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Contributions in mechanics of materials

Foreword

J. Diani∗, a, O. Castelnaub et F. Chinestab

a Laboratoire de Mécanique des Solides, UMR CNRS, Ecole Polytechnique, Institut
Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
b Laboratoire des Procédés et Ingénierie en Mécanique et Matériaux, Arts et Métiers
Sciences et Technologies, CNRS, CNAM, HESAM, 151 bd de l’hôpital, 75013 Paris,
France

Courriels : julie.diani@polytechnique.edu (J. Diani), olivier.castelnau@ensam.eu
(O. Castelnau), francisco.chinesta@ensam.eu (F. Chinesta)

Manuscrit reçu et accepté le 24 novembre 2020.

La mécanique des matériaux, qu’il s’agisse d’alliages métalliques, de polymères, de compo-
sites, ou encore de minéraux, est un domaine de recherche vaste s’appuyant aussi bien sur la
physique, la chimie, les mathématiques, les techniques numériques, que les sciences expérimen-
tales. Elle a la particularité de traverser les échelles de l’atome au milieu continu macroscopique.
En particulier, la prise en compte des mécanismes élémentaires de déformation aux échelles per-
tinentes permet la construction de modèles de comportement robustes, i.e. qui soient capables
non seulement de reproduire fidèlement les observations mais aussi de prédire le comportement
mécanique dans des conditions inexplorées ou inexplorables expérimentalement. Ainsi, grâce à
la mise en œuvre de techniques de transition d’échelle, les effets de la microstructure du ma-
tériau et de son évolution au cours du chargement sont pris en compte naturellement dans la
construction du modèle. On définit ainsi des lois de comportement tridimensionnelles, physi-
quement fondées, prenant éventuellement en compte les effets de couplages thermique, magné-
tique, électrique . . . , utiles à la mise en œuvre ou au dimensionnement de pièces, d’ouvrages ou
de structures . . .

Ce numéro spécial des comptes rendus de mécanique est l’occasion d’honorer le travail et la
carrière de notre collègue et ami Pierre Gilormini qui a contribué de façon tout à fait essentielle
à ce domaine de recherche. Durant sa carrière, Pierre a su naviguer entre les échelles et les
matériaux. Doté d’une très grande culture scientifique associée à une expertise pointue, qui
a largement profité à nombreux étudiants et collègues, il a su développer des collaborations
fructueuses tout en gardant l’indépendance d’esprit qui lui est chère.

Pierre Gilormini est né en 1953, à Bastia, en Haute-Corse. En 1973, il intègre l’Ecole Centrale
des Arts et Manufactures, et après un Diplôme d’Etudes Approfondies sur les propriétés méca-
niques des matériaux, obtenu à l’Ecole des Mines de Paris, il devient ingénieur de recherche au

∗Auteur correspondant.
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CEMEF (Sophia Antipolis). Il y réalise une thèse de docteur ingénieur sur la formation du co-
peau, à l’époque où l’optimisation des méthodes cinématiques nécessite une bonne intuition et
un sens physique certain pour proposer des champs de vitesses astucieusement choisis. La si-
mulation de procédés de formage initiée pendant cette thèse l’amènera à s’intéresser à la fois aux
comportements en grandes transformations (avec P. Rougée), qui y jouent un rôle central, à l’ap-
proche du comportement d’agrégats polycristallins par homogénéisation (avec F. Montheillet,
en particulier) qui en constitue un débouché naturel et aux méthodes numériques par éléments
finis.

En 1986, après l’obtention d’une thèse d’état, P. Gilormini passe une année de chercheur
invité à l’université de Mc Gill à Montréal, où il travaille sur la prédiction du développement de
textures cristallines sous chargement avec J. Jonas. C’est la rencontre avec un chercheur d’une
immense culture à la fois théorique et expérimentale qui marque le jeune chercheur. Ses travaux
de simulations des procédés continueront au LMT (ENS de Cachan) qu’il intègre en 1987, avec
la simulation du profilage (G. Nefussi). Ils culmineront par un travail avec B. Bacroix, mettant
en jeu l’ensemble de ses compétences grâce à une approche multi-échelle utilisant un critère
de plasticité, ajusté sur des calculs de plasticité cristalline, et implémenté numériquement. La
simulation par éléments finis de l’emboutissage d’un cylindre prédit des ondulations dans la
pièce finale imputées à l’anisotropie plastique du matériau.

Intéressé par les grandes transformations, il rejoint le G.R.E.C.O. Grandes Déformations et En-
dommagement créé par J. Lemaitre. Il y rencontre notamment A. Zaoui, T. Bretheau, M. Ber-
veiller, P. Suquet. Prévoir l’endommagement lors des déformations plastiques notamment du fait
des inclusions, l’amène à considérer une inclusion, puis plusieurs, en route vers l’homogénéisa-
tion.

L’étude du comportement mécanique des matériaux hétérogènes par homogénéisation est
l’activité qui lui vaudra le plus de notoriété. Intéressé par la plasticité et la mise en forme des
métaux, c’est naturellement que Pierre se forme à l’homogénéisation en lisant l’œuvre complète
de celui qui sera l’un de ses modèles, R. Hill. La pléthore des modèles justifiés uniquement par
des comparaisons avec l’expérience ne le satisfait pas. Il est alors séduit par la borne supérieure
obtenue par une formulation variationnelle et proposée par un jeune chercheur (P. Ponte Cas-
tañeda). Il utilise cette borne pour montrer à l’ensemble de la communauté internationale le
faible nombre de modèles qui ne la violent pas et, conscient de la grande expertise de l’école
d’homogénéisation française, il organise avec M. Bornert et T. Bretheau la première école théma-
tique du CNRS sur l’homogénéisation (2 semaines) à La Londe-les-Maures. Deux ouvrages inti-
tulés Homogénéisation en mécanique des matériaux, faisant référence dans le domaine, en sont
le fruit.

En 2004, il suit T. Bretheau dans une nouvelle aventure : la création d’un unique laboratoire
de mécanique à l’Ecole Nationale Supérieure des Arts et métiers (Paris). C’est là qu’il découvre
les réseaux polymères qui lui offriront des possibilités de recherche extrêmement variées, de la
modélisation du comportement hyperélastique, viscoélastique en grandes transformations, par
des lois phénoménologiques, à l’homogénéisation lorsque des charges sont ajoutées à la matrice
polymère (G. Régnier, J. Diani), à la nano-impression de films polymère par lithographie (H.
Teyssedre) et jusqu’à la dégradation des réseaux polymères par hydrolyse (E. Richaud, J. Verdu).
A cette occasion, Pierre découvre un autre maître dans les écrits de P.J. Flory. On peut retenir
deux contributions tout à fait originales : l’utilisation des théories probabilistes généralement
appliquées à la gélification et étendues avec succès à la dégradation des polymères par coupures
de chaînes, un dégel en quelque sorte (E. Richaud, J. Verdu) et la démonstration théorique et
expérimentale que la propriété de mémoire de forme des réseaux polymères amorphes n’est
que l’expression de deux de leurs propriétés intrinsèques, viscoélasticité et équivalence temps-
température (J. Diani).

C. R. Mécanique, 2020, 348, n 10-11, 781-783
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Pendant cette longue carrière, Pierre Gilormini a toujours préféré « savoir faire » plutôt que
« faire faire ». Il a ainsi guidé de jeunes chercheurs par l’exemple : exemple de son travail, de sa
rigueur, de sa curiosité, de son expertise et de son indépendance. Cette indépendance lui a per-
mis de travailler avec un grand nombre de collaborateurs qu’il a toujours choisis pour la richesse
des échanges qu’il pouvait y trouver. Il semble complètement naturel que ce soit par l’intermé-
diaire d’un numéro spécial des Comptes Rendus de Mécanique de l’Académie des Sciences que
nous puissions rendre hommage à ce chercheur à qui la diffusion de la connaissance tient tant à
cœur et dont cette revue détient l’une de ses très importantes contributions [P. Gilormini, 1995.
Insuffisance de l’extension classique du modèle auto-cohérent au comportement non-linéaire.
Comptes-Rendus de l’académie des sciences, série II, 320, 115-122].

J. Diani
Palaiseau
julie.diani@polytechnique.edu

O. Castelnau
Paris
olivier.castelnau@ensam.eu

F. Chinesta
Paris
francisco.chinesta@ensam.eu
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Physico-chemical approach of polymer

chemical ageing: a short review

Emmanuel Richauda

a Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM
Universite, 151 boulevard de l’Hopital, 75013 Paris, France

E-mail: emmanuel.richaud@ensam.eu

Abstract. Polymers are known to degrade in their use conditions, with the risk that their properties reach
unacceptable level. This paper reviews the modeling of modifications occurring at molecular and architec-
tural changes occurring during their chemical ageing, with the aim of predicting the physical (mechanical)
properties, all values being linked by structure properties relationships.

Keywords. Polymers, Ageing, Modeling, Oxidation, Hydrolysis, Kinetics.

Manuscript received 13th October 2020, accepted 19th November 2020.

