspond to temperature variations of ∆T = 250K,
380K and 580K on the hole boundary subjected to thermal shock.
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(a) T at t = 1µs (b) T at t = 10µs

(c) α at t = 1µs (d)α at t = 10µs

Figure 2. Contours of temperature T and damage fields α at t = 1µs and 10µs with
∆T = 250K.

(a) T at t = 10µs (b)α at t = 10µs

Figure 3. Contours of temperature T and damage fields α at 10µs with ∆T = 580K.

Figures 5, 6, and 7 illustrate the evolution of the damage pattern α at t = 10µs for different
thermal shock amplitudes, as well as the comparison with the experimental results reported



Banouho Kamagaté, Long Cheng, Radhi Abdelmoula, Emile Danho and Djimédo Kondo 1077

(a) ux at t = 10µs with ∆T = 250K (b) ux at t = 10µs with ∆T = 580K

Figure 4. Contours of horizontal displacement (denoted by ux ) at 10µs with ∆T = 250K
and 580K, respectively.

by [30]. The contours of the predicted damage field show good qualitative agreement with
the experimental observations. This confirms the ability of the proposed model to realistically
reproduce the cracking phenomena induced by transient thermal stress. As previously observed
for the AT1 model, cracks develop nucleate from the boundary exposed to thermal shock and
propagate towards the interior of the plate. A gradual increase in crack density is also observed as
the amplitude of the thermal shock is high, which is in agreement with the experimental results.
During the propagation process, numerous short and parallel cracks appear, among which some
stop while others continue to propagate. Finally, it can be observed from Figure 8 that increasing
∆T results in a larger number of cracks.

(a)α at t = 10µs (b)α at t = 10µs (experimental result)

Figure 5. Predicted damage field α (a) and the corresponding experimental result (b) at
10µs with ∆T = 250K.

5. Conclusion

In this work, we developed an incremental variational approach for gradient damage coupled
with thermoelasticity and heat conduction. This was formulated by relying on the Generalized
Standard Materials framework with a particular account of the non local damage. The proposed
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(a)α at t = 10µs (b)α at t = 10µs (experimental result)

Figure 6. Predicted damage field α (a) and the corresponding experimental result (b) at
10µs with ∆T = 380K.

(a)α at t = 10µs (b)α at t = 10µs (experimental result)

Figure 7. Predicted damage field α (a) and the corresponding experimental result (b) at
10µs with ∆T = 580K.

(a)α at t = 1µs with ∆T = 250K (b)α at t = 1µs with ∆T = 580K

Figure 8. Predicted damage field α for AT2 at 1µs with ∆T = 250K and 580K, respectively.

incremental variational principle consists in the minimization of a four-fields incremental energy
functional, in which the consideration of a kinetic entropy is required for an appropriate descrip-
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tion of the coupling between the heat conduction and the thermoelastic deformations. More
specifically, the irreversible process is quantified via a dissipation potential that is expressed in
a joint form between the damage dissipation and the heat conduction. By simultaneously con-
sidering a suitable dissipation potential together with a Helmholtz free energy we succeed to es-
tablish a total energy functional. The incremental form of the latter is dependent on the dis-
placement, the damage, the absolute temperature fields as well as on the kinetic entropy. It was
then demonstrated that the corresponding weak forms lead to the appropriate Euler–Lagrange
equations and boundary conditions for the concerned coupled system. An incremental varia-
tional principle was hence proposed. With a suitable kinetic entropy approximation, the varia-
tional procedure is reduced to a three-field dependency: displacement, damage, and tempera-
ture fields.

This has led to the variational formulation of a complete thermoelastic-gradient damage
model, whose numerical implementation has been carried out through a semi-staggered algo-
rithm by using the open-source platform FEniCS. For illustration purpose, the model has been
applied to the simulate the fracturing process of a plate under thermal shocks. A comparison
with available experimental data of [30] has shown qualitatively good agreements.

Finally, it should be noted that some extensions/improvements of the proposed variational
approach are possible. We are particularly interested by:

• consideration of a strong coupling between the thermoelasticity and the gradient dam-
age: this could be achieved by introducing an integration factor (proposed by [13]) in the
dissipation potential of gradient damage in order to well incorporate its contribution to
entropy production;

• an extension of the present study to the context thermo-poroelastic couplings for which
a thermodynamic basis is already available (see for instance [46]): note that this type of
coupling has been recently investigated by [47] in the context of phase-fields methods.

Another interesting point could consist in comparing predictions of fracture nucleation under
thermal shocks to that which can be established by considering the coupled criterion proposed
by D. Leguillon and coauthors [48,49] (see several papers in the present issue).

Appendix A. Thermodynamics formulation for the coupling between gradient dam-
age and thermoelasticity

Thermodynamics provides a theoretical and essential framework allowing to rigorously describe
the evolution of a multiphysical system depending on all forms of energy. In this section,
we formulate a suitable thermodynamic description of thermoelasticity with heat conduction
coupled to gradient damage. Given the continuum medium Ω, the global internal energy E , the
global entropy S and the calorific power are classically expressed as:

E =
∫
Ω

e dΩ; S =
∫
Ω

s dΩ; Pcal =
∫
Ω

r dΩ−
∫
∂Ω

q ·n dS (39)

where e is the density of internal energy per unit volume.
Introducing eqs. (39) and (2) into (1) yields the following local energy balance equation and

the Clausius–Duhem inequality for a thermomechanical medium with gradient damage effects:

ė =σ : ε̇+ r −div q +Yαα̇+Y ∇α ·∇α̇,

D =σ : ε̇− ė +T ṡ +Yαα̇+Y ∇α ·∇α̇− ∇T

T
·q ≥ 0.

(40)

Yet, since the entropy s is less “controllable”, it would be more appropriate to adopt its conjugate
variable, i.e. the absolute temperature T , as an external state variable. In this context, it can be
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preferable to consider the Helmholtz free energy per unit volume w , which satisfies the following
partial Legendre transform:

−w = Ts −e. (41)

It is convenient to emphasize here that e is convex with respect to all of its arguments. It follows
by duality that w is a concave function of the temperature field T , while its convexity with respect
to other variables still holds. Substituting eq. (41) into (40) yields eq. (5), namely:

D =σ : ε̇− ẇ − sṪ +Yαα̇+Y ∇α ·∇α̇︸ ︷︷ ︸
Dint

−∇T

T
·q︸ ︷︷ ︸

Dth

≥ 0

where Dint is the intrinsic dissipation and Dth the dissipation of the heat conduction.
Moreover, through a straightforward rearrangement of the expression of Dint, the following

equality can be readily obtained:

ẇ = [
(σ : ε̇+Yαα̇+Y ∇α ·∇α̇)−Dint

]− sṪ . (42)

From a similar perspective as presented in [50] in the case without gradient damage, the above
equation reveals that the variation of w can be divided into two parts: the first one in the
bracket corresponds to the isothermal and non-dissipative mechanical work ; the other, i.e. −sṪ ,
accounts for variations of w when all other parameters hold constant and is obviously associated
with the temperature variation. Hence, one can define w as a function of ε, α, ∇α and T , which
has been given by eq. (3), namely:

w := w(ε,T,α,∇α).

Since the state variables are independent, eq. (42) can be reformulated as:

ẇ = ∂w

∂ε
: ε̇+ ∂w

∂α
α̇+ ∂w

∂∇α ·∇α̇+ ∂w

∂T
Ṫ = [

(σ : ε̇+Yαα̇+Y ∇α ·∇α̇)−Dint
]− sṪ (43)

which allows to identify the following non-dissipative thermodynamic forces (denoted with
superscript “nd”) as the state laws given by eq. (4). Inserting the latter into (5) yields the local
dissipation D described by eq. (6).

Finally, as mentioned in Section 2, the evolution laws are described through a joint dissipa-
tion potential ϕ, i.e. eq. (7). It is worthy to point out that the in the dissipation potential, ϕM is
supposed as a function of the rate of the internal state variables (i.e., α̇ and ∇α̇) and parametri-
cally depends on its current state variables. For ϕT , and in link to the definition of the thermal
dissipation Dth (see eq. (6)), the simplest form could be the Fourier potential, which is defined as
function of an additional variable −∇T /T and parametrically depends on T .

Appendix B. Variational analysis of the incremental total energy functional In

Having in hand eq. (11), along with the integral of the exact differential of ẇ and the substitution
eqs. (3), (7), and (9) into (11), we obtain:

In(un+1,Tn+1, ŝn+1,αn+1) =
∫
Ω

wn+1(un+1,Tn+1,αn+1,∇αn+1)−wn(un ,Tn ,αn ,∇αn)dΩ

+
∫ tn+1

tn

∫
Ω

ŝṪ +ϕ
(
α̇,∇α̇,−∇T

T
;α,∇α

)
dΩdt −

∫ tn+1

tn

∫
∂QΩ

Q log
T

T0
dS dt

−
∫
Ω

F n+1 · (un+1 −un)dΩ−
∫
∂TΩ

T n+1 · (un+1 −un)dS dt . (44)

Taking variation of eq. (44) with respect to T and simultaneously considering (4) and (8) gives the
related weak form:

−
∫
Ω

sn+1δTn+1dΩ+
∫ tn+1

tn

∫
Ω

(
ŝδṪ + q

T
·∇δT

)
dΩdt −

∫ tn+1

tn

∫
∂QΩ

Q
δT

T
dS dt = 0 (45)
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whose integration by parts with respect to time and space yields:∫
Ω

(−sn+1 + ŝn+1)δTn+1dΩ−
∫ tn+1

tn

∫
Ω

[
˙̂s +div

q

T

]
δT dΩdt

+
∫ tn+1

tn

∫
∂QΩ

(q ·n −Q)
δT

T
dS dt = 0. (46)

Ensuring stationarity yields at t = tn+1:

ŝn+1 = sn+1; ∀ x ∈Ω (47)

and in the time interval [tn , tn+1]

˙̂s +div
q

T
= 0; ∀ x ∈Ω, (48)

q ·n =Q; ∀ x ∈ ∂QΩ. (49)

It follows from eq. (47) that the kinetic entropy ŝn+1 is optimized at time tn+1 as equal to the
equilibrium entropy sn+1, which indicates that the material point reaches the local thermody-
namic equilibrium at tn+1. Also, eq. (48) reveals that the evolution of kinetic entropy satisfies the
heat equation in [tn , tn+1] with the corresponding Neumann boundary condition on ∂QΩ given
by (49).

Similarly, by taking variations of eq. (44) with respect to the other variables and considering (4)
and (8), the corresponding weak forms for u, α and ŝ can be derived as follows:

−
∫
Ω

[
divσn+1 +F n+1

] ·δun+1 dΩ+
∫
∂TΩ

(
σn+1 ·n −T n+1

) ·δun+1 dS = 0, (50)∫
Ω

[
Yα|n+1 −divY ∇α|n+1

]
δαn+1 dΩ+

∫
∂Ω

(
Y ∇α|n+1 ·n

)
δαn+1 dS

+
∫ tn+1

tn

∫
Ω

{[
∂ϕ

∂α
− d

dt

(
∂ϕ

∂α̇

)]
−div

[
∂ϕ

∂∇α − d

dt

(
∂ϕ

∂∇α̇
)]}

δαdΩdt

+
∫ tn+1

tn

∫
∂Ω

{[
∂ϕ

∂∇α − d

dt

(
∂ϕ

∂∇α̇
)]

·n
}
δαdS dt = 0,

(51)

∫ tn+1

tn

∫
Ω

Ṫ δŝ dΩdt = 0, (52)

where · |n+1 symbolizes the estimate of considered quantity at time tn+1.