1. Introduction

Polymers and composites become increasingly used because weight and costs saving but also
improved specific mechanical properties such as ratio of stiffness or failure stress over density
or fatigue resistance. For many industrial applications, long lasting properties are needed which
arises the issue of interaction between polymer and its environment. One can usually distinguish

• physical ageing where the polymer skeleton remains unchanged but the distance be-
tween polymer chains is modified for example in case of water diffusion in an epoxy-
diamine thermoset networks [1, 2], or physical ageing by structural relaxation for glassy
polymers aged under their glass transition temperature [3]. Diffusion of penetrants gen-
erally induces a decrease in glass transition and stiffness [1, 4, 5], contrarily to structural
relaxation inducing an increase in yield stress for example [6, 7]. Physical ageing is in
principle reversible [8]. In the case of water ageing, the amount of desorbed water after
complete drying must correspond to amount of absorbed one during immersion (apart
if penetrant reacts which is a case of chemical ageing described here below [9]).

• chemical aging where polymer slowly reacts with chemicals (water, oxygen. . . ) under the
action of UV light, temperature, or gamma rays [10–12]. Chemical changes are usually
irreversible.
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Scheme 1. Hydrolysis of an ester group.

In many cases, designers try to address the lifetime prediction issues by using very simple laws
(one the best examples is the use of Arrhenius law for lifetime value [13]) but those later however
fail because of the complexity of physico-chemical phenomena [14]. That is the reason why non
empirical approach is needed and involves a multiscale modeling of degradation phenomena
[15], the aim of which is:

• to predict the rate of degradation at molecular scale giving the rate of structural changes
• to use structure properties relationships for predicting the consequences of any given

change at molecular scale.

The combination of both approaches allows predicting the time at which engineering proper-
ties are out of the range of required properties, in other words the lifetime of polymer.

2. Ageing study at molecular scale

Water permeation can induce a decrease in thermomechanical properties (glass transition, elas-
tic modulus. . . ) due to plasticization. However, the main damage induced by water is observed
in case where water slowly reacts with specific groups in polymer (esters, amides. . . ) generating
chain scissions (Scheme 1) as observed for example in polyesters (PLA, PET) [16] or polyamides
[17, 18].

For this last mechanism, a simple equation can be implemented for describing the changes
of ester groups (in concentration [e]) belonging to polymer chain and the appearance of chain
scissions:

d[e]

dt
=−ku[w][e]. (1)

This means that there case where water is poorly soluble in polymer but reacts by hydrolysis
(as for example PBT where the maximal water uptake is about 1%) but the damage is higher than
in some case where water is more soluble but does not react with polymer (as for example the
DGEBA-DDS epoxy thermoset).

The general mechanism for hydrolysis is the following but several subcases can be distin-
guished

• reversible hydrolysis, for example in PA11 [17]
• water diffusion controlled hydrolysis [19]
• auto-accelerated hydrolysis, either because hydrolysis induced groups induce an in-

crease in hydrophily [18, 20]

[w] = [w]0 +a.s. (2)

Or because carboxylic acids usually catalyze further hydrolysis reactions. In this case, a sec-
ondary equation must be added [21]:

e +w +ac → s +ac.

The rate expression becomes:

d[e]

dt
=−ku[w][e]−kc [w][e][ac] (3)

C. R. Mécanique, 2020, 348, n 10-11, 785-795
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Scheme 2. Radical oxidation of polyethylene.

i.e., since each ester is transformed into an acid by hydrolysis:

d[e]

dt
=−ku[w][e]−kc [w][e]([e]0 − [e]) (4)

and the following expression of the ester concentration is obtained:

[e] = [e]0
(1+ A)exp−Kt

1+ A exp−Kt
with K = kc [e] f [w] and: A = kc [e]0

ku
. (5)

In the case of thermal oxidation, there are other mechanisms responsible for chemical
changes, as illustrated in Scheme 2 for the radical oxidation of polyethylene [22].

Basing on the Autooxidation Scheme established by Bolland and Gee [23], the study of the
oxidation of aliphatic substrates lead to the following mechanistic scheme [24, 25]:

δPOOH →αP◦+βPOO◦+γ1P = O+γ2s k1

P◦+O2 → POO◦ k2

POO◦+PH → POOH+P◦ k3

POO◦+POO◦ → inactive products k6.

In the frame of radical kinetics, this mechanistic scheme leads to a differential system. This
latter can be analytically solved in some simple case (using some simplifying hypothesis) or
numerically solved. The outputs of the model are the concentration in reactive species ([P◦],
[POO◦], [POOH]) and of stable products (carbonyls, chain scissions. . . ):

d[P = O]

dt
= γ1k1[POOH]δ (6)

ds

dt
= γ2k1[POOH]δ. (7)

In most cases, the derived kinetic models are more complex (in order to take into account
the occurrence of other termination processes [26], reaction of double bonds [27, 28], presence
of stabilizers [29], reaction-diffusion coupling of oxygen [30]. . . ). The finality remains the same:
predict the concentration in trackers of chemical ageing (and chemical changes) versus time.
Rate constants are usually determined in accelerated conditions (i.e. at enhanced temperatures)
and later extrapolated to temperatures corresponding to use conditions using the well-known
Arrhenius equation:

ki (T ) = ki 0 ·exp

(
− Ei

RT

)
. (8)

The validation of such kinetic models by comparing outputs with for example experimental
observations by FTIR remains quite tricky for example:

• in a case of hydrolysis, esters are consumed to give carboxylic acids but the signal of both
group overlap.

C. R. Mécanique, 2020, 348, n 10-11, 785-795
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• in the case of radical oxidation of hydrocarbon polymers, a broad band appears with sev-
eral maximal or shoulders (for example 1713 cm−1 for carboxylic acids, 1720 cm−1 for ke-
tones, 1735 cm−1 for esters, 1780 cm−1 for lactones in polyethylene [31]). At first, it is not
trivial to find out the mechanism of formation for some of those species (for example lac-
tones, or esters). Moreover, some species are accompanied by a chain scission (carboxylic
acid) and some other not (ketones) so that the assessment of the macromolecular dam-
age from FTIR spectra requires to perform a reliable deconvolution and the knowledge of
the molar absorptivity of each species.

In other words, approach can be flawed due to the complexity of the polymer. It is thus needed
to study the effect of degradation on polymer architecture so as to predict its effect on mechanical
properties.

3. Study of degradation at macromolecular scale

In a second step, the damage of polymer must be studied at macromolecular scale in order
to implement structure properties involved in polymer ageing. For that purpose, experimental
approaches are needed to assess the concentration in structural changes, i.e. chain scissions
and/or crosslinks.

In thermoplastic polymers, the predominance of chain scissions or crosslink can be quite
easily estimated from the changes in molar mass. Those latter can be measured:

• from rheometric measurements at molten state, where the Newtonian viscosity is linked
to molar mass by the formula [32]:

η= k ·M 3.4
w . (9)

There are several papers illustrating the predominance of chain scissions for example in
linear polymers such as polyolefins [33], and the predominance of crosslinking in unsaturated
(uncured) elastomers such as Ethylene Propylene Diene Monomer (in link with the presence of
carbon carbon double bonds) [34].

• from liquid chromatography, this latter allowing to estimate both number and weight
average molar mass. Using some statistical analysis proposed by Saito, the concentration
in chain scission and in crosslink can be simultaneously estimated by [35]:

1

MN
− 1

MN 0
= s −x (10)

1

MW
− 1

MW 0
= s

2
−2x (11)

where s and x are respectively the concentration in chain scissions and in crosslinking.

Elastomers and thermoset networks are in essence insoluble and cannot be molten, which
prevents the use of the here above experimental techniques. The “key” parameter is the concen-
tration elastically active chains (linked to 2 crosslink nodes), which must increase in case of pre-
dominant crosslinking. Experimentally, the concentration in chain scission can be assessed

• from the residual soluble fraction (sol) using the Charlesby approach [36, 37]:

ν

ν0
=

(
1− sol1/2

1− sol1/2
0

)2

(12)

• or the glass transition value (Tg ) [38]:

Tg =
Tg l

1−KDM ·F · x
. (13)

C. R. Mécanique, 2020, 348, n 10-11, 785-795
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Figure 1. Schematization of an undegraded ideal networks (all chains are elastically active
and denoted by A) and of an degraded networks. NB: arrows indicate that chain are linked
to other chains belong to network whereas open circle correspond to the end of a dangling
chain.

The concentration in chain scissions can thus be estimated from the decrease in elastically
active chains. In a simplified approach, on can assume that for a tridimensional network [39]:

n = n0 −3s +2x (if chain scission and crosslinking coexist) (14)

or n = n0 −3s (if they are only chain scissions). (15)

In this last case, some simplified relationships can be derived [36]

s = ν0

3

(
1−

(
1− sol1/2

1− sol0
1/2

)2)
(16)

s =
Tg l

2KDM F
·
(

1

Tg
− 1

Tg 0

)
. (17)

However, Equations (14)–(15) are a simple approximation which is valid only at low conversion
degree. For summarizing, it is clear that one chain scission induces the loss of three elastically
active chains (denoted by A in Figure 1) in an unaged network. Reversely, at higher conversion
degree of the chain scission process, networks looks like depicted in Figure 1b. One can thus
imagine that a chain scission can occur on a chain denoted by B, C or E dangling chain with a
limited consequence on elastic properties, or on a dangling chain (denoted by D) which is linked
by one single node to the rest of network, and becomes soluble.

A most refined approach was proposed by Gilormini et al. [21]. Network is here composed
of a (elastically active chains connected to two nodes connected themselves with elastically
active chains), b (elastically active chains connected to one node connected with elastically active
chains and another node connected with dangling chains).

In this approach, the concentration of reactive groups hold by “a chains” and “b chains”
changes with the concentration of chain scissions occurring on each kind of chain (sA , sB ) as
follows:

d[a]

dt
=−5L

dsA

dt
−4L

dsB

dt
(18)

d[b]

dt
= 4L

dsA

dt
+2L

dsB

dt
. (19)

The concentration in chain scissions can be predicted as follows

s = sA + sB (20)
dsA

dt
= [a]

[e]

ds

dt
and

dsB

dt
= [b]

[e]

ds

dt
(21)

C. R. Mécanique, 2020, 348, n 10-11, 785-795
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and
1

[e]

ds

dt
= K

1+ A exp(−Kt)
. (22)

The solution of the differential system gives:

[a]

[e]0
=

[
cos

(p
15 ·K Lu

2

)
− 7p

15
sin

(p
15 ·K Lu

2

)]
·exp

(
−3

2
·K Lu

)
(23)

[b]

[e]0
= 8p

15
sin

(p
15 ·K Lu

2

)
·exp

(
−3

2
·K Lu

)
(24)

with

u =− 1

K
ln(1−x). (25)

Those equation lead to a fair prediction of decrease in elastically active chain concentrations
which is sufficient for several industrial applications (Figure 2).

It remains interesting to focus on the prediction of degel, i.e. the critical stage at which chain
scissions have cleared out all the elastically active chains and the network reverts back to a soluble
material (with the possibility to regenerate chemicals and repolymerize them later). An original
approach for predicting the degelation was developed by Gilormini et al. [40]: in the simplest
version of this approach, a chain contains L reactive groups likely to undergo a chain scission
process.

The probability of any chain to be uncut is given by:

u(x) = (1−x)L . (26)

Let us focus now on the possibility for a node to belong to the gel or to belong to the soluble
fraction of network (i.e. to be a free chain). The Figure 3 summarizes three possibilities:

• either the node is attached to 2 soluble chains, or at least 1 or 2 chains are attached to
the network (with a probability g (x). It gives the probability of the node to belong to the
soluble fraction:

P (x) = [1− g (x)]2. (27)

So that the probability for node#2 to belong to the gel:

P (x) = 1− [1− g (x)]2 if f = 3 (28)

or:

P (x) = 1− [1− g (x)] f −1 for any f . (29)

It gives the probability for a chain to be uncut and belong to the gel:

g (x) = u(x) · [1− (1− g (x)) f −1] (30)

so that, at degel:

xd = 1− 1

( f −1)1/L
. (31)

This approach was for example successfully validated in the case of methyl methacrylate–
ethylene glycol di methacrylate radiolysis [41]. It is clear that it will be helpful in a close fu-
ture given the increasing need to recycle by mechanical or chemical processes thermosets and
rubbery networks.
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Figure 2. Decrease in elastically active chains concentration of a polyester urethane rub-
bery network for several ageing conditions.

4. Structure-properties involved in the prediction of ageing induced failure

According to previous parts, it seems possible to predict the appearance of chain scissions or
crosslink nodes in either thermoplastics or networks, and subsequently the changes in average
molar mass (for thermoplastics) or crosslink density (for networks). It remains to establish the
effect of such changes on the mechanical properties of polymers.

In the field of thermoplastic polymers undergoing mainly chain scissions, the main effect is
the plasticity loss. A first end of life criteria was established basing on the observation that plastic
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Figure 3. Schematization of network degradation.

Figure 4. Schematization of embrittlement criterion for thermoplastic polymers.

deformation was possible only when residual average molar mass was higher than a “critical
value” (denoted by M ′

c ) as depicted in Figure 4a. This latter was carefully discussed [42] in the
past and it was observed that:

• in amorphous thermoplastics (PMMA, PC, PS. . . ), its value was slightly higher than the
molar mass between entanglements, indicating that failure occurs when the polymer is
severely damaged.

• in semi-crystalline polymers (in particular with amorphous phase in rubbery state), the
ratio of “critical” molar mass to the molar mass between entanglement clearly exceeds
1, meaning that only a few chain scissions strongly reduce the plasticity. This pointed
out the “morphological” origin of embrittlement. The following scenario was evidenced:
chain scissions liberate “small” segments in amorphous phase and those latter join the
crystalline phase which is, in essence, less deformable. This led to a “mixed” end of
life criterion expressed in an “average molar mass–crystalline ratio” window (Figure 4b):
polymers made with longer chains and poorly crystalline are ductile whereas polymers
made of short chains with a high crystalline ratio are brittle.

In rubbery networks, one of the key properties is the changes in elastic modulus. Based on
the fact that elasticity has an entropic origin in rubbery networks, it is established for years that
elastic modulus depends on the concentration in elastically active chains i.e. [43]:

G = nA ·RT (32)

with

E = 3 ·G . (33)
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The failure of networks can be described by the critical strain energy release rate in mode I
(GIC). This later is shown to vary as follows in network:

• at first, GIC can increase with the crosslinking concentration because crosslinking posi-
tively influences the elastic modulus,

• in the same time, crosslinking decreases the maximal chain extensibility.

It results in curves displaying a maximum as depicted in [44].
In thermosets, there are also data highlighting the relationship between crosslink density and

toughness [45]. However, it was recently proposed that for networks with a sub-glassy relaxation
such as epoxies, the end of life is governed by the depletion of groups responsible for this low
temperature mobility [46].

5. Conclusions

This short paper summarizes the mathematical description of multiscale changes induced by
the “chemical” ageing, i.e. the effect of the reactions of chemicals (oxygen, water) with polymer.
Kinetic approaches can allow a fine prediction of the rate of chemical changes at “molecular
scale”. The use of statistical theories allows thus to address the changes at macromolecular scale,
even ut to advanced degradation levels (such as the degelation). Last, the use of well-known
structure properties relationships established for virgin polymers, together with the prediction
of changes in macromolecular architecture with chains scissions or crosslinking allow predicting
the changes in some physical properties and later offer to engineers a complete physico-chemical
toolbox for addressing polymer lifetime issues by a non-empirical approach.

Acknowledgements

The author wants to express his sincere gratitude to Dr. Pierre Gilormini for his collaboration on
degradation in polymers networks (Refs [21, 40, 41]). Besides his innovative approaches, Pierre
is always a very accessible colleague, and is an example of rigor and curiosity who has inspired
many young researchers in PIMM.

References

[1] I. Merdas, F. Thominette, A. Tcharkhtchi, J. Verdu, “Factors governing water absorption by composite matrices”,
Comput. Sci. Tech. 62 (2002), p. 487-492.

[2] P. Gilormini, J. Verdu, “On the role of hydrogen bonding on water absorption in polymers”, Polymer 42 (2018), p. 164-
169.

[3] G. M. Odegard, A. Bandyopadhyay, “Physical aging of epoxy polymers and their composites”, J. Polym. Sci. B 49
(2011), p. 1695-1716.

[4] B. De’Nève, M. E. R. Shanahan, “Water absorption by an epoxy resin and its effect on the mechanical properties and
infra-red spectra”, Polymer 34 (1993), p. 5099-5105.

[5] B. de Nève, M. E. R. Shanahan, “Effects of humidity on an epoxy adhesive”, Int. J. Adhes. Adhes. 12 (1992), p. 191-196.
[6] T. D. Chang, J. O. Brittain, “Studies of epoxy resin systems. Part C: Effect of sub-Tg aging on the physical properties

of a fully cured epoxy resin”, Polym. Eng. Sci. 22 (1982), p. 1221-1227.
[7] T. D. Chang, J. O. Brittain, “Studies of epoxy resin systems. Part D: Fracture toughness of an epoxy resin: a study of

the effect of crosslinking and sub-Tg aging”, Polym. Eng. Sci. 22 (1982), p. 1228-1236.
[8] J. M. Hutchinson, “Physical aging of polymers”, Prog. Polym. Sci. 20 (1995), p. 703-760.
[9] J. El Yagoubi, G. Lubineau, F. Roger, J. Verdu, “A fully coupled diffusion-reaction scheme for moisture sorption–

desorption in an anhydride-cured epoxy resin”, Polymer 53 (2012), p. 5582-5595.
[10] J. E. Pickett, “Introduction to polymer weathering, stabilization, and testing”, in Service Life Prediction of Polymers

and Coatings (C. C. White, M. E. Nichols, J. E. Pickett, eds.), Elsevier, Oxford, 2020, p. 1-18.
[11] D. J. Carlsson, “Degradation and stabilization of polymers subjected to high energy radiation”, in Atmospheric

Oxidation and Antioxidants (G. Scott, ed.), Elsevier, Amsterdam, 1993, p. 495-530.

C. R. Mécanique, 2020, 348, n 10-11, 785-795



794 Emmanuel Richaud

[12] J. E. Pickett, D. J. Coyle, “Hydrolysis kinetics of condensation polymers under humidity aging conditions”, Polym.
Degrad. Stab. 98 (2013), p. 1311-1320.