Appendix C. Damage and displacement fields at t = 0.01µs and 0.1µs with∆T = 250K

In this section, we display the damage field (i.e. α) as well as the horizontal and vertical displace-
ments (i.e. ux and uy ) fields respectively at t = 0.01µs and 0.1µs under the thermal shock loads
∆T = 250K. The primary objective is to show the transition from damage processes at early stage
to occurence cracks. It can be observed in Figure 9(a) that at t = 0.01µs, damage starts on the
thermal loading boundaries without any strongly localized field (i.e. smeared cracks) such that
α< 1. While at t = 0.1µs (see Figure 9(b)), the damage has already been localized leading to the
propagation of the diffused cracks. In addition, it is very interesting to note that displacement
jumps are observed (in Figures 9(c)–(f)) at t = 0.1µs for horizontal (resp. vertical) displacements
on the top and bottom (resp. left) boundaries, which somehow represent the opening of these
smeared cracks during the damage evolution.
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(a) α at t = 0.01µs (b)α at t = 0.1µs

(c) ux at t = 0.01µs (d) ux at t = 0.1µs

(e) uy at t = 0.01µs (f ) uy at t = 01µs

Figure 9. Contours of damage α, horizontal displacement ux and vertical displacement uy

and at t = 0.011µs and 0.1µs with ∆T = 250K.
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telles que les revêtements céramiques et se forment selon des schémas périodiques. Dans ce travail, une cel-
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1. Introduction

In the field of engineering, there are many applications in which an adhesive bonding is used
to join two components. There is great interest in understanding the mechanics behind such
adhesive joints in order to design them better and find parameters to improve joint strength. In
civil engineering, for example, concrete structures to which a patch of finite size is bonded are
analyzed. If concrete structures are damaged due to age or environmental impact, patches can
be glued onto the concrete surface to repair or generally reinforce the structure. These patches
typically have a high strength and are made of carbon fiber reinforced plastic (CFRP), for example.
Frhaan et al. give an overview of the reinforcement of concrete structures with CFRP patches
in [1]. Various bonding methods of concrete beam structures are examined by Martinelli et al.
in [2, 3]. On the one hand, the CFRP reinforcement bars are bonded directly to the concrete
surface and on the other hand, grooves are inserted into the concrete before the CFRP bars are
applied, providing a form of anchoring. The detachment behavior of these reinforcement patches
is investigated experimentally and numerically. Steel reinforcement patches are also conceivable.
Awassa et al. tested shafts reinforced with steel rods from the underground core network in a 4-
point bending test in [4]. The typical mode of failure that appears in such a configuration of patch
and substrate is the delamination of the patch. Due to the geometry and the different material
properties, very high stress concentrations occur locally in the area of the free edges. Calculations
of these stresses are essential in order to be able to design such configurations more precisely with
regard to their safety.

In the field of structural mechanics, many models for the analysis of bonded joints are
presented. A good overview and comparison is given by da Silva et al. in [5, 6]. The modeling
developed in this paper is similar to that of Methfessel and Becker, which is described in [7, 8].
There, a closed-form analytical model is presented, which is based on the generalized model of
Bigwood and Crocombe [9] and has been extended. In view of a simple and pragmatic model of
Methfessel and Becker ([7, 8]) only the overlap area is considered, in which the internal forces and
moments and displacements are applied at the edges, depending on the load case. First-order
displacement approaches are used for modeling the adherends. Similar to the work of Ojalvo
and Eidinoff in [10], the displacements in the adhesive layer are composed of the displacements
of the adherends, but, unlike in [10], are extended by higher-order terms. In the current work a
higher order displacement approach using the singularity exponent of the system is considered.

The second part of this work focuses on the formation of transverse cracks in thin layers.Thin
layers of a solid, brittle material are often applied to protect a component surface. For example,
brittle coatings made of a ceramic material on a flexible polymer are used for electronic devices.
Another example are automobile catalytic converters, to which γ-alumina layers are applied
as catalytic support. A typical failure mode that occurs in such coatings is the formation of
transverse cracks that appear in crack patterns. In some cases, such cracks in thickness direction
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lead to a loss of stiffness or even delamination of the layer. All in all, this leads to a loss of
functionality of the coating. In [11], Leguillon et al. modeled a γ-alumina layer on a rigid
substrate and analyzed the formation of transverse cracks using a coupled stress and energy
criterion [12]. A coupled stress and energy criterion is also used in [13–15] by Leguillon et al.
to predict crack initiation in thickness direction. There are some more publications that are
studying the formation of transversal cracks like [16], where Bahr et al. investigated the crack
growth or scaling behavior during shrinkage processes, such as cooling or drying, using a fracture
mechanics bifurcation analysis with two plausible scaling assumptions. Another investigation
that is worth mentioning is [17]. There, Jenkins considered a material layer that solidifies starting
from a liquid. The solidification process causes the layer to shrink until cracks form in the layer
due to excessive internal stresses. The distance between the cracks is then determined using
energy minimization. In [18], Shao et al. carried out experimental tests with ceramic plates and
ceramic slabs in which crack patterns form under thermal shock (quenching).

2. Generic model

2.1. Mechanical situation

Before focusing on a special material and application, this section will begin by considering a
generic model where a thin layer of thickness t is perfectly attached to a substrate and subjected
to an external thermal loading ∆T . To keep the model simple there are some assumptions made.
First, linear elastic, isotropic material behavior of the layer with Young’s modulus E , Poisson’s
ratio ν and thermal expansion coefficient αth is supposed. Second, the substrate is idealized
as a rigid body. The model is shown in Figure 1. Due to the fact that geometry and loading
do not change in y-direction plane-strain behavior is assumed. Thus the displacement uy = v
in y-direction vanishes and it is possible to reduce the system to a two-dimensional model
with length l . Later, two applications are analyzed where specific parameters are chosen (see
Section 3).

layer

substrate

x

z

Figure 1. Mechanical model of the thin layer on a rigid substrate

2.2. Singularity exponent

Before the analytical model is derived, a pre-study is performed. Looking more closely at the
situation at hand, it can be seen that stress singularities occur at the free edges at the layer
substrate interface. In order to understand these singularities more precisely a pre-study is
carried out using the method of complex potentials. This method in essence was formulated
by Kolosow [19], and was later expanded and widely described by Muschelišvili [20]. With this
method of complex potentials it is possible to determine the singularity exponent. The basic idea
is to represent the real field quantities by means of two complex potentials Φ and Ψ depending
on the complex variable ζ = x + i z. The decisive benefit then is the automatic fulfillment of the
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equilibrium conditions, kinematics and Hooke’s law when the stresses and displacements are
represented in the following manner (Kolosow’s equations):

σϕ+ iτrϕ =Φ′(ζ)+Φ′(ζ)+ζΦ′′(ζ)+ ζ

ζ
Ψ′(ζ) , (1)

ur + i urϕ = e−iϕ

2G

(
κΦ(ζ)−ζΦ′(ζ)−Ψ(ζ)

)
, with: κ= 3−4ν (plane strain) . (2)

The first line contains the relation for the stresses σϕ and τrϕ, and the second line contains the
relation for the displacements. ζ is the complex coordinate ζ = r eiϕ (see also Figure 1) and Φ(ζ)
and Ψ(ζ) are the complex potentials for which in the present case the following representations
are chosen.

Φ(ζ) = (a1 + i a2)ζλ ; Ψ(ζ) = (b1 + i b2)ζλ (3)

a1, a2, b1 and b2 are real constants and λ is the singularity exponent which is to be determined.
When inserting the chosen representations into the equations (1) and (2) from the given bound-
ary conditions an algebraic equation system is obtained. Namely for the free edge on the left
(ϕ= π/2 no traction applied) the stresses must be zero and for the bottom edge (ϕ= 0 rigid sub-
strate) the displacements must be zero. Evaluating these boundary conditions and separating
real and imaginary parts leads to a homogeneous system of equations. For a non-trivial solution
of this system the determinant of the coefficient matrix has to be equal zero. This results in the
characteristic polynomial:

−4λ2 +2κcos(πλ)+κ+1 = 0 . (4)

From this characteristic polynomial the singularity exponent λ can be obtained. For the special
case of a γ-alumina layer with a Poisson’s ratio of ν = 0.2 for instance a singularity exponent of
λ = 0.7811 can be calculated. This means that the displacements locally (for very small radii r )
behave like r 0.7811 and the strains and stresses behave like r−0.2789. So there are relatively strong
stress singularities, which should be taken into account in some way in further investigations.

2.3. Approximate displacement approach

For the given mechanical situation now an approximate displacement approach is suggested.
Goal is to get an approximate closed-form analytical description of the deformation, strain and
stress field. Therefore the displacements u in horizontal and w in vertical direction within the
layer are described with a second-order approach extended with an additional term. In this
additional term the singularity exponent of the free edges is taken into account. This additional
term is used to describe the displacements and stresses more precisely, especially at the ends
of the layer, as will be shown later in a comparison of the interlaminar stresses calculated using
simpler approaches. With this motivation the horizontal and vertical displacements in the layer
are represented as follows

u(x, z) = u1(x)z +u2(x)z2 +u3(x)zλ , (5)

w(x, z) = w1(x)z +w2(x)z2 +w3(x)zλ . (6)

Herein u1(x), u2(x), u3(x), w1(x), w2(x) and w3(x) are unknown functions of only the coordi-
nate x and have to be determined in such a way that representations (5) and (6) are a good ap-
proximation of the real deformations. Next step is to determine the unknown displacement func-
tions. For a simpler description, the arguments x and z of the displacement functions are omit-
ted in the following. To determine the unknown displacement functions dependent on x the
minimum total energy principle is used

Π=Πint +Πext = min , (7)
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which means that the total energy, consisting of the internal potential Πint and the external
potential Πext, is required to become minimal. As we only consider thermal and no mechanical
loads the external potential is equal zero and the potential energy only consists of the internal
energy (which means the total thermally induced elastic strain energy):

Π= 1

2

∫
V
σ : ε dV

= 1

2

∫ l

0

∫ h

0

[
σx (εx −αth∆T )+σy (−αth∆T )+σz (εz −αth∆T )+τxzγxz

]
dzdx .

(8)

This minimum total energy principle postulates that a system is in equilibrium when the poten-
tial energyΠ becomes minimal.