[13] F. Gugumus, “Effect of temperature on the lifetime of stabilized and unstabilized PP films”, Polym. Degrad. Stab. 63
(1999), p. 41-52.

[14] M. Celina, K. T. Gillen, R. A. Assink, “Accelerated aging and lifetime prediction: review of non-Arrhenius behaviour
due to two competing processes”, Polym. Degrad. Stab. 90 (2005), p. 395-404.

[15] M. C. Celina, “Review of polymer oxidation and its relationship with materials performance and lifetime prediction”,
Polym. Degrad. Stab. 98 (2013), p. 2419-2429.

[16] J. E. Pickett, D. J. Coyle, “Hydrolysis kinetics of condensation polymers under humidity aging conditions”, Polym.
Degrad. Stab. 98 (2013), p. 1311-1320.

[17] B. Jacques, M. Werth, I. Merdas, F. Thominette, J. Verdu, “Hydrolytic ageing of polyamide 11. 1. Hydrolysis kinetics in
water”, Polymer 43 (2002), p. 6439-6447.

[18] C. El-Mazry, O. Correc, X. Colin, “A new kinetic model for predicting polyamide 6-6 hydrolysis and its mechanical
embrittlement”, Polym. Degrad. Stab. 97 (2012), p. 1049-1059.

[19] V. Bellenger, M. Ganem, B. Mortaigne, J. Verdu, “Lifetime prediction in the hydrolytic ageing of polyesters”, Polym.
Degrad. Stab. 49 (1995), p. 91-97.

[20] A. Ballara, J. Verdu, “Physical aspects of the hydrolysis of polyethylene terephthalate”, Polym. Degrad. Stab. 26 (1989),
p. 361-374.

[21] E. Richaud, P. Gilormini, M. Coquillat, J. Verdu, “Crosslink Density Changes during the Hydrolysis of Tridimensional
Polyesters, Macromol”, Theor. Simul. 23 (2014), p. 320-330.

[22] J. Lemaire, R. Arnaud, J.-L. Gardette, “Low temperature thermo-oxidation of thermoplastics in the solid state”, Polym.
Degrad. Stab. 33 (1991), p. 277-294.

[23] J. L. Bolland, G. Gee, “Kinetic studies in the chemistry of rubber and related materials. II. The kinetics of oxidation of
unconjugated olefins”, Trans. Faraday Soc. 42 (1946), p. 236-243.

[24] S. Verdu, J. Verdu, “A new kinetic model for polypropylene thermal oxidation at moderate temperatures”, Macro-
molecules 30 (1997), p. 2262-2267.

[25] L. Audouin, V. Gueguen, A. Tcharkhtchi, J. Verdu, ““Close loop” mechanistic schemes for hydrocarbon polymer
oxidation”, J. Polym. Sci. A 33 (1995), p. 921-927.

[26] E. Richaud, F. Farcas, P. Bartoloméo, B. Fayolle, L. Audouin, J. Verdu, “Effect of oxygen pressure on the oxidation
kinetics of unstabilised polypropylene”, Polym. Degrad. Stab. 91 (2006), p. 398-405.

[27] P. Y. Le Gac, G. Roux, J. Verdu, P. Davies, B. Fayolle, “Oxidation of unvulcanized, unstabilized polychloroprene: a
kinetic study”, Polym. Degrad. Stab. 109 (2014), p. 175-183.

[28] X. Colin, L. Audouin, J. Verdu, “Kinetic modelling of the thermal oxidation of polyisoprene elastomers. Part 1:
Unvulcanized unstabilized polyisoprene”, Polym. Degrad. Stab. 92 (2007), p. 886-897.

[29] E. Richaud, B. Fayolle, J. Verdu, “Polypropylene stabilization by hindered phenols – Kinetic aspects”, Polym. Degrad.
Stab. 96 (2011), p. 1-11.

[30] L. M. Rincon-Rubio, B. Fayolle, L. Audouin, J. Verdu, “A general solution of the closed-loop kinetic scheme for the
thermal oxidation of polypropylene”, Polym. Degrad. Stab. 74 (2001), p. 177-188.

[31] M. Gardette, A. Perthue, J.-L. Gardette, T. Janecska, E. Földes, B. Pukánszky, S. Therias, “Photo- and thermal-oxidation
of polyethylene: Comparison of mechanisms and influence of unsaturation content”, Polym. Degrad. Stab. 98 (2013),
p. 2383-2390.

[32] W. W. Graessley, “Viscoelasticity and flow in polymer mets and concentrated solutions”, in Physical Properties of
Polymers (E. Mark, A. Eisenberg, W. Graessley, L. Mandelkern, J. Koenig, eds.), ACS, Washington, DC, 1984, p. 97-153.

[33] B. Fayolle, L. Audouin, J. Verdu, “A critical molar mass separating the ductile and brittle regimes as revealed by
thermal oxidation in polypropylene”, Polymer 45 (2004), p. 4323-4330.

[34] A. Kumar, S. Commereuc, V. Verney, “Ageing of elastomers: a molecular approach based on rheological characteriza-
tion”, Polym. Degrad. Stab. 85 (2004), p. 751-757.

[35] O. Saito, “On the effect of high energy radiation to polymers I. Cross-linking and degradation”, J. Phys. Soc. Jpn 13
(1958), no. 2, p. 198-206.

[36] C. Galant, B. Fayolle, M. Kuntz, J. Verdu, “Thermal and radio-oxidation of epoxy coatings”, Progr. Org. Coat. 69 (2010),
p. 322-329.

[37] A. Charlesby, S. H. Pinner, “Analysis of the solubility behaviour of irradiated polyethylene and other polymers”, Proc.
R. Soc. Lond. A 249 (1959), p. 367-386.

[38] E. A. DiMarzio, “On the second-order transition of a rubber”, J. Res. Nat. Bur. Stand. A Phys. Chem. 68 (1964), p. 611-
617.

[39] E. Ernault, E. Richaud, B. Fayolle, “Thermal-oxidation of epoxy/amine followed by glass transition temperature
changes”, Polym. Degrad. Stab. 138 (2017), p. 82-90.

[40] P. Gilormini, E. Richaud, J. Verdu, “A statistical theory of polymer network degradation”, Polymer 55 (2014), p. 3811-
3817.

C. R. Mécanique, 2020, 348, n 10-11, 785-795



Emmanuel Richaud 795

[41] P. Gilormini, E. Richaud, J. Verdu, “Radiochemical “degelation” of polymethyl methacrylate networks”, Polymer 111
(2017), p. 130-136.

[42] B. Fayolle, E. Richaud, X. Colin, J. Verdu, “Review: Degradation-induced embrittlement in semi-crystalline polymers
having their amorphous phase in rubbery state”, J. Mater. Sci. 43 (2008), p. 6999-7012.

[43] J. E. Mark, “The rubber elastic state”, in Physical Properties of Polymers (E. Mark, A. Eisenberg, W. W. Graessley,
L. Mandelkern, J. L. Koenig, eds.), ACS, Washington, DC, 1984, p. 1-54.

[44] P. Y. Le Gac, M. Broudin, G. Roux, J. Verdu, P. Davies, B. Fayolle, “Role of strain induced crystallization and oxidative
crosslinking in fracture properties of rubbers”, Polymer 55 (2014), p. 2535-2542.

[45] J.-P. Pascault, H. Sautereau, J. Verdu, R. J. J. Williams, Thermosetting Polymers (Plastics Engineering Handbook), 1st
ed., CRC Press, 2002, Ch. 12.

[46] E. Ernault, E. Richaud, B. Fayolle, “Origin of epoxies embrittlement during oxidative ageing”, Polym. Test. 63 (2017),
p. 448-454.

C. R. Mécanique, 2020, 348, n 10-11, 785-795





Comptes Rendus
Mécanique
2020, 348, n 10-11, p. 797-806
https://doi.org/10.5802/crmeca.15

Contributions in mechanics of materials

Free vibrations of linear viscoelastic polymer

cantilever beams

Julie Diania

a LMS, CNRS UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau,
France

E-mail: julie.diani@polytechnique.edu

Abstract. The free vibrations of cantilever slender beams of polymers, which are viscoelastic materials, are
theoretically described using the simple Euler–Bernoulli assumption. The comparison between the theory
and the experimental data collected for a thermoplastic elastomer, polyether block amide, shows very
satisfactory results. Consequently, the theory is used for a thoughtful analysis of the impact of the material
parameters and the beam geometry on its free vibration. Finally, the comparison of the dynamic behaviors of
two polymers, using the free vibration test and a simple uniaxial tension/relaxation test, is discussed.