δΠ= 0 . (9)

Using the kinematic relations

εx = ∂u

∂x
= u1

′z +u2
′z2 +u3

′zλ , (10)

εz = ∂w

∂z
= w1 +2w2z +λw3zλ−1 , (11)

γxz = ∂u

∂z
+ ∂w

∂x
= u1 +2u2z +λu3zλ−1 +w1

′z +w2
′z2 +w3

′zλ , (12)

εy = γx y = γy z = 0 , (13)

Hooke’s law 
σx

σy

σz

τxz

= E

2(1+ν)(1−2ν)


1−ν ν ν 0
ν 1−ν ν 0
ν ν 1−ν 0
0 0 0 1−2ν

2



εx −αth∆T

−αth∆T
εz −αth∆T

γxz

 , (14)

and applying the variation for all displacement variables u1, u2, u3, w1, w2, w3, we get a non-
homogeneous differential equation system of second order (see Appendix A). Next step is solving
this differential equation system. Therefore we have to reduce it to a system of first order of the
following kind:

Aφ+Bφ̇ = b . (15)

where the vector φ contains all displacement functions and their derivatives which are all
dependent on x.

φ= (
u1,u2,u3, w1, w2, w3,u′

1,u′
2,u′

3, w ′
1, w ′

2, w ′
3

)T (16)

As the system is non-homogeneous, the general solution consists of a homogeneous partφh and
a particular partφp.

φ=φh +φp . (17)

While the particular solution can be obtained using the method of undetermined coefficients,

φp = A−1b , (18)

the homogeneous solution is derived from solving an eigenvalue problem. For the homogeneous
solution the equation system is transformed to this form,

φ̇h =−B−1 Aφh , (19)

where −B−1 A is the new system matrix. By inserting the general exponential representation veµx

into the system of differential equations an eigenvalue system is obtained. Consequently, the
12 eigenvalues µ1...12 can be determined by setting the coefficient determinant equal to zero.
Thus eventually with the corresponding eigenvectors v 1...12 the general solution can be written
as follows

φ=C1eµ1x v 1 +C2eµ2x v 2 +·· ·+C12eµ12x v 12 + A−1b . (20)
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C1...12 describe the 12 still unknown constants, which in the next step are determined by using
the 12 boundary conditions. The following six equations result from the variation approach and
are evaluated once at the left edge (x = 0) and once at the right edge (x = l ) and in total form a
linear system of equations with 12 equations for the 12 unknown constants C1...12.

3(1−ν)

(
2

3
h2u′

1 +
1

2
h3u′

2 +
2

λ+2
hλ+1u3′

)
+3hνw1 +4h2νw2 + 6λ

λ+1
hλνw3

= 3(1+ν)∆Tαthh (21)

3(1−ν)

(
1

2
h2u′

1 +
2

5
h3u′

2 +
2

λ+3
hλ+1u′

3

)
+2hνw1 +3h2νw2 + 6λ

λ+2
hλνw3

= 2(1+ν)∆Tαthh (22)

(1−ν)

(
2h2

λ+2
u′

1 +
2h3

λ+3
u′

2 +
2hλ+1

2λ+1
u′

3

)
+ 2hν

λ+1
w1 + 4h2ν

λ+2
w2 +hλνw3

= 2

λ+1
(1+ν)∆Tαthh (23)

hu1 + 4

3
h2u2 + 2λ

λ+1
hλu3 + 2

3
h2w ′

1 +
1

2
h3w ′

2 +
2

λ+2
hλ+1w ′

3 = 0 (24)

2

3
hu1 +h2u2 + 2λ

λ+2
hλu3 + 1

2
h2w ′

1 +
2

5
h3w ′

2 +
2

λ+3
hλ+1w ′

3 = 0 (25)

2

λ+1
hu1 + 4

λ+2
h2u2 +hλu3 + 2

λ+2
h2w ′

1 +
2

λ+3
h3w ′

2 +
2

2λ+1
hλ+1w ′

3 = 0 (26)

Solving this system of equations provides the unknown constants, which can be inserted into
the displacement functions. The displacement field is thus determined and the stresses are also
available via the kinematics and the constitutive law.

2.4. Finite Element Model

To compare and validate the analytical solution, a numerical model is created using the finite
element method in Simulia Abaqus. The model is discretized in a way that at the lower left region,
where the stress singularity is expected, the mesh is the finest (see Figure 2). In this area, square
elements with an edge length of 2 ∗ 10−4 mm are chosen, for comparison the layer thickness
is 0.1 mm. Starting from this area, the mesh becomes coarser towards the other edges. The model
uses quadratic basis functions and has about 410,000 degrees of freedom.

Figure 2. Finite Element Model
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Table 1. Model parameters of the γ-alumina layer on the substrate

Parameter Value Unit
Layer thickness t 0.1 mm
Length l 5.0 mm
Elastic modulus E 250,000 MPa
Poisson’s ration ν 0.2 -
Thermal expansion coefficient αth 6∗10−6 K−1

Thermal loading ∆T −200 K
Singularity exponent λ 0.7811 −

3. Applications

Based on the model for a single layer of material on a rigid substrate under a temperature load,
two cases are considered in the following. Firstly, the interlaminar stresses along the interface
between the layer and the substrate are analyzed. These stresses are of particular interest as
they may lead to the formation of interlaminar cracks and consequently delamination of the
layer. In the second part, the development of transverse cracks is considered. In both cases, a
thin γ-alumina layer with Young’s modulus E = 250,000 MPa, Poisson’s ratio ν= 0.2 and thermal
expansion coefficient αth = 6∗ 10−6 K−1 is considered. The layer is modeled with a thickness
of t = 0.1 mm and length l = 5 mm. It is perfectly bonded to the rigid base and subjected to an
external thermal loading of ∆T =−200 K. The model is shown in Figure 1 and all parameters are
summarized in Table 1.

3.1. Analysis of interlaminar stresses

Figure 3. Interlaminar stresses σz and τxz along the interface between layer and substrate

The interlaminar stresses along the interface between layer and substrate are now evaluated.
Figure 3 on the right side shows the interlaminar peel stress σz and the shear stress τxz up to
the center of the model, and on the left side the region of the edge where the stress singularity
is expected in detail. Now the stress distribution resulting from the analytical model when
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(a) (b)

Figure 4. (a): Single layer with infinite length without cracks. (b): Model of the formation
of transversal cracks in pattern

the singularity exponent is considered can be compared with the numerical model and the
analytical model that uses only a second order polynomial approach for the displacements. It
can be seen that the expected stress singularity at the free edge is approximated better with the
new displacement approach than with the second order approach. Further it shows a better
agreement to the calculation with the FEM. Especially the interlaminar peel stress σz shows an
almost perfect agreement between the new displacement approach and the FEM.

3.2. Formation of transversal cracks

Beside the delamination of the layer there is another failure mode that can be mentioned. This is
the formation of transverse cracks in thin, brittle layers like the γ-alumina layer. For this purpose,
a thin γ-alumina layer is first considered as infinitely extended in the longitudinal direction
and is loaded with a temperature load ∆T (see Figure 4(a)). Now, failure is considered to be
the formation of two cracks in the thickness direction, which have a characteristic distance lc

between them (see Figure 4(b)). If just the section of layer between two cracks with the distance lc

is considered, the generic initial situation is given again (see Figure 1).
Namely, a layer with linear elastic properties on a rigid substrate with length lc and thickness t .

Consequently, the displacement field is determined using the previously described approach and
the stress field within the layer can be derived using kinematic relations and the constitutive law.
The failure prediction can be performed with Finite Fracture Mechanics using a coupled stress
and energy criterion. Here, a quadratic stress criterion

f (σx ,σc) =
(
σx

σc

)2

≥ 1 , (27)

is used, where the stress σx is used at the center of the infinitely extended layer. The present
structural situation is modeled in plane elasticity (plane strain), so the stressσx can be expressed
as follows:

σx = E

(1−ν)2αth∆T . (28)

According to this term, the stress and consequently the stress criterion depend only on the
temperature change∆T . Consequently, the evaluation of the stress criterion results in a constant
failure temperature change, which is independent of the layer thickness.

For the energy criterion the following linear criterion is used:

g (G I,Gc) = G I

Gc
≥ 1 with: G I = 1

t

∫ t

0
σx ux dz . (29)

Herein the quantity G I is the so-called incremental energy release rate and the quantity Gc is the
fracture toughness of the given material. The coupled criterion postulates the formation of a
crack through the total layer thickness t if both criteria for this length are fulfilled.
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The coupled criterion is now evaluated, so that the critical temperature change∆Tc can be cal-
culated for different layer thicknesses. This situation has also been investigated by Leguillon [11],
so that a comparison of the results can be drawn (see Figure 5 (left)).

Figure 5. Critical temperature reduction (left) and fragment-length (right) for different
layer-thicknesses

For layer thicknesses below 0.1 mm, the energy criterion is decisive, that means the critical
cooling increases with thinner layer thickness. For layer thicknesses larger than 0.1 mm, the
stress criterion is governing failure and cracks develop at a cooling of 179 K. For layer thicknesses
of exactly 0.1 mm, both criteria return a critical load of −179 K. When comparing the results to
the investigations of Leguillon, extremely good agreements can be seen. Both curves match each
other almost perfectly, even the transition to a constant failure temperature occurs with both at
a layer thickness of 0.1 mm.

In the following, the layer is loaded with temperature loads that are k times larger than the
critical temperature load ∆Tc so that the resulting fragment length lc, which is the characteristic
distance between two cracks is determined. These fragment lengths are plotted in Figure 5 (right)
for different layer thicknesses. A comparison of the curves for different temperature loads shows
that smaller fragment lengths occur with higher temperature loads (i.e. with a higher factor k).
Qualitatively, the curves are the same for different temperature loads: For layer thicknesses up
to 0.1 mm, the fragment length increases with increasing layer thickness and at layer thicknesses
larger than 0.1 mm, the fragment length is decreasing with increasing layer thickness.

4. Conclusion

In this work, a single layer with elastic material behavior on a rigid substrate has been modeled
under temperature loading. An analytical model has been derived to describe the displacement
and stress field in an approximate closed-form. Thereby the singularity exponent is taken
into account in the displacement approach. One advantage over calculations with the FEM is
that parameter studies can be carried out much more quickly and easily. In order to evaluate
the accuracy of the closed-form analytical model, a comparison of the interlaminar stresses
calculated with different displacement approaches and FEM has been carried out. It has been
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shown that the results are in better agreement with the approach that takes the singularity
exponent into account than with a simple second-order approach. Another important point that
should be mentioned is that very high stresses occur at the free edge. These high interlaminar
stresses are a cause for the development of interlaminar cracks that lead to a delamination of
the layer. An analysis of the development of such interlaminar cracks is a necessary future work
and could be performed for example by Finite Fracture Mechanics. The second application
investigated in this work is the prediction of transverse cracks, i.e. cracks in the thickness
direction that form in a pattern. In this analysis, the coupled criterion has been used to predict
the failure temperature change and the fragment length. Although a very simple model is used,
the results show good agreement with Leguillon’s findings.
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Appendix A. Differential equation system
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La revue couvre deux longueurs caractéristiques principales : la longueur de fissure d’initiation et la
longueur d’Irwin, en examinant leurs interactions avec les longueurs utilisées dans d’autres approches de
rupture, telles que les méthodes de champ de phase, les modèles de zone cohésive et les simulations à
l’échelle atomique. Les résultats montrent que la longueur d’Irwin apparaît systématiquement dans les
modèles combinant des critères de contrainte et énergétique, soulignant son rôle fondamental dans la
prédiction de la rupture.

L’étude identifie les limites des modèles actuels, en particulier dans les cas impliquant des singularités
fortes ou lorsque la condition énergétique domine, et propose des améliorations en incorporant des descrip-
tions de zone de processus ou des techniques de régularisation issues des modèles de champ de phase. Ces
améliorations pourraient mieux capturer les comportements complexes à des plus petites échelles.

L’article conclut en prônant une approche combinée intégrant divers modèles de rupture, ce qui pourrait
offrir une compréhension plus complète de l’initiation et de la propagation des fissures à différentes échelles.
Cette stratégie intégrative permettrait des prédictions plus précises et une compréhension approfondie des
mécanismes de la rupture.

Keywords. Finite fracture mechanics, Coupled criterion, Characteristic length, Crack initiation, Irwin’s
length.

Mots-clés. Mécanique de la rupture finie, Critère couplé, Longueur caractéristique, Initiation de fissure,
Longueur d’Irwin.
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1. Introduction

Linear Elastic Fracture Mechanics (LEFM), introduced by Griffith [1, 2], addresses the limitations
of traditional mechanics in predicting failure in structures containing sharp defects. Stress-
based methods suffice for smooth, flaw-free materials, but they fail around cracks, where stresses
theoretically peak to infinity. Griffith’s energy-based approach relies on the energy release rate
to predict crack growth, thus avoiding the consideration of stress singularities. However, LEFM
assumes a defect large enough to disregard smaller-scale phenomena near the crack tip, leading
to the concept of a non-linear transition length scale, which defines the boundary between
the linear elastic region and more complex fracture processes like plasticity or other dissipative
mechanisms.

Despite its effectiveness for large cracks, LEFM cannot fully capture behaviors at this smaller
scale. Additionally, most structures are not designed with pre-existing macroscopic cracks,
making Griffith’s theory impractical in such cases, where it would predict an unrealistic infinite
load-bearing capacity. As a result, engineering standards continue to predominantly rely on
stress-based criteria for materials where significant defects are not anticipated.

The first empirical observations of the size effect date back to Leonardo da Vinci [3, 4], who
noticed that shorter cable segments were stronger than longer ones, though he did not provide a
practical explanation for this phenomenon. It was Galileo Galilei who later formulated the correct
scaling laws for materials under tension and bending [5], emphasizing how size effects limit the
structural integrity of large natural and man-made structures. Centuries later, as iron and steel
became more widely used, concerns about brittle fracture grew, prompting early material failure
testing [6]. Around the same time, Mariotte [7], through extensive experimentation, suggested
that the size effect observed by da Vinci was likely due to internal faults, concluding that larger
structural elements have a higher probability of containing weak spots, thus reducing their
overall strength.

Alongside the development of fracture mechanics, researchers began exploring statistical
theories to explain the power-law scaling observed in experimental data. Peirce [8] introduced
the weakest-link model for chains, building on extreme value statistics by Tippett [9]. This line
of work reached a milestone with Weibull [10, 11], who developed the Weibull distribution to
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model failure probability based on low-strength extremes, establishing a power-law relationship
between material strength and failure probability, especially in materials with microscopic flaws
or microcracks [12]. This statistical approach has since been applied across various materials
and fracture phenomena [13–16]. While widely accepted, in this paper, we focus on a physically-
based deterministic approach, recognizing that a combined statistical-deterministic framework
can provide a more comprehensive view of material failure across scales.

The non-linear scaling law, first documented by Irwin in the 1950s [17], was initially over-
looked or considered a statistical anomaly. Motivated by the observation that large concrete
structures (such as dams and bridges) behave differently from small laboratory specimens,
Bažant conducted a series of experiments [18]. He eventually published his theoretical explana-
tion in 1986, describing a non-linear scaling law in fracture mechanics [19]. Bažant emphasized
the need for non-linear analysis to account for the significant size effects observed in various en-
gineering structures. This phenomenon has since become critical for the design of large-scale
composite structures such as ship hulls or structural fuselages, as well as in fields like geotechni-
cal and arctic engineering. For example, evaluating fault slip stability in the Earth’s crust involves
scale transitions that span multiple orders of magnitude.

Bažant [20] further showed that fracture resistance in many materials deviates from the power-
law predictions of linear elastic fracture mechanics, especially when the initial flaw size is smaller
than a critical value. In such cases, stress-based criteria should be applied. The existence of
this critical length scale has since been demonstrated in various materials, including ceramics
[21–24], polymers [25, 26], silica glass [27], silicon carbide [28], fiber composite laminates [29],
wood [30], concrete, rock [31], spider silk [32] and even sea ice [33]. However, experimentally
demonstrate this non-linear scale transition is challenging, as it requires testing specimens across
multiple size ranges.

The transition length scale is often compared to the size of the fracture process zone (FPZ),
a region around a crack tip where complex, nonlinear deformation occurs. The FPZ, character-
ized by a transition from elastic to inelastic behavior, plays a critical role in fracture mechan-
ics. In the 1950s, Irwin [34] and Orowan [35] used X-ray measurements to demonstrate that
even in brittle materials, there is evidence of regularization along crack surfaces. They indepen-
dently concluded that the true critical energy release rate should be several orders of magnitude
larger than Griffith’s original proposal. Later, Barenblatt [36] and Dugdale [37] theorized that ma-
terial near the crack yields, and this local cohesive traction limits the otherwise infinite stress
peak.

Since then, numerous experimental techniques [38–47] have been developed to measure the
size and shape [48] of the FPZ in brittle materials. These studies commonly assume that the
FPZ is a damaged region around the crack tip linked to irreversible microstructural changes.
The FPZ has been observed in materials such as concrete [49], granite [38], natural faults
[50], wood [51], model materials [52], and silica glass [53]. A comprehensive review of the
FPZ can be found in the thesis of Brooks [54]. Today, digital image correlation [55] is the
primary technique used to quantify the FPZ, although other methods exist for transparent
materials like polycarbonate [56] or for X-ray measurement in concrete [45]. Döll and Könczöl
[57, 58] used optical interferometry to measure crack tip opening displacement in polymethyl
methacrylate, polystyrene, and polycarbonate. Their findings indicate that, for these materials,
the experimentally measured opening profile aligns well with predictions from an appropriate
Dugdale model.

While the non-linear scaling law is widely accepted, its underlying cause remains a topic of
active debate. This is particularly important given the rise of advanced manufacturing techniques
that allow the creation of architected materials with structural elements smaller than the critical
length scale of bulk materials, resulting in exceptionally strong overall responses [59].
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In this review paper, we will explore recent methods and theories that effectively account for
this non-linear length scale. This length scale can either be explicitly incorporated as a material
parameter or arise through the coupling of different criteria.

Even if well-described by various fracture mechanics models through numerical experiments,
it is not always straightforward to explain this transition between strength-based and energy-
based descriptions of fracture. This transition is clearly understood using the Coupled Criterion
(CC) concept [60], that was proposed to rationalize transverse cracking experiments in laminated
composites by Parvizi, Garrett, and Bailey [61]. Their results showed two distinct regimes: for
sufficiently thick plies, the strain at crack initiation remained constant, whereas it increased
with decreasing ply thickness for thin plies. A criterion based solely on critical stress or strain—
first introduced by Lamé and Clapeyron [62]—could only account for the failure of thick plies.
Extending this approach to a non-local stress evaluation, either averaged over a finite volume [63]
or at a specific distance [64–66]—known as the Theory of Critical Distances [67]—did not explain
the increase in strain at failure for thin plies. Since Griffith’s energy approach cannot predict crack
initiation, an energy-based criterion applied to a finite crack surface increment was introduced,
representing crack initiation across the full ply thickness. This idea was already suggested in
Aveston and Kelly’s model [68] and was later formalized as Finite Fracture Mechanics (FFM) by
Hashin [69] and then by Nairn [70], successfully explaining the size effect in thin ply fracture.
However, it underestimated the load level for crack initiation in thick plies. Dominique Leguillon
[60] eventually proposed combining a non-local stress criterion with an energy criterion applied
to a finite crack surface increment, asserting that both conditions must be met simultaneously
for crack initiation. This approach effectively explains the transition from tensile strength-driven
failure in thick plies to energy release rate-driven failure in thin plies.

The CC highlights that the nonlinear fracture resistance scaling is driven by the ratio between
the initial flaw size and the Irwin’s length. It results from the initiation length emerging from
the coupling between the strength-based and energy-based criteria. Our primary focus will thus
be on the CC [60], one of the earliest approaches to offer a mechanics-based explanation for
the emergence of a process zone. We will then relate macroscopic theories, such as the theory
of critical distances, the Phase-Field method, and the Cohesive Zone Model, to the fundamental
concept of the Coupled Criterion. We also demonstrate how approaches that model atomic-scale
behavior can bridge the gap between the continuum scale and the actual material properties.

The paper is structured as follows. First, in Section 2 the basics of the Coupled Criterion
is presented with particular attention to the emerging length scale. Then in Section 3, we
summarize the literature comparing the results of the Coupled Criterion with other theories and
numerical methods with allow us to have a length scale explicitly or by emergence. In Section 4,
we compare and contrast the results obtained with the methods, highlighting their similarities
and differences. Finally, in Section 5, we draw conclusions based on our findings.

2. The characteristic lengths in the Coupled Criterion

The Coupled Criterion (CC) [60] is an approach in fracture mechanics that enables us to study
fracture analysis in a wide range of applications [71, 72]. The underlying concept of the CC is
that crack initiation occurs when two conditions are simultaneously met. The first condition
arises from an energy equilibrium between the states before and after crack initiation over a
specified surface S. This allows for the definition of the incremental energy release rate (IERR),
given linear elastic material behavior and negligible inertial effects, as Ginc = (δWext −δWel)/S,
where Wext represents the work done by external forces, Wel the elastic strain energy, and S the
crack surface area. The IERR approaches the energy release rate (ERR) G as the crack surface
area approaches zero. The CC model is thus consistent with Linear Elastic Fracture Mechanics
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Figure 1. (a) Three-point bending of a specimen with a V-notch. (b) Characteristic expo-
nent of the singularity λ corresponding to the opening mode as a function of β, the angle
of the V-notch.

(LEFM) for sufficiently long cracks (under LEFM assumptions), while also enabling the study of
crack initiation, which LEFM cannot handle as G tends toward zero when the crack surface tends
toward zero. The energy condition for the CC is expressed as:

Ginc ÊGc, (1)

where Gc is the material’s critical ERR.
The second condition of the CC states that the stress along the prospective crack path must

be sufficiently large. This introduces a non-local stress criterion, which can be expressed as
a function of the stress tensor components and the material strength surface. For a material
adhering to a Rankine’s strength surface [73], it is given by:

σnn(x) Êσc∀x in Γ, (2)

whereσnn is the stress normal to the crack path Γ before initiation, andσc is the material’s tensile
strength.