Résumé. Les vibrations libres d’une poutre encastrée de polymère, mesurées expérimentalement sont repro-
duites théoriquement à l’aide de l’hypothèse des poutres d’Euler–Bernoulli, une fois le comportement vis-
coélastique du matériau identifié classiquement. La théorie permet alors de simplement faire varier les pa-
ramètres matériaux et géométriques de la poutre afin de tester leurs impacts sur le test de vibration libre.
En utilisant l’analyse théorique et en observant la réponse de deux matériaux lors d’un essai simple de trac-
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1. Introduction

In shoe sole applications, polymers are preferred for various reasons such as comfort, lightness,
resistance to wear, cushioning effect, and so on. Good shock absorption is often desired, but
in some sport applications, like running, elastic energy recovery is also crucial to providing
good bouncing. For this reason, sport brands together with polymer companies are looking for
materials offering a perfect compromise. To compare materials, the free vibration of a slender
cantilever beam was introduced by Arkema as a characterization test. To obtain a quantitative
analysis of this test, the vibration of a linear viscoelastic cantilever beam was calculated using
the Euler–Bernoulli beam theory. The theory was first validated on actual experimental data and
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Figure 1. Free vibration test: the cantilever beam is subjected to an initial vertical displace-
ment at x = L and then let go.

then used to understand better the impact of the material viscoelastic parameters and of the
beam geometry on its free vibration. Note that most contributions focusing on the vibrations of
viscoelastic cantilever beams deal with theory (see [1–4]) without any experimental validation
or application perspective. However, [5] provides a comparison between experiments and the
Euler–Bernoulli theory for an excited laminated beam whose behavior is defined by a simple
Kelvin–Voigt model.

In Section 2, the basic equations are briefly recalled for elastic and linear viscoelastic materials.
In Section 3, the theory is validated on experimental data recorded on metal and polymer
beams. Then, the impacts of the material parameters and of the beam geometry are analyzed.
Finally, a simple uniaxial tension/relaxation characterization is used to predict the performance
of different materials during the free vibration test.

2. Theory

2.1. Elastic problem

Let us consider a homogeneous elastic beam of length L, uniform cross-section A, mass density
ρ, and Young modulus E (Figure 1). Using the Euler–Bernoulli beam theory [6], the equation of
motion of the beam is given by

E I
∂4w

∂x4 +ρA
∂2w

∂t 2 = 0, 0 ≤ x ≤ L, (1)

where I is the second moment of area of the beam cross-section. Seeking for a solution of the
form w(x, t ) =ϕ(x)ψ(t ), Equation (1) transforms into

− E I

ρAϕ(x)

∂4ϕ(x)

∂x4 = 1

ψ(t )

∂2ψ(t )

∂t 2 =−ω2 (2)

with ω being constant. Therefore, the problem consists in solving a system of two differential
equations 




∂4ϕ(x)

∂x4 −δ4ϕ(x) = 0, δ4 = ρAω2

E I
∂2ψ(t )

∂t 2 +ω2ψ(t ) = 0

(3)
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of general solution
{
ϕ(x) =α1 sinhδx +α2 coshδx +α3 sinδx +α4 cosδx
ψ(t ) =α5 sinωt +α6 cosωt

(4)

with parametersα1,α2,α3, andα4 being determined by the boundary conditions and parameters
α5 and α6 being defined by the initial conditions. For a cantilever beam clamped at one end
(x = 0) and free at the other end (x = L), the boundary conditions can be written as

w(0, t ) = 0,
∂w

∂x

∣∣∣∣
x=0

= 0,
∂2w

∂x2

∣∣∣∣
x=L

= 0,
∂3w

∂x3

∣∣∣∣
x=L

= 0. (5)

Introducing these boundary conditions into (4), parameters αi satisfy

α1 +α3 = 0, α2 +α4 = 0 (6)(
sinhδL+ sinδL coshδL+cosδL
coshδL+cosδL sinhδL− sinδL

)(
α1

α2

)
=

(
0
0

)
, (7)

and the non-trivial solution is written as

cosδnL coshδnL =−1. (8)

The first few roots have already been calculated: δ1L = 1.87510, δ2L = 4.69409, and δ3L = 7.85340
(see for instance [4] for a report of solutions for different boundary conditions).

Let us focus on the first mode of vibration. For the initial conditions w(L,0) = ∆i and
∂w/∂t |t=0 = 0, the solution is written as

w(x, t ) = ∆i

coshδ1L−cosδ1L+ (sinδ1L− sinhδ1L) cosδ1L+coshδ1L
sinhδ1L+sinδ1L

× cos

(√
E I

ρA
δ2

1t

)(
coshδ1x −cosδ1x + (sinδ1x − sinhδ1x)

cosδ1x +coshδ1x

sinhδ1x + sinδ1x

)
. (9)

In order to compare the solution to an actual experimental result obtained on an elastic beam,
one needs to calculate the solution, taking into account air friction and grip system friction. In
such a case, Equation (1) transforms into

E I
∂4w

∂x4 + c f
∂w

∂t
+ρA

∂2w

∂t 2 = 0, 0 ≤ x ≤ L. (10)

Variable separation still applies and by writing the solution as w(x, t ) = ejωtϕ(x) (with j2 = −1),
one obtains

E I
∂4ϕ(x)

∂x4 + (c f jω−ρAω2)ϕ(x) = 0 (11)

⇔ ∂4ϕ(x)

∂x4 −δ4ϕ(x) = 0 with δ4 =
ρAω2 − c f jω

E I
. (12)

The solution of the latter equation has been defined in (3), with values of δn still being the roots
of (8). Therefore, for each vibration mode δn , the value of ωn is obtained by solving

ρAω2
n − c f jωn −E Iδ4

n = 0. (13)

Note that the values of ωn are now complex. Focusing on the first mode δ1 only and considering
the same boundary and initial conditions, the free vibration of the cantilever beam is written as

w(x, t ) = e−Im(ω1)t cos(Re(ω1)t )

× ∆i

coshδ1L−cosδ1L+ (sinδ1L− sinhδ1L) cosδ1L+coshδ1L
sinhδ1L+sinδ1L

×
(
coshδ1x −cosδ1x + (sinδ1x − sinhδ1x)

cosδ1x +coshδ1x

sinhδ1x + sinδ1x

)
. (14)
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2.2. Linear viscoelastic materials

The viscoelastic behavior of a polymer at infinitesimal strain is well described by a generalized
Maxwell model. The latter consists of a parallel scheme of an elastic branch characterized by
Young modulus E∞ and viscoelastic branches defined by relaxation times and associated Young
moduli (τi ,Ei ). The vibration problem (10) is now written as [7, 8]

I
∫ t

0

(
E∞+

∑
i

Ei e
− t−τ

τi

)
∂

∂τ

[
∂4w(x,τ)

∂x4

]
dτ+ c f

∂w

∂t
+ρA

∂2w

∂t 2 = 0, 0 ≤ x ≤ L. (15)

Then, introducing the solution of the form w(x, t ) = ejωtϕ(x) leads to the differential equation

I

(
E∞+

∑
i

Ei
jωτi

1+ jωτi

)
∂4ϕ(x)

∂x4 + (c f jω−ρAω2)ϕ(x) = 0 (16)

⇔ ∂4ϕ(x)

∂x4 −δ4ϕ(x) = 0, with δ4 =
ρAω2 − c f jω

I
(
E∞+∑

i Ei
jωτi

1+jωτi

) . (17)

Therefore, the problem to solve is similar to the previous case, and solution (14) still holds with
ω1 satisfying

ρAω2
1 − c f jω1 − I

(
E∞+

∑
i

Ei
jω1τi

1+ jω1τi

)
δ4

1 = 0. (18)

The model is now tested against experimental data recorded on metal and polymer beams.

3. Model validation

3.1. Free vibration of a metal elastic beam

A metal reglet of thickness T = 0.5 mm, width W = 13 mm, and length L = 65 mm was subjected
to a free vibration test. After applying an initial displacement∆i =−1.5 mm at its free end (x = L),
the reglet was set free from vibrations. The vertical motion of the tip of the reglet was measured
with respect to time by a laser beam. Although the Young modulus of the reglet was unknown,
it was easily estimated thanks to the vibration frequency; a realistic value of E = 121 GPa was
obtained. The air friction and the clamp system damping were taken into account with the
parameter c f , which is fitted on the experimental data. A very satisfactory comparison between
the experiment and the theory equation (14) is displayed in Figure 2, showing the relevance of
the theory including the Euler–Bernoulli assumption.

3.2. Free vibration of a polymer beam

The thermoplastic elastomer commercialized by Arkema under the reference PEBAX®4033 was
used for experimental testing. The linear viscoelasticity of the polymer was characterized using
dynamic mechanical analysis in torsion. Rectangular specimens were subjected to torsion fre-
quency sweeps, from 10−2 to 10 Hz, at given temperatures, from −80 ◦C to 80 ◦C with 5 ◦C tem-
perature increments, using an Anton Paar MCR 502 rheometer. The time–temperature superpo-
sition assumption [9] was successfully applied. The experimental master curves for the material
built at 20 ◦C reference temperature, as well as the linear viscoelastic fit by a generalized Maxwell
model using 40 viscoelastic branches, are displayed in Figure 3. The values of the relaxation spec-
trum are given in Appendix A. Moreover, the elastic shear modulus at high temperature, G∞, was
recorded at 21 MPa. Note that the values of the shear moduli (G∞,Gi ) were then multiplied by a
correction parameter x = 0.95 depending on the specimen geometry, rationally defined in [10] to
account for the grip clamping when applying the Saint-Venant assumption [11] for rectangular
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Figure 2. Comparison between the Euler–Bernoulli beam theory and the experimental
data for the free vibration of a metal reglet (elastic material), taking into account air friction
and clamp damping through the fit coefficient c f .

Figure 3. Linear viscoelasticity master curves for PEBAX®4033 at 20 ◦C and generalized
Maxwell model fit.

specimens in torsion. Finally, the Young moduli E∞ and Ei are simply assumed as thrice the val-
ues of G∞ and Gi , respectively. Although this assumption is exact for E∞ and some values of Ei ,
it probably overestimates some other Ei values. Nonetheless, the comparison between the free
vibration experimental results and the theory will prove that this assumption is reasonable.

A rectangular beam of thickness T = 2.1 mm, width W = 10 mm, and length L = 65 mm
of PEBAX®4033 was subjected to the free vibration test. Theoretical solutions were calculated
using (14) with the initial displacement and the characterized linear viscoelastic behavior of the
polymer as inputs. A very satisfactory comparison between the model and the experimental data
is shown in Figure 4. Note that the theoretical solution was calculated with damping parameter
c f set to zero, assessing the first order of the material viscoelasticity in the vibration damping of
the polymer beam.

The simple Euler–Bernoulli theory is relevant to reproducing the experimental data obtained
with the free vibration experiment for the cantilever beam. Therefore, the theory will be used to
discuss the impact of the material behavior and of the beam geometry on its free vibration.
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Figure 4. Comparison between the Euler–Bernoulli beam theory and the experimental
data for the free vibration of a PEBAX®4033 polymer beam.

4. Analysis and discussion

4.1. Impact of material parameters

For the purpose of simplicity, the polymer beam geometry is considered as reference. To better
understand the impact of material parameters on the free vibration test, a simple Zener model
is considered for the viscoelastic behavior, consisting of an elastic branch characterized by
stiffness E∞ in parallel with a viscous branch characterized by stiffness Ev and relaxation time
τv . For practical purposes, the reference parameters are set to E∞ = 80 MPa, Ev = 20 MPa, and
τv = 0.002 s. This relaxation time is chosen to obtain a realistic duration for total damping in
comparison to the experimental data displayed in Figure 4. Finally, since the air friction and
clamp damping are observed to be of second order for the PEBAX® elastomer, the friction
parameter is set to zero (c f = 0). The beam is theoretically subjected to an initial vertical
displacement approximately −3 mm as in the experiment. The free vibration is plotted with
respect to time according to the material parameters.

First, several values of E∞ and Ev are considered while keeping the relaxation time τv constant.
Figure 5 shows a comparison of the theoretical free vibrations when keeping E∞ constant and
increasing Ev and when decreasing E∞ while keeping Ev constant. As one can expect, the stiffer
the viscous branch, the faster the damping. Moreover, the damping seems to be controlled by
the absolute value of Ev . For instance, the relative viscosity, defined by Ev /(E∞ + Ev ), has an
insignificant impact. Finally, the stiffness of the elastic branch E∞ affects the vibration frequency,
which decreases when E∞ decreases and all other parameters are kept constant.

Second, the stiffnesses E∞ and Ev are kept constant and τv is varied. Figure 6 shows the
comparisons of the free vibrations of the cantilever beam when multiplying or dividing the
relaxation time τv by a factor of five for reference relaxation times τref = 0.001 s and τref = 0.05 s.
One notes that the damping depends on the absolute value of the relaxation time and not on a
relative increase or decrease in a given reference value. In fact, considering the material and beam
dimensions, the best damping was obtained for τv ' 0.006 s. This can be observed from Figure 7
displaying the values of the imaginary part of ω as a function of τv .

Note that materials of different relaxation times τv and the same viscosity ηv = Ev ×τv may
show similar free vibration but not necessarily. Two limit cases are worth mentioning. When τ

becomes very large, the beam behaves like an elastic beam of Young modulus E∞+Ev . When τ

is very small, the beam behaves like an elastic beam of Young modulus E∞. Finally, note that
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Figure 5. Impact of the Zener material stiffnesses E∞ and Ev on the free vibration of the
cantilever beam.

Figure 6. Impact of the relaxation time of the Zener material on the beam vibration.

Figure 7. Estimates of Im(ω), characterizing the beam vibration damping, with respect to
the relaxation time τv .

it could be difficult to extend the later analysis to real polymers that present a spectrum of
relaxation times.
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Figure 8. Impact of the cantilever beam geometry on its free vibration.

4.2. Impact of beam geometry

Since the behavior of different materials may be compared using this test, let us focus on the
impact of the beam geometry on its free vibration. First, let us note that in (17) and (18), the
solution is independent of W . Moreover, two beams presenting the same ratios L/T show the
same vibration behavior. When increasing L/T , the frequency decreases and the damping is
delayed. It is therefore important when comparing two materials experimentally to consider
similar geometry in terms of dimension ratio L/T .

4.3. Material comparison

In Section 3.2, it was shown that it is possible to predict the free vibration of a cantilever poly-
mer beam when the linear viscoelasticity of the material is known. Nonetheless, the characteriza-
tion of the linear viscoelasticity of a polymer, as presented in Figure 3, is rather time-consuming.
Therefore, this section aims at proposing a test, simpler and faster to run, to predict how different
materials will perform in terms of the free vibration test. Since most labs studying materials are
equipped with standard uniaxial tensile machines and since relaxation tests are relevant to char-
acterizing the viscoelasticity of materials, only a uniaxial tension/relaxation test is performed.
For this purpose, PEBAX®4033 is compared with another PEBAX®, which is labeled 70R53. Both
materials are subjected to uniaxial tension up to a small deformation ε of approximately 1% at
a constant crosshead speed of 100 mm/min. Then the stress relaxation is recorded for 30 s. The
comparison of the material stiffness with respect to time, defined as (F /S0)/ε= E(t ) and recorded
during the relaxation step, is shown in Figure 9. PEBAX®70R53 appears significantly stiffer and
undergoes more stress relaxation at a faster rate. This result is in agreement with the ratios of
polyamide hard segments to polyether soft segments in both materials. PEBAX®4033 contains
significantly fewer polyamide hard segments than PEBAX®70R53 [12]. From this behavior char-
acterization combined with the previous vibration analyses, one expects the vibration frequency
of PEBAX®70R53 to be significantly higher than that of PEBAX®4033 due to its higher stiffness
and its vibration damping to be faster due to its higher viscosity (Ev = E(0)−E(∞)).

PEBAX®70R53 slender beams of the same dimension as that of PEBAX®4033 (T = 2.1 mm,
W = 10 mm, and L = 65 mm) were subjected to the same vibration test protocol. The com-
parison of the vibrating behaviors of both PEBAX® elastomers is displayed in Figure 10. As ex-
pected, PEBAX®70R53 vibrates at a higher frequency but for a significantly shorter duration.
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Figure 9. Relaxation moduli of PEBAX® elastomers 4033 and 70R53 obtained during re-
laxation tests at approximately 1% strain, attained with a uniaxial tensile test at a constant
crosshead speed of 100 mm/min.

Figure 10. Comparison of the free vibration of PEBAX® elastomers 4033 and 70R53 for
beams having the same geometries.

As a consequence, sport equipment suppliers looking to increase the damping will favor ma-
terials with high absolute viscosity.

5. Conclusion

This study aimed at providing quantitative insight into the test of free vibration of a viscoelas-
tic cantilever beam to compare polymers for dynamic applications. Applying the simple Euler–
Bernoulli beam theory for linear viscoelastic materials, a very satisfactory quantitative compar-
ison between the theory and the experimental data was obtained for a homogeneous slender
beam of PEBAX® showing a rather extended spectrum of relaxation times.

The validated theory was then used to analyze the impact of the material parameters and the
beam geometry on the free vibration behavior of a homogeneous rectangular beam described by
Zener viscoelastic behavior. On the one hand, the analysis showed that the vibration frequency
is related to the instantaneous stiffness of the material, and the frequency increases with the
material stiffness. On the other hand, the vibration damping increases with increase in the
difference between the instantaneous and long-term material stiffnesses. Although significant,
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the impact of the relaxation time is more difficult to analyze; no general trend has been discerned.
This is therefore especially true when considering an actual polymer beam presenting a spectrum
of relaxation times. However, it was shown that the free vibration of a polymer cantilever beam
is directly connected to quantities that may be measured by just a tension/relaxation test. It was
actually possible to predict how two materials would compare in terms of their free vibration
responses by simply comparing their mechanical responses to a tension/relaxation test.