Applying the CC involves combining both the stress and energy conditions to determine the
minimum load magnitude at which both criteria are simultaneously met for at least one given
crack surface.

An emblematic illustration of the CC is the initiation of a crack at the tip of a V-notch, where
the free surfaces form an angle β, as seen in a notched specimen under bending, illustrated in
Figure 1.

The case β = 0° corresponds to an initial crack and reverts to LEFM (i.e., crack propagation
based solely on energy) provided the crack is sufficiently long [74]. The caseβ= 180° corresponds
to a straight edge with no notch; here, the stress is homogeneous, allowing a criterion based on
material tensile strength if the specimen is large enough [60, 75]. An asymptotic approach yields
the stress normal to the crack path before initiation σnn and the IERR for a crack of length ℓ at
the notch tip [76]: σnn(r,θ = 0) = Kℓλ−1,

Ginc(ℓ) = K 2

E
ℓ2λ−1 Aβ,

(3)

where r and θ are the polar coordinates, E is Young’s modulus, and λ is an exponent character-
izing the singularity, varying between 0.5 for a crack (β = 0°) and 1 for a straight edge (β = 180°).
In-between cases are presented in Figure 1b. The dimensionless function Aβ depends on the
problem’s geometry (notably the notch angle β) and the local loading at the singular point, repre-
sented by the generalized stress intensity factor (GSIF) K . The GSIF drives the magnitude of the
local stress field variation near the V-notch tip. It is a characteristic parameter that can be used to
study the nucleation of a crack, i.e., crack initiation occurs when a critical GSIF is reached. It is
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calculated based on a path-independent contour integral [76, 77]. Under a linear elastic frame-
work and assuming small deformations, the GSIF is proportional to the applied load F , shown in
Figure 1a.

If 0 < β < 180°, the stress tends to infinity as r approaches 0, making a stress-based criterion
alone ineffective, as it predicts crack initiation under an infinitesimal load. Conversely, the IERR
approaches 0 as the crack length approaches 0, meaning an energy-based criterion alone does
not predict crack initiation either. This indicates a missing element in crack initiation studies:
a length scale. One approach is to introduce this length as an additional input parameter to the
stress criterion (yielding the Theory of Critical Distances [67]) or in conjunction with the energy
criterion, resulting in an incremental energy approach within Finite Fracture Mechanics [69, 70].

Another possibility is to use the CC, i.e., to combine the stress criterion and the energy
criterion, which are already valid for the two extreme cases (β= 0° andβ= 180°). We then look for
the minimum loading level and the corresponding crack length for which both criteria are met.
The combination of the two criteria introduces a characteristic length into the problem, which is
not an input parameter but rather the result of this coupling. We then obtain the initiation crack
length ℓi and the GSIF Ki at initiation [60, 78]:

ℓi = EGc

Aβσ
2
c
= ℓmat

Aβ
,

Ki =
(

EGc

Aβ

)1−λ
(σc)2λ−1.

(4)

We note that the GSIF is homogeneous to the product of a stress and a length to the power
(1 − λ). For a straight edge, λ = 1 and the GSIF at initiation becomes Ki = σc (Ki is then
homogeneous to a stress), thus reducing to a stress criterion. In the case of a crack, λ = 1/2

and we return to Irwin’s criterion Ki = KIc =
√

EGc/Aβ (Ki is then homogeneous to a critical stress
intensity factor). LEFM is therefore included within the CC formulation, allowing for the study of
both crack initiation and the propagation of an existing crack. The proposed formulation remains
general, as it can address crack initiation with or without a singularity.

In addition to the initiation length, the combination of the two criteria introduces another
characteristic length, Irwin’s length ℓmat = EGc/σ2

c [17], which is intrinsic to the material since
it depends only on its elastic and fracture properties. The asymptotic approach reveals that
the initiation length is actually related to Irwin’s length through the dimensionless coefficient
Aβ, which depends on (i) the geometry (here the V-notch angle) and (ii) the loading (here the
GSIF) [24, 77]. In the following, we examine how these two lengths in the CC formulation (i.e.,
the initiation length and Irwin’s length) correspond to other characteristic lengths encountered
in various fracture mechanics approaches.

3. Correlation with lengths involved in other fracture approaches

In this section, we focus on different approaches able to describe the nonlinear fracture resis-
tance scaling, similarly to the CC. Even if based on different fracture description and involving
different input parameters, we thus provide an insight on how the characteristic and intrinsic
length scales involved in these approaches are related to the one obtained in the CC: the initia-
tion length and Irwin’s length.

Figure 2 illustrates schematically how various major techniques facilitate the emergence of a
characteristic length scale, which subsequently aids in describing the nonlinear scaling observed
in experiments.

For the Coupled Criterion (CC), a characteristic length emerges as the distance where both
energy and stress criteria are simultaneously satisfied. This length can consistently be correlated
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Figure 2. Summary of the key methods discussed, highlighting how each technique inte-
grates material length scales into its framework and how these are reflected in simulation
outcomes. In the figure d represents damage, lc is the phase-field length scale, a is the crack
length and δc is the critical separation when the crack is fully open.

to Irwin’s fundamental metric. Notably, studies have shown that if the initial crack is sufficiently
sharp and large compared to the material’s intrinsic scale, the resulting length remains constant
[74]. This observation provides a possible explanation for the effectiveness of the Theory of
Critical Distances (TCD): evaluating the stress at a fixed distance produces results comparable
to more advanced criteria.

In smeared damage approaches, such as the Phase-Field (PF) and Thick Level Set (TLS)
methods, a regularization length is inherently introduced. This regularization modifies the stress
profile, resulting in a slight alteration not only near the crack tip but also in the tail of the
theoretically elastic stress response for the same macroscopic equilibrium. This phenomenon
raises an important question: at what distance does the calculation of experimental toughness,
based on a fit to the singular solution, remain valid?

The Cohesive Zone Model (CZM) operates in a manner similar to smeared damage methods,
defining the tension–separation law as an input parameter. However, CZM offers greater flexibil-
ity by allowing the critical separation to be specified, which results in a certain damage diffusion
length representing the process zone ahead of the crack tip. The latter also depends on the ge-
ometry, boundary conditions and local stress state. Despite this advantage, the technique suffers
from a significant limitation: it requires prior knowledge of the crack path.

Finally, particle-based methods, such as molecular dynamics (MD) and peridynamics, treat
the material as a discrete system of particles. In peridynamics, the horizon explicitly defines
the characteristic length scale. In atomic-scale simulations, the interaction between interatomic
potentials and the realistic atomic structure leads to the emergence of a localized, inelastic zone
around the crack tip [53].

This section discusses these various methods and evaluates their potential for comparison
with the Coupled Criterion. We will highlight results from the literature that address the nonlinear
scaling transition and examine the underlying mechanisms involved.

3.1. Theory of critical distances

The approaches based on the Theory of Critical Distances (TCD) are commonly used for engi-
neering failure prediction [67, 79]. Since a local maximum stress criterion is unsuitable for pre-
dicting the experimentally observed size effect, even for non-singular stress fields [80], TCD com-
pares the stress at a specified distance from a stress concentration or singular point to the mate-
rial tensile strength.
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Figure 3. (a) Initiation length normalized by Irwin’s length as a function of the V-notch
angle predicted using the CC for a V-notch in an infinite medium. (b) Ratio between the
GSIF obtained using either the CC (K CC

i ) or the TCD (K TCD
i ) as a function of the V-notch

angle.

The CC and the TCD have been compared in various configurations, e.g., to study the fatigue
limit of V-notch specimens [81]. Regardless of the notch radius, the critical distance remains
constant in the TCD, whereas it decreases with increasing notch radius in the CC. By basing the
TCD critical distance on Irwin’s length, a relationship between the critical crack advance for both
approaches—independent of material parameters—was derived. This result aligns with the fact
that the initiation crack length in the CC is proportional to Irwin’s length [24, 77].

Chao Correas et al. [80] demonstrated that both the CC and TCD describe the gradual tran-
sition between two stress-driven solutions for crack initiation at a spherical void (for small and
large void radii, respectively). The transition between these regimes falls within the same range
of void radii relative to the material characteristic length.

Campagnolo et al. [82] compared the CC to the Strain Energy Density (SED) approach for
crack initiation at a V-notch under in-plane shear loading. The SED model considers the strain
energy density over a control volume around the crack initiation site as the critical parameter.
Both methods showed that the apparent SIF at crack initiation is proportional to powers of KIc

and σc, differing only in the proportionality factor, which depends on the notch angle in the CC
and Poisson’s ratio in the SED approach. Both methods predicted similar apparent SIFs at crack
initiation for this configuration, with the control volume radius based on Irwin’s length [82, 83].

The primary distinction between the TCD and CC is that in TCD, the characteristic length is
an input parameter, while in CC it is an output derived from combining the stress and energy
conditions. Several ways of nonlocal stress evaluation exist, such as integration over a volume or
the use of pure nonlocal functions [84, 85]. One of the first method proposed was to evaluate the
stress at a given distance from a singular point. For example, applying the TCD as a point stress
criterion at a distance equal to Irwin’s length (σnn(ℓmat) =σc) yields:

Ki = (EGc)1−λσ2λ−1
c . (5)

This expression only differs from the one obtained using the CC by the coefficient Aβ (see
Equation (4)), reflecting that the TCD disregards geometry, whereas the CC accounts for it
through Aβ. Figure 3 illustrates the differences between the TCD and CC in predicting crack
initiation at a sharp V-notch.
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The normalized initiation length obtained using the CC for different V-notch angles is shown
in Figure 3a. It indicates that the initiation length using the CC is generally smaller than Irwin’s
length and depends on the geometry. In addition, Figure 3b shows the ratio between the GSIF
obtained using the CC or the TCD as a function of the V-notch angle. Based on Equations (4)
and (5), this ratio is given by K CC

I /K TCD
I = Aλ−1

β
. Using LEFM normalization of displacement

fields, a ratio of 1 is achieved for β= 0° and β= 180°, with a non-monotonic trend as β increases.
Specifically, Aβ = 1 for β= 0, decreasing with increasing β, while λ increases from 1/2 (β= 0°) to
1 (β = 180°). Overall, differences of less than 20% can be expected between the CC and TCD in
predicting crack initiation at a V-notch in an infinite medium.

Since the TCD disregards the overall specimen geometry, questions arise about its application
for small-scale specimens, where size may be smaller than Irwin’s length. This method may
also be unsuitable for initiation configurations driven by the energy criterion, such as transverse
cracking in thin composite laminates [60, 86, 87].

3.2. Phase-field

Fracture Phase-Field (PF) models [88, 89] approximate crack discontinuities through a smeared
damage field controlled by a length scale parameter (lc), which defines the extent of damage.
These models balance elastic energy with diffused fracture energy to identify the energetically
favorable crack front, using fracture toughness (Gc) and the regularization length (lc) as primary
inputs.

Both the CC and PF approaches use the critical energy release rate (Gc) as an input parameter,
but they differ in how they handle tensile strength: CC explicitly incorporates it, while PF replaces
it with the regularization length (lc). In simulations of notched thin ply laminate fractures,
Reinoso et al. [90] showed that the CC method effectively captures the size effect and accurately
predicts failure stress, whereas the PF approach slightly underestimates failure stress, with lc

chosen to match the experimentally measured displacement around stress concentrators.
Early studies comparing CC and PF results [91] found good correspondence between the

two methods, although the choice of lc was often based on matching maximum tensile stress
under uniaxial loading to the material’s tensile strength. Strobl et al. [92, 93] simulated Hertzian
indentation-induced fractures using both CC and PF, noting consistent trends in crack location
and critical displacement, with lc determined using the homogeneous Phase-Field solution
under uniaxial tension.

Kumar et al. [94] addressed PF’s tendency to overestimate critical loads at the onset of damage
by explicitly incorporating a stress criterion, effectively creating a CC-inspired PF approach.
Similarly, Abaza et al. [95] calibrated lc in PF models for notched ceramic specimens to match
apparent stress intensity factors at crack nucleation with those obtained using CC. Jimenez
et al. [96] demonstrated that for small-scale specimens, critical displacements or forces largely
depend on Gc, using CC to guide the load range selection in PF models and suggesting PF as a
preliminary step for CC when the crack path is not known a priori.

A comprehensive comparison of CC and PF approaches was provided in Ref. [74], which
studied tensile opening and in-plane shear fractures, proposing a correlation between tensile
strength and lc that depends on the stress state:

σc ≃σmax = η
(
ν,
σ2

σ1
,
σ3

σ1

)√
EGc

lc
, (6)

where η accounts for the stress state. This work was later extended to antiplane shear [97].
In these studies, different aspects were compared, such as critical initiation load in tension,
branching angle in simple shear, and facet spacing in antiplane shear.
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Figure 4. (a) Summarized correlations between the tensile strength (σc) and the internal
length scale (lc). The blue shade represents the accessible space based on the homoge-
neous solution. (b) Correlation between lc and the initiation lengths and characteristic dis-
tances.

The results are summarized in Figure 4. The correlations for tensile opening, in-plane, and
antiplane shear fracture modes show a general trend: as the regularization length (lc) decreases,
the material strength (σc) increases. However, this relationship cannot be captured by a single
master curve; instead, it forms a failure surface varying within the range defined by Equation (6),
shown by the shaded area in Figure 4a. Although the initiation length ∆ac does not explicitly
appear in the PF, it is crucial for determining where the stress and energy criteria are satisfied
simultaneously, with its correlation to lc being linear across different fracture modes.

The results suggest that lc serves as an intermediate parameter between Irwin’s intrinsic length
and the actual process zone size, though it cannot fully account for the effects of macroscopic
geometry. This raises the question of whether materials have a single tensile strength (as
per Rankine’s theory [73]) or if the maximum tensile strength is influenced by the stress state
(corresponding to another strength surface in the principal stress space).

Furthermore, studies [74, 98] showed that, similar to the CC, the PF method satisfies both
energy and stress criteria due to an indirect correlation between the maximum tensile stress and
lc. As lc increases, the process zone enlarges, resulting in lower maximum stress and an earlier
satisfaction of Griffith’s criterion. Thus, higher lc values correlate with lower maximum tensile
stresses needed for fracture.

Additionally, in the PF technique, the stress field is non-singular, requiring the stress tail to be
slightly higher than the singular solution used in the CC to maintain equilibrium. The study of an-
tiplane shear highlighted the need for an enhanced CC model incorporating a regularized stress
field inspired by PF regularization, which would allow the CC to better address three-dimensional
antiplane cracking by introducing a third parameter to account for the crack geometry, as sug-
gested in Ref. [99].

3.3. Cohesive zone

When used in fracture mechanics, a Cohesive Zone Model (CZM) [36, 37] is designed to describe
the formation and evolution of both the crack (corresponding to the traction-free region) and
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the process zone ahead of the crack tip. Given, as input parameters, the material tensile and
shear strengths and critical energy release rate, the CZM defines the traction–separation behavior
between two surfaces.

The cohesive response is triggered once a local critical traction is reached, leading to separa-
tion and a discontinuity in the displacement field across the surfaces, governed by a distribution
of traction. The traction–separation profile mechanically replicates the underlying failure mech-
anisms and remains active until a critical separation δc is reached, at which point a crack nucle-
ates locally. This critical separation δc provides an intrinsic length scale that characterizes the
failure process. As the separation between the two surfaces increases, the traction–separation
behavior progresses to this critical point, defining a characteristic length associated with the dis-
placement jumps necessary for crack formation.

As an example, considering only the opening mode and a bilinear traction–separation profile
in a linear elastic isotropic material, the critical displacement jump is given by:

δc = 2Gc

σc
= 2σc

E
ℓmat = 2εcℓmat, (7)

where εc is the material tensile strain at failure. The critical displacement jump is thus related to
the material’s Irwin’s length and critical strain, making it an intrinsic material property.

In addition, to this characteristic length, another length is involved in CZM which is the extent
of the process zone ahead of the crack. Indeed, the CZM and the CC mainly differ concerning
the description of the cracking process. While the CC relies on a binary description of fracture
considering two possible states, namely undamaged or cracked material, the CZM defines an
intermediate state: the process zone through the description of a traction–separation profile.
This process zone induces another main difference between both approaches since the stress
can locally be larger than the material tensile strength in the CC whereas in CZM, the stress
is always bounded by the material strength within the process zone. The process zone length
depends on the Irwin’s length [100, 101], but contrary to the critical displacement jump, it is
not an intrinsic material property as it also depends on the specimen geometry and boundary
conditions. Cornetti et al. [102] observed that for an initial crack in infinite medium or at
a V-notch, the CZM process zone length was significantly different from the initiation length
obtained using the CC, even if both length variations followed almost identical trends with
respect to the normalized initial crack length. This analysis was then refined [103] by introducing
a weight function in the stress condition of the CC in order to match the CZM. The CZM with
cohesive laws exhibiting earlier softening showed satisfactory correspondence with the CC stress
conditions, modified by weight functions that were elevated near the crack tip and tapered off
with distance. Actually, it was shown that the difference between the failure load predicted
by the CC and the CZM differs as the critical separation (and equivalently the Irwin’s length)
increases [104].

Nevertheless, an equivalence may possibly be determined between the CC and a given
traction–separation CZM profile. Summarizing previous works aiming at the comparison be-
tween the CC and CZM [80, 105–115], it appears that there is not a unique CZM traction–
separation profile that enables retrieving the failure loading and crack length predicted using
the CC. The CZM traction–separation profile corresponding to the CC actually depends on the
geometry, the type of loading, the cracking mechanism and thus has to be identified for a given
configuration. A further comparison between the CC and the CZM was established based on an-
other extrinsic length, i.e., the length of the crack after the unstable propagation following ini-
tiation [114]. It was shown that the range of crack lengths after unstable propagation obtained
with various traction–separation profiles respectively comprised the crack length lower bound
obtained using the CC, and that crack lengths similar to those obtained using the CC were ob-
tained using a bilinear traction–separation profile in that case.
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3.4. Atomic scale simulations

At the smallest scales currently accessible through computational resources to study fracture,
molecular dynamics (MD) simulations [53] offer valuable insights into crack propagation by
using interatomic potentials and detailed atomic structures, thus avoiding the need for additional
numerical parameters. Recent studies [116, 117] have advanced our understanding of finite-
size effects, revealing a critical transition in wear mechanisms at the atomic scale. Specifically,
atomistic simulations show that when asperity contact junctions surpass a critical size, fracture-
induced debris formation occurs, while smaller junctions result in a gradual smoothing through
plastic deformation. This non-linear behavior highlights the crucial role of length scale in
determining whether fracture or plastic smoothing dominates.

Later, Brochard et al. [118] specifically examined brittle failure in two materials: a simplified
2D toy model and graphene. Using molecular dynamics (MD) simulations, the authors inves-
tigate how the stress and toughness criteria contribute to the emergence of a length scale dur-
ing failure. The toy model, consisting of a regular triangular lattice with harmonic interatomic
interactions, allowed for a straightforward theoretical analysis of failure processes. In contrast,
graphene, with its more complex atomic structure and realistic mechanical behavior, served as a
case study for a real material.

For both materials, the authors use MD simulations to observe failure under different condi-
tions, such as varying temperature, system size, and loading rate. Through these simulations, the
study highlighted the emergence of a nonlinear transition length scale at the process zone near
the crack tip. This process zone grew larger as the temperature increased, and the material tran-
sitions from a stress-based failure mode to one governed by energy dissipation at the crack tip.
The results showed that, in graphene, this length scale and the corresponding process zone were
much larger compared to the toy model, demonstrating how atomic interactions and material
properties influence the scaling of strength and toughness. The simulations provided a deeper
understanding of how microscopic bond-breaking processes connect to macroscopic failure be-
haviors, particularly in materials with varying defect types and sizes.

Chao Correas et al. [80] validated their findings by comparing the FFM approach with both
experimental data and atomistic simulations. In terms of atomistic simulations, the study by
Ippolito et al. [119] on β-silicon carbide is highlighted. In this work, atomistic simulations were
used to create a model free of intrinsic defects by removing atoms from a crystalline lattice to
simulate spherical voids. The simulations provided critical material properties, such as fracture
toughness and strength, which allowed for the calculation of the Irwin’s length (characteristic
length scale).

Chao Correas et al. [80] found that the results of the atomistic simulations agreed with the
predictions made by FFM, particularly when using the averaged stress variant. This variant
provided the most accurate results when compared to the atomistic data, which eliminated
scattering from experimental flaws and imperfections. This supported the use of FFM as a
robust predictive tool in materials without inherent defects. The study concluded that atomistic
simulations are crucial for refining predictions of failure in brittle materials, offering a close
match with coupled criteria approaches like FFM in defect-free scenarios.

3.5. Thick level set

The underlying idea of the The Thick Level Set (TLS) model is to constrain the norm of the
damage gradient to control the evolution of a damage field, introducing a characteristic length
which represents the smallest possible distance between a fully damage point and a point where
there is no damage. The characteristic length thus represents the extent of the regularization zone
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around a sharp crack. Zghal et al. [120] compared the (TLS) approach to the matched asymptotic
approach of the CC considering sharp or blunted notches and cavities. TLS and CC resulted
in close apparent strengths for all cases provided the assumptions of the matched asymptotic
approach were satisfied. However, no comparison between the TLS characteristic length and the
CC initiation length was provided.

3.6. Peridynamics

Zhang et al. [121] implemented the CC to study crack initiation at circular holes within a peri-
dynamic framework. They showed that similar strain and stress values were obtained using ei-
ther peridynamics or FE modeling, except locally near the hole edge due to a skin effect aris-
ing from the incomplete non-local horizon for nodes around the hole edge. They also demon-
strated that peridynamics yielded failure stresses similar to those obtained using Finite Fracture
Mechanics [121]. Ultimately, in peridynamics, the characteristic length is defined by the horizon
size.