Appendix A. Viscoelastic spectrum of PEBAX®4033 for reference temperature 20 ◦C

τi (s) Gi (MPa) τi (s) Gi (MPa)
8.083E−25 3.522E+01 3.776E−08 1.096E+01
5.507E−24 3.812E+01 2.573E−07 9.180E+00
3.754E−23 4.119E+01 1.754E−06 7.412E+00
2.559E−22 4.413E+01 1.195E−05 6.096E+00
1.744E−21 4.678E+01 8.144E−05 5.239E+00
1.188E−20 4.918E+01 5.553E−04 4.576E+00
8.098E−20 5.132E+01 3.783E−03 3.952E+00
5.517E−19 5.196E+01 2.578E−02 3.312E+00
3.761E−18 4.898E+01 1.757E−01 2.698E+00
2.563E−17 4.331E+01 1.198E+00 2.208E+00
1.747E−16 3.795E+01 8.160E+00 1.848E+00
1.190E−15 3.375E+01 5.563E+01 1.596E+00
8.114E−15 3.010E+01 3.791E+02 1.434E+00
5.532E−14 2.670E+01 2.583E+03 1.335E+00
3.769E−13 2.340E+01 1.761E+04 1.270E+00
2.568E−12 2.075E+01 1.200E+05 1.215E+00
1.750E−11 1.885E+01 8.175E+05 1.126E+00
1.193E−10 1.700E+01 5.573E+06 1.011E+00
8.129E−10 1.475E+01 3.798E+07 9.898E−01
5.542E−09 1.271E+01 2.588E+08 1.380E+00
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1. Introduction

For the modeling of the global and local mechanical behaviors of polycrystalline metals in a wide
range of temperature or strain rate—with polycrystalline models, such as Taylor [1–3] or self-
consistent models [4–6], with Finite Element (FE) codes [7–10], or with multiscale approaches
coupling discrete dislocations dynamic approaches with FE codes [11, 12]—it is quite usual to
use a rate-dependent crystalline constitutive law, which generally takes the form of the following
power law expressed on the slip system s [1]1

γ̇s = γ̇s
0

(
τs

τs
0

)n

. (1)

In this expression, n (or more often 1/n = m) characterizes the material rate sensitivity, γ̇s is the
slip rate, and τs the resolved shear stress. The term τs

0 is the so-called critical (or reference) re-
solved shear stress (which evolves with strain when hardening is considered), while the param-
eter γ̇S

0 is usually called a reference shear rate [7, 8, 12]. If the exponent n is the same for all sys-
tems and for all grains of a polycrystal, it is easy to show that this exponent is also the macro-
scopic rate sensitivity of the polycrystal as a whole [2]. By assuming the rate dependence at the
slip system level, this widely accepted phenomenological law presents the double advantage of
(i) assuming that plastic strain occurs solely by crystallographic slip on well-defined slip systems,
which is generally true for most metals at not too high temperatures and (ii) suppressing the long
standing problem of non-uniqueness in the choice of active slip systems usually encountered in
rate-independent crystalline plasticity [13–15].

Such a viscoplastic (VP) crystalline law has also been shown to be able to provide physically
based large-strain-rate-sensitive constitutive models, in order to interpret experiments on metals
performed up to quite large strain rates (up to 104 s−1, see e.g. [10]), in which localization of
plastic deformation is observed. Although rate sensitivity may be neglected on purpose for many
metallic alloys cold-deformed at low strain rates and strains, this may no longer be valid when
moderate or high strain rates are applied, or when high temperature data are considered. It is
now well known that, in such a case, the resulting localization of plastic flow is indeed strongly
influenced by the strain-rate sensitivity of the material [16–18], and to a lesser extent by the
deformation induced anisotropy [19]. In fact, many authors have observed an increased rate
sensitivity at large applied strain rates, and have postulated that this rate sensitivity increase
is a characteristic of the material [1, 10, 20, 21]. However, how large the strain rate must be to
observe this increased rate sensitivity is still not clear. Indeed, the strain-rate sensitivity depends
in quite a complex way on strain rate, but also on strain, temperature, as well as on the underlying
microstructure and possible deformation mechanisms of the tested materials [6, 22–24]. Thus,
a lot of successful modeling efforts, some of them based on the very same power law as the
one defined in (1), have been made to be able to simulate different strain-rate regimes, either
controlled by the thermally activated interactions between dislocations at rather low strain rates
or by dislocation drag at high strain rates (see, e.g., [25–28]). Conversely, some other authors
claim that accounting for rate sensitivity solely by a single relationship between shear rate and
shear stress is a too simplified approach even for low strain rates, and that this approach should
be replaced or completed by a rate-sensitive hardening law, describing the evolution of τs

0 with
strain and strain rate (e.g., [9, 29, 30]), to account for the right influence of strain-rate sensitivity
on the behavior of polycrystalline materials. Additionally, since this classical power law is still
mostly used with the aim of simplifying the numerical procedures by providing a regularized

1By using only odd values of the exponent n, we avoid in the formulation the use of absolute values. Thus, the more
classically chosen value of 20 will be replaced here by 21, since the resulting difference in the macroscopic behavior is
hardly detectable.
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form (with a unique solution on a given slip system) of the slip criterion, the exponent n is usually
not correctly set up (see below), resulting in an inaccurate coupling between the macroscopic
rate-sensitive response and the rate-sensitive evolution of critical resolved shear stresses of slip
systems. In order to solve this problem for rate-sensitive or rate-insensitive materials, some much
more numerically efficient methods have been recently proposed [29, 31]. The first one [29] aims
at describing properly the behavior of materials in a wide range of rate sensitivity and strain rate,
whereas the second one [29, 31] aims at being able to treat efficiently the case of rate-insensitive
materials. However, according to the authors themselves, these efficient methods are not adapted
either to the treatment of rate-sensitive materials [31] or to their combined use with FE codes [32].

Thus, and especially in the framework of FE simulations, lot of works are still based on the use
of the classical VP crystalline power law (1), partly also rendered popular by the user material
(UMAT) subroutine developed by Huang for the commercial software Abaqus [33]. However,
even in some very recent papers, the exponent of rate sensitivity is set without any justification
(e.g., [12]) or is assumed to be “adequately chosen to neglect the rate sensitivity” (e.g., [8, 16, 34])
at the polycrystal scale. In fact, it is easy to show that it is not the case for many of the reported
simulations, and that the choice made leads precisely to unexpected high strain-rate sensitivity,
as soon as the strain rate varies.

The aim of this paper is thus to re-address the question, and the use, of the applied strain-
rate sensitivity in computations using a power-law-based crystal plasticity model, for both rate-
insensitive and rate-sensitive materials. We will first recall the procedure to use adequately such
a simple formulation for rate-insensitive materials. With the addition of the phenomenological
saturating hardening law used in [33], we will then propose a methodology to accelerate the
identification of the parameters describing the constitutive law of the material, with an FE code,
for rate-sensitive materials at rather low strain rates (i.e., within the static regime). We will finally
show that this identification can be extended to the case of high strain rates (dynamic regime),
provided that the n value is identified differently in both regimes. This will be illustrated by
some simulations of a tensile test performed using two different modeling approaches, that is,
a simple homogenization model (the Taylor one, used in a relaxed constraint form) and an FE
computation (using Abaqus software and dedicated user subroutines [33]), both approaches
using the very same single-crystal rate-dependent constitutive law and allowing strain-rate
fluctuations within the polycrystalline material.

The outline of the present paper is thus the following: the classical single-crystal VP flow rule
and associated hardening law are presented in Section 2, its implementation into the Taylor
model and FE Abaqus code are briefly described in Section 3, the results of the performed
simulations are then analyzed in Section 4 and some conclusions are drawn in Section 5.

2. The classical single-crystal viscoplastic flow rule and associated hardening law

As already mentioned, when a grain g of a polycrystalline sample is subjected to a stress state σ,
plastic strain takes place by slip on several slip systems, each labeled by index s. At the level of the
slip systems, the rate-dependent slip criterion is given by (1). The resolved shear stress on system
s is equal to τs = σi j R s

i j = Si j R s
i j , S being the (symmetrical) deviatoric stress tensor and R s the

orientation tensor of system s.2 The components of this last tensor read

R s
i j = 1

2 (ns
i bs

i +bs
i ns

i ), (2)

2In the following, tensors are written in bold, and the subscript “M” denotes macroscopic values.
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with ~ns and ~bs characterizing respectively the slip plane normal and the slip direction for the
system s. The strain-rate tensor ε̇ in grain g is then defined as a summation of individual shear-
rate components on all systems s:

ε̇i j =
∑

s
γ̇s

0

(
τs

τs
0

)n

R s
i j =

∑
s
γ̇s

0

(Skl R s
kl

τs
0

)n

R s
i j . (3)

As long as the parameters τs
0, γ̇s

0, and the exponent of rate sensitivity n are constant, this equation
represents a unique relationship between strain rate and deviatoric stress tensors at the level of
grain g , which allows to determine both tensors from the boundary conditions imposed to the
considered grain (more precisely five independent components for each tensor). The existence
of a unique solution has the direct consequence that the current stress state vary with strain rate
and vice versa. This constitutive law is classically accompanied by a hardening law, which can be
expressed—again at the level of the slip systems—as

τ̇s
0 =

∑
l

Hsl γ̇
l , (4)

with Hsl the components of the so-called hardening matrix. As in the UMAT subroutine devel-
oped for Abaqus, a saturating expression—which has proven its efficiency to reproduce experi-
mental data concerning several metallic alloys [35, 36]—can be adopted which reads





Hss = h0 sech2
∣∣∣∣

h0γ

τsat −τini

∣∣∣∣

Hsl ,s 6=l = qh0 sech2
∣∣∣∣

h0γ

τsat −τini

∣∣∣∣
, (5)

where γ is the cumulated shear strain on system s so that

γ=
∫ t

0

∑
s
|γ̇s |dt . (6)

In order to characterize completely these laws (Equations (5) and (3)), four material parameters
are thus needed, namely τini, τsat, q , and h0, together with two other sets of material parameters,
τs

0ini (initial values) and γ̇S
0 —which can be reduced to two parameters τ0ini and γ̇0, if they are

assumed equal for all systems in all grains—and finally the exponent of rate sensitivity n. If one
single value τ0ini is imposed for all systems, then it is trivial to set it equal to τini. In that case,
the τini and τsat values are directly linked to the initial and final values of both microscopic (at
the level of the grain) and macroscopic stress values (see Figure 1 below). As for the h0 hardening
coefficient, it affects the hardening rate all along the stress–strain curve before the saturation level
is reached (see again Figure 1).