In a subsequent study, Zhang et al. [122] analyzed the stress and IERR for various horizon
sizes. The main conclusion was that the skin effect influences both stress and IERR, especially
for small crack lengths near a free edge. The stress and IERR values in this region are unreliable,
as the local material response near a free edge differs from that in the bulk due to the incomplete
horizon. They also observed that the region where stress and IERR deviate from the finite element
solution increases with a larger horizon size. Ultimately, the horizon size must be set sufficiently
smaller than the initiation length in the CC. Under this condition, similar stress and IERR values
are obtained, indicating that peridynamics can predict similar initiation loads as the CC.

3.7. Gradient elasticity

The Gradient Elasticity (GE) model and the CC were compared to predict borehole crack initia-
tion under combined pressure and biaxial loading [123]. It was highlighted that the CC is local
in its constitutive law but non-local in the failure criterion, as both stress and energy conditions
must be met simultaneously at a specific distance from the singular point or stress concentra-
tion. Conversely, the GE model is non-local in its constitutive law but local in its failure crite-
rion, treating the governing failure parameter as the local stress concentration factor. The GE
model introduces a characteristic length that defines the distance over which non-local effects
act, smoothing high variations in the elastic stress field. Similar to TCD, the GE model is inap-
plicable below a threshold size where the internal length becomes comparable to the specimen’s
characteristic size. Sapora et al. [123] demonstrated that nearly identical failure stress predictions
can be achieved if the internal length in the GE model is calibrated based on Irwin’s length.

3.8. Continuum damage model

Continuum Damage Mechanics (CDM) [124] provides a framework for understanding how
micro-damage, like micro-cracks or voids, impacts material properties at a larger scale. Kachanov
[125] introduced the damage variable concept to quantify degradation from micro-defects. CDM
uses constitutive models that describe stress–strain relationships and damage evolution equa-
tions based on thermodynamics to predict the transition from micro-defects to failure. Although
classical CDM models uniform damage well, it faces challenges with discontinuities, prompting
the development of gradient damage models [126–130], which include regularization terms to
simulate phenomena like brittle fracture [131] and localized damage [132]. Methods for measur-
ing the characteristic length of nonlocal continua have also been proposed [133].
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Carrère et al. [134] compared the CC with CDM to investigate failure in adhesively bonded
joints. Despite differing definitions of final failure, both models produced similar failure loads
under the assumption of small displacements, as crack initiation occurs just before the specimen
reaches final failure. A characteristic length emerged in the CDM, corresponding to the extent
of the process zone, i.e., the region where the damage variable ranges from 0 (pristine material)
to 1 (fully damaged material). At crack initiation, the process zone extent was found to be larger
than the initiation length predicted by the CC, yet it followed a similar trend with respect to the
material’s critical energy release rate.

4. Discussion

The Irwin’s length appears in all models that couple a stress and an energy criterion, either
directly or indirectly, such as the CC, CZM, and PF models, or as a direct input parameter in
models like TCD. This parameter is intrinsic to the material, obtained from a combination of
other intrinsic material properties. While linking Irwin’s length to the material microstructure
is not always straightforward, connections can sometimes be established. For example, in
polycrystalline ceramics, the intrinsic tensile strength—determined for specimens with extrinsic
defects that are sufficiently small compared to the Irwin’s length [23]—is related to grain size
[135, 136] as well as the critical energy release rate [22]. This implies that the Irwin’s length
depends on grain size and other intrinsic defects present within the microstructure.

Beyond its role as an intrinsic material property, Irwin’s length is crucial for the numerical
implementation of the aforementioned models. It influences computational setups, such as the
choice of mesh size in CZM [100, 101] and CC [77], or the selection of the regularization length in
PF [74, 137].

If no length scale appears in a fracture model, it is unable to assess configurations related to
crack initiation or propagation outside the assumptions of Griffith’s model. A first example is
Linear Elastic Fracture Mechanics, which predicts infinitely large remote stresses for a crack with
vanishing size. This aligns with the assumption of a semi-infinite crack in an infinite medium,
which does not hold for finite or diminishing crack lengths. A second example involves applying
the TCD to specimens smaller than Irwin’s length. Since TCD is based on stress evaluation at a
specific distance or over a volume defined by Irwin’s length, applying it to small-scale specimens
is problematic, as the characteristic length becomes meaningless. A third example concerns
TCD’s application to energy-driven configurations without stress gradients, such as transverse
cracking in laminates with thin plies. In this case, a homogeneous stress field exists within the
plies transverse to the loading direction, so the TCD would predict a failure load based solely
on the stress within the ply, regardless of ply thickness or the evaluation length or volume. As a
result, TCD would miss the observed failure load increase with decreasing ply thickness, which is
primarily controlled by energy.

Even for models coupling stress and energy conditions, there exist pathological configurations
where the failure description remains incomplete. Certain cases highlight where the CC could
be enhanced, specifically when the length effect is effectively “disabled” because the energy
criterion predominates, causing the CC to revert to a purely energy-based criterion. Two primary
configurations exhibit this behavior.

Firstly, in the presence of strong singularities [138–140], the IERR scales as Kℓ2λ−1 withλ< 1/2.
Here, the IERR approaches infinity as the crack length tends toward zero, which means the stress
criterion is always satisfied, causing the CC to revert to an energy-only criterion.

The second configuration involves a semi-infinite crack under remote anti-plane shear load-
ing. An asymptotic approach shows that the stress criterion no longer influences the initiation
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generalized stress intensity factor (GSIF), which is predicted solely based on the energy crite-
rion, K = (Gc/A)1−λσ2λ−1

c , with λ = 1/2. The IERR reaches its maximum for rectilinear propa-
gation [141–143], whereas experimental observations indicate that facets initiate at an angle in-
clined with respect to the primary propagation direction of the initial crack front.

In configurations where the CC fails to predict crack initiation due to the absence of a length
effect, one potentially missing component could be the description of the process zone prior
to initiation. Indeed, the Phase-Field approach can account for the occurrence of facets under
antiplane shear [97], as observed experimentally, with the primary distinction from the CC being
the presence of a process zone that develops before crack initiation. Previous studies have
shown that describing this process zone is essential in PF models to accurately predict other
configurations, such as along the two lips of an initial crack [74, 137, 144].

Incorporating this feature into the CC could improve its predictive capability. For example,
Dominique Leguillon [145] proposed a model to describe a damage zone ahead of a V-notch prior
to initiation. Alternatively, a combination of the crack regularization provided by the PF model
with the CC could be implemented, as demonstrated in Ref. [99].

5. Conclusion

In this review, we examined characteristic lengths in fracture mechanics, with a particular
focus on the Coupled Criterion framework and its interactions with other advanced fracture
models. Our analysis highlighted that the CC, through coupling stress and energy criteria,
uniquely clarifies the conditions under which cracks initiate across various configurations, even
when dealing with theoretical scenarios that may not manifest in reality. By exploring these
boundaries, we gained insights into transition behaviors that occur between configurations and
the convergence of stress and energy requirements for crack initiation.

We observed that while the CC provides a comprehensive understanding of crack initiation,
it lacks certain advantages of other models, such as autonomous crack path determination or
the straightforward handling of multiple cracks initiating and propagating simultaneously. How-
ever, it offers valuable insights into other fracture models through the established inter-model
dialogue. Our position is that fracture models can mutually benefit by extending this dialogue
beyond simple comparisons of predicted failure loads obtained through different approaches.

A promising direction for the CC is to incorporate the regularization provided by the PF model
or the process zone (PZ) description available in CZM. Such integration would allow for a detailed
process zone description before initiation, addressing limitations in configurations where the
length effect vanishes.

The development of such a dialogue between the CC and other fracture models remains an
open avenue, as exemplified by the Discrete Elements Method [146,147], which could offer a way
to describe crack initiation in a manner comparable to continuum mechanics and the CC.
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reported due to their complicated mechanics and material issues. In this study, a short-beam shear fracture
approach was employed to characterize the mode-II shear fracture toughness of polyamide specimens of
three printing surface angles made with selective laser sintering (SLS). Results show that a pure shear crack
only existed if the initial crack propagated along the printing interface. In other cases, initial cracks kinked
right after crack initiation, so no valid shear fracture toughness was measured. A simple model based on
linear elastic fracture mechanics including anisotropic fracture toughnesses was proposed to predict the
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prediction based on the maximum tensile stress criterion.

Keywords. Shear fracture, Fracture toughness, 3D printing, Polymer, Interfaces.

Note. Article submitted by invitation.

Manuscript received 24 January 2025, revised and accepted 18 June 2025, online since 16 January 2026.

1. Introduction

The mode-II fracture toughness has long been a difficult property to quantify for isotropic
materials, because a mode-II crack tends to kink away from the original crack path [1], and
thereby makes the measured fracture toughness the mode-I fracture toughness. However, a
pure mode-II crack may exist in some special materials with preferred interfaces like layered
materials, or composite materials [2]. Indeed, layered 3D printing materials have numerous
interfaces between the printing layers as the weak paths for potential crack propagation. With
the growing applications of 3D printing materials, it is important to develop new approaches
to measure their mode-II shear fracture toughnesses because of their anisotropic strengths and
fracture toughnesses [3,4]. 3D printing materials based on single-material printing can be treated
as isotropic and homogenous materials in terms of stiffness because no second material (only
defects such as voids) exists in the printed materials. However, their strengths and fracture
toughnesses were slightly anisotropic due to the printing interfaces and the intrinsic build
direction that led to initial defects in different directions [5–7]. It should be noted that their
anisotropic degree was much lower than the layered composite materials [8].
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There were a few shear fracture experiments of 3D printing polymers in the open literature.
But two major issues were found, (1) a pure shear stress field ahead of a shear crack was not
shown, and (2) the initial shear crack might kink right away. For example, Khan et al. [9] employed
3D printing polymer specimens for the mode-I, II and mixed-mode fracture toughness tests,
but the above critical fracture mechanics issues were not addressed. Therefore, whether their
measured values can be treated as valid fracture toughnesses or not is still a big question. Hence,
to measure the valid mode-II fracture toughnesses of 3D printing polymers, a short-beam shear
fracture (SBSF) approach initially proposed by Krishnan and Xu [10] was modified to eliminate
the friction between the cracked surfaces, and ensure a pure shear stress field, thereby offering
a more reasonable value of the mode-II fracture toughness. Another advantage of the SBSF
approach was that the shear crack propagated along the initial crack path if the initial crack path
was along the interface, not immediately kinked from the initial crack. If the initial crack path was
not along the interface, the initial crack might kink right after the crack initiation. Crack kinking is
a special fracture problem, and it has been received long-term attention since it can occur during
static and dynamic loading processes [11–14]. Hence, in this paper, a simple model using linear
elastic fracture mechanics (LEFM) was employed to analyze the crack kinking during a pure shear
fracture experiment. The purpose of this study was to predict the crack kinking angles if the initial
crack kinked.

2. Theory

2.1. Stress intensity factors of a kinked crack including the T -stress

As shown in Figure 1, based on LEFM, the two-dimensional full-field stress of a main crack can
be expressed in a polar coordinate system [15]:

σi j (r,θ) = KIp
2πr

I∑
i j

(θ)+Tδi 1δ j 1 + KIIp
2πr

II∑
i j

(θ)+O(r
1
2 ) (i , j = 1,2) (1)

where KI and KII are the mode-I and mode-II stress intensity factors, T is a nonsingular stress
term, O(r

1
2 ) represents the higher-order terms of the length scale r and will be dropped if the

kinked crack length “l ” is very small; and the known functionsΣI
i j (θ),ΣII

i j (θ) represent the angular
variations of the 2-D stress components. Previous research on crack kinking was mainly focused
on the relation between the stress intensity factors before and after crack kinking [16]. If the T -
stress is considered during crack kinking, the two stress intensity factors of the kinked crack kI

and kII became [11,17]:
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√
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where β is the kinking angle, i.e., the angle between the main crack and the kinked crack as seen
in Figure 2. The coefficients Ci j (i , j = 1,2) were initially reported by Contrell and Rice [16]:
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Figure 1. Schematic of a kinked crack (with a very small length l ) initiating from a main crack (length 2a)
subjected to remote 2-D mixed-mode loading. The local stress field at the kinked crack tip is shown in a polar
coordinate system.

Figure 2. Schematic diagram of a kinked crack (left), and a photo of the actual crack kinking of a shear fracture
3D printed specimen under loading (right).

Now we consider a shear main crack with KI = 0, and assume the kinked crack is a mode-I
crack (k2 = 0), Equations (2) and (3) yield:

k1 = C12KII +2T

√
2l

π
sin2β (6)

k2 = C22KII −2T

√
2l

π
sinβcosβ= 0. (7)
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Substitute Equation (7) into (6) to eliminate T and l , the mode-I stress intensity factor of the
kinked crack becomes,

k1 = (C12 +C22 tanβ)KII. (8)

The kinked crack is often a mode-I crack because this conclusion was verified by the authors’
dynamic fracture experiments using high-speed photography [14,18]. If T = 0,

k2 =C22(β)KII = 0, thenβ≈ 70.5°. (9)

Erdogan and Sih [19] proposed the maximum tensile stress (MTS) criterion (no T -stress was
involved) and assumed that the kinked mode-I crack initiated in the direction corresponding to
where the circumferential tensile stress around the crack tip reaches its maximum value. For a
pure shear crack, the crack kinking angle predicted by the MTS criterion is around 70.5°, i.e., the
same outcome.

2.2. Energy-based fracture criterion for crack kinking from the interface

As shown in Figure 3, a modified short-beam shear fracture specimen was proposed, and it was
subjected to an asymmetric four-point bending load. Indeed, this was not a typical asymmetric
four-point bending test because this experiment was conducted using an Iosipescu shear fixture
as seen in Figure 4. The load acting on the specimen was distributed load, not point load as shown
in Figure 3 for illustration purposes. The printing surface (interface) angles were 0°, 45°, and 90°.
If the printing surface angle is 90°, the printed initial crack is along the interface (a weak path). For
a mode-II main crack of an interfacial shear fracture toughness measurement, KI = 0. Therefore,
a valid shear fracture experiment requires that continuous crack propagation along the original
crack path occurs when the mode-II energy release rate, GII exceeds the fracture toughness of the
printing interface ΓIT

IIC , i.e.,

GII =
K 2

II

E∗ ≥ ΓIT
IIC (10)

where E∗ = E for plane stress and E∗ = E/(1−ν2) for plane strain, and E is the Young’s modulus of
the material and ν is the Poisson’s ratio. On the other hand, the initial crack will kink if the mode-I
energy release rate of the kinked crack tip, gI, exceeds the mode-I fracture toughness of the bulk
printing material next to the printing interface, ΓBM

IC , i.e.,

gI =
k2

I

E∗ ≥ ΓBM
IC . (11)

Hence, crack kinking is only possible if this inequality holds:

gI

GII
= [C12 +C22 tanβ]2 > Γ

BM
IC

ΓIT
IIC

=
(

kBM
IC

K IT
IIC

)2

=λ. (12)

Therefore, only the ratio of two independent fracture toughnesses λ determines the crack
kinking angle. Indeed, the outcome of this paper will be applicable to more material systems
with weak interfaces rather than 3D printing materials only.

3. Methods and materials

As shown in Figure 2, the printed notch had a variable width to conveniently cut a sharp notch
using a fresh razor blade. At the bottom of the specimen, the notch had a sudden wide opening to
avoid specimen/loading block contact when the applied load/displacement was large for the soft
polymer specimens. For each printing surface angle, at least eight identical specimens were made
and tested. It should be noted that for the 90° specimen, the printing surface/interface was along
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Figure 3. Size and applied load of a short-beam shear fracture specimen (All dimensions are in mm. The
thickness was 4 mm). The printing surface angles α were 0°, 45°, and 90°.

Figure 4. Failure modes of PA specimens with different printing surface angles.

the initial crack direction to measure the mode-II interlayer shear fracture toughness. To create
polyamide (PA) specimens, PA powder (FS3300PA) with a spherical shape and a mean particle
size of 120 µm was used, and the apparent density was 0.48 g/cm3. A selective laser sintering
apparatus (HT252P) was employed to make these specimens. The apparatus was equipped with
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a 60 W carbon dioxide laser with a focal laser beam diameter of ≤0.5 mm. The processing
parameters were set as follows: a laser power of 45 W, a laser scanning speed of 10 m/s, and a
layer thickness of 0.1 mm. A heater was equipped to preheat the raw powder material, capable of
reaching a maximum temperature of up to 225 °C. During the printing process, the chamber was
filled with high-purity nitrogen to protect the specimens from oxidation. All fracture specimens
were tested on an Instron 5966 test frame equipped with a 10 kN load cell using an Iosipescu shear
fixture. The displacement rate for all tests was set at 1 mm/min, and the maximum loadings
of the specimens were recorded. Photos were taken from some specimens to record the final
crack pattern before they were removed from the test machine. More experimental details will be
reported by Wang et al. [20].

4. Results and discussion

4.1. Crack kinking in different specimens with different printing surface angles

Figure 4 shows two different fracture modes of three types of shear fracture specimens. For the
specimens with the printing surface angles of 0° and 45°, the crack kinked from the initial crack
right after its initiation and formed a mode-I crack as seen in almost all homogenous materials
subjected to a pure shear load. For the specimens with the printing surface angle of 90°, the initial
shear crack propagated along the initial crack path. Based on the energy release rate definition,
a crack creates the fracture surface in an in-plane shear pattern after crack initiation. Hence,
it is concluded that the mode-II shear fracture toughness for the 90° specimens is valid. It is
important to note that this crack finally kinked but it was caused by the mixed load (not pure
shear load) because of the large specimen deformation and the close distance of the crack tip
and the load block. The propagation of an interfacial crack is a more complicated case [11,21],
therefore, it is not considered in this simple study. However, for the 0° and 45° specimens, the
crack created the fracture surface in an opening mode, so a valid shear fracture toughness was
not obtained for these two specimens.

Therefore, the measured shear fracture toughness of 90° specimens was the interlayer shear
fracture toughness because a shear crack only existed in the weak printing interfaces between
different layers. The measured mode-II fracture toughness based on LEFM of the printing inter-
face K IT

IIC (2.57 MPa·m1/2) was slightly more than the mode-I fracture toughness of the printing
interface K IT

IC (2.30 MPa·m1/2) for the same material interface/same specimen thickness [22]. The
KIIC of the printing interface was obtained as

K IT
IIC = PC

W t

p
πaF SBSF

II

( a

W

)
(13)

where F SBSF
II is a dimensionless parameter [10], and PC is the critical load at crack initiation,

W is the specimen width, t is the specimen thickness, and a is the crack length. This fracture
toughness indicated that there was little friction between the cracked faces, because friction led
to significant energy dissipation and inaccurately contributed to the fracture toughness.

4.2. Crack kinking analysis based on the proposed model

The measured crack kinking angles are listed in Table 1. The predicted kinking angle according
to the MTS criterion was 70°, i.e., between the kinking angles of the 0° specimen and the 45°
specimen. This inaccuracy is probably caused by the two disadvantages of the MTS criterion:
(1) the crack kinking angle is independent of the material properties (e.g., fracture toughness),
and (2) the T -stress is neglected.
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Figure 5. Normalized energy release rate gI/GII as a function of the crack kinking angle. The predicted crack
kinking angles were 68° to 80°, while the actual crack kinking angles were 64° to 80°.

Table 1. Crack kinking angles of the specimen with different printing surface angles

0° specimens 45° specimens
Crack kinking angleΩ 79.92±7.07 64.13±12.31

The proposed model does not have these disadvantages and clearly shows the dependence
of the crack kinking angles on the fracture toughness as seen in the Equation (12). About
the potential range of the ratio of two independent fracture toughnesses λ, it is difficult to
measure the fracture toughness of the printing layer. However, the mode-I intralayer fracture
toughness of the 3D printing layer is always lower than the mode-I fracture toughness of the
traditional polymers (e.g., inject-molding) due to fewer initial defects. Therefore, the mode-I
intralayer fracture toughness of the bulk PA is around 2.70 to 5.62 MPa·m1/2 based on previous
measurements [23], or λ1 = 1.10 and λ2 = 4.78. Their corresponding crack kinking angles are 68°
to 80°, while the actual crack kinking angles are 64° to 80° as shown in Figure 5. Obviously, our
prediction is better than the MTS criterion.

However, our simple model cannot predict the different crack kinking angles for the 0° and the
45° specimens individually, although they are indeed different as shown in Table 1. Because our
model assumes that the interface/printing surface has no thickness like numerous traditional
interface mechanics models. If we assume that the interface/printing surface has a thickness,
its thickness becomes a variable for different materials and might become a fitting parameter
rather than a material constant. However, for a specific 3D printing technique, the interface
thickness should be treated as a material constant, and it should be less than 1% of the thickness
of a printing layer although there are no direct measurements. For example, for the current PA
specimen made with SLS, its layer thickness is 0.1 mm, so the thickness of the printing interface
should be below 100 µm. Also, the PA powder had a mean diameter of 120 µm before the SLS
process, therefore, an upper limit of 100 µm is a reasonable assumption for the thickness of the
SLS printing interfaces. Anyway, the anisotropic feature of the interfaces should be considered
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for future sophisticated models. Also, the material properties of the finite interfaces could be
assumed to be different from the properties of the printing layers.

5. Conclusions

A simple model based on linear elastic fracture mechanics including anisotropic fracture tough-
nesses was proposed to predict the crack kinking angles. The prediction agreed with the measure-
ments well and was more reasonable than the prediction based on the maximum tensile stress
criterion. Future new models should consider the anisotropic features/thickness of the interfaces
in order to predict the crack kinking more reasonably.
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