Now, in order to demonstrate the usefulness of the proposed crystalline law, we are going
to use two different simulations approaches (i.e., mean and full field ones) to calculate the
macroscopic response of a polycrystalline aggregate in uniaxial tension. For both approaches,
by construction, the local strain rate is allowed to differ from one grain to another and thus may
be quite different from the macroscopic imposed one.

3. Simulation framework

3.1. The Taylor model (with full or relaxed constraints)

In the framework of the Taylor model (FC—Full Constraint or RC—Relaxed Constraint), several
options are possible to simulate a tensile test along, for example, the axis 3 of the macroscopic
reference system:
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Figure 1. Simulated tensile curves using the RC Taylor model, with γ̇s
0 = γ̇0 = ĖVM =

0.0005 s−1, q = 1.1, and n = 21. The 3 hardening parameters h0, τini, τsat are varied and
their values (in MPa) are given in the figure legend.

(i) The Taylor model in the FC mode, which implies that all components of the strain-rate
tensor within each grain are assumed to be the same than the imposed macroscopic
ones, that is, ε̇ = Ė M. For a general anisotropic material, the combined boundary con-
ditions in terms of stress and strain rate then read at the level of the grain

ε̇= Ė33imp

∣∣∣∣∣∣

−α 0 0
0 1−α 0
0 0 1

∣∣∣∣∣∣
and σ=

∣∣∣∣∣∣

0 ? ?
? 0 ?
? ? ?

∣∣∣∣∣∣
(7)

in which Ė33imp is the imposed macroscopic strain rate along the tensile axis andα the so-
called contraction ratio, which has to be calculated, for each calculation step, by minimiz-
ing the macroscopic plastic work rate with respect to α [37]. If the material is isotropic,
this factor is set to be equal to 0.5 and no extra minimization procedure is necessary in
this case. This case is known to represent an upper bound for the macroscopic behavior
of the material.

(ii) The Taylor model in its most relaxed version, often called the Sachs–Köchendorfer
model [38, 39]. In this case, a uniaxial stress state is applied to each grain, and only the
macroscopic strain rate along the tensile axis Ė33 is imposed in each grain. The boundary
conditions are then

ε̇= Ė33imp

∣∣∣∣∣∣

? ? ?
? ? ?
? ? 1

∣∣∣∣∣∣
and σ=

∣∣∣∣∣∣

0 0 0
0 0 0
0 0 ?

∣∣∣∣∣∣
. (8)

This option is usually applied for small strains, but it is considered to be far from the re-
ality for moderate or large ones. It is worth mentioning that, as one of the five indepen-
dent components of the strain-rate tensor is still imposed to each grain, this model does
not corresponds to the so-called static model which constitutes the lower bound for the
macroscopic behavior and for which the total stress tensor is the same for all grains.

(iii) an “intermediate” approach (which will be called RC Taylor model in the following),
which is thought to be better for anisotropic materials although quite simplified, which
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consists in allowing the contraction ratio α to be different within each grain, which
implies the following boundary conditions:

ε̇= Ė33imp

∣∣∣∣∣∣

? 0 0
0 ? 0
0 0 1

∣∣∣∣∣∣
and σ=

∣∣∣∣∣∣

0 ? 0
? 0 ?
? ? ?

∣∣∣∣∣∣
. (9)

It is easy to prove that, if the sample is isotropic, we will get ĖM22 = ĖM11 = 0.5 at the level
of the polycrystal and the resulting macroscopic stress state will also be purely uniaxial
(like in the FC mode). Apart from being simpler and more rapid than the FC one, this
version is thought to be especially well adapted to the simulation of a tensile test applied
on anisotropic materials (as well as in isotropic ones of course) [40], and is consequently
used in the present work.

For all these cases, it is readily seen that, among the ten independent components of ε̇ and σ
which need to be determined, five are imposed and the five remaining are deduced from (3). The
associated macroscopic quantities Ė M and ΣM are then obtained by averaging on all grains.

Once the boundary conditions have been selected, an iterative calculation can be performed
to simulate a tensile test, and, from the boundary conditions expressed by (9) and the resolution
of (3), the tensile deviatoric stress S33 and strain rate ε̇33 = Ė33imp can be extracted at each step of
the calculation (characterized by a time increment ∆t ). Then, at a given time t of the simulation,
the total tensile strain can be obtained:

∆E33 = Ė33imp∆t ⇒ E33(t +∆t ) = E33(t )+ Ė33imp∆t . (10)

At each step, the reference shear stress of each system, within each grain, is also updated

τs
0(t +∆t ) = τs

0(t )+
∑

l
Hsl γ̇

l (t )∆t , (11)

noting that, at time t = 0,τs
0 = τini and

∑
l Hsl γ̇

l (t ) = 0.
In order to calculate the macroscopic tensile curve, the deviatoric stress is averaged on all

grains at each step to get SM and the macroscopic true tensile stress ΣM33. As

SMi i = 〈Si i 〉 and ΣMi i = SMi i +
P

3
, (12)

where P is the hydrostatic pressure, and since the macroscopic boundary conditions also impose
that

ΣM11 =ΣM22 = 0 (13)

then, we simply get

ΣM33 = 3
2 SM33. (14)

Equations (10) and (14) allow then to plot the macroscopic tensile stress–strain curve. Since Ė33imp

is imposed and constant along the test, the final strain can be written as

E33final = Ė33imp Nstep∆t , (15)

with Nstep being the total number of calculated steps. It is thus readily seen that if Ė33imp is
modified, the product Nstep∆t has to be modified as well to keep the first term of (15) constant.
In many of the papers quoted above, which deal with the influence of strain-rate sensitivity, the
macroscopic strain rate is rarely varied and only the influence of the exponent n is studied. For
example, it is mentioned by Canova and co-workers [1] that “all the results are normalized by
the von Mises (VM) equivalent strain rate and are thus independent of the applied strain rate”.
In the present case, the grain VM equivalent strain rate indeed varies from grain to grain, for
the selected boundary conditions (it would not be the case of course for the FC assumption).
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The same expression is also valid at the macroscopic level, but if the material is macroscopically
isotropic, it simply becomes equal to

ĖVM = Ė33imp. (16)

In the simulations performed below, we will thus have ε̇VM 6= ĖVM in most of the grains. Also, as in
many publications listed above, using either an homogenization model or an FE code, a reference
case will be defined as the one performed by defining the reference shear rate equal to the
macroscopic one, that is γ̇0 = Ė33imp, which means Ė33imp/γ̇0 = ĖVM/γ̇0 = 1. As a consequence, if
the macroscopic strain rate ĖVM is multiplied or divided by a factor of say 10, without modifying
the value of the reference shear rate γ̇0, Nstep will have to be divided or multiplied by 10, if E33final

and ∆t are kept constant. The exponent n will be varied in a wide range associated classically
with room temperature deformation, that is, between 10 and 200. This model will be used below
to reproduce the mechanical behavior of several face centered cubic (FCC) materials (stainless
steel and aluminum alloy) extracted from the literature. As in the selected examples, the texture
is not documented or assumed to be isotropic, it is considered in the following as only isotropic
aggregates, represented by a set of 2016 orientations, uniformly distributed within the Euler
space. For all treated examples, the 12 111〈110〉 systems will be considered. It is worth to point
out that the aim of the present work is not to demonstrate the relevance of the RC Taylor model,
but to be able to study the influence of the simple rate-sensitivity power law in a model allowing
a strain-rate gradient within the aggregate. Some tensile curves have been simulated with this
approach to illustrate the influence of the various hardening parameters on the global response.
These are shown in Figure 1, where it can be clearly seen that, for a given modeling approach,
the initial value (resp. final value) of the macroscopic tensile stress is directly proportional to the
value of τ0 = τini (resp. τsat). This proportionality is even independent of the selected hardening
law for the yield stress value.

3.2. The FE Abaqus code

As the objective is to deal with strain-rate sensitivity in the framework of FE codes, some sim-
ulations have also been performed with the FE code Abaqus, which is increasingly used for the
simulation of the VP behavior of polycrystalline materials, with the very same description of the
single-crystal constitutive law. Again isotropic materials are considered. The simulation of a ten-
sile test with such a code, however, is usually not performed with exactly the same boundary con-
ditions as the ones imposed in the RC Taylor model, since displacements, instead of strain rates,
are generally applied in FE simulations. Furthermore, the description of the initial microstruc-
ture of the material is also somewhat different, since it accounts for both orientations and posi-
tions of the grains within polycrystalline aggregates, whereas only the orientation distribution is
accounted for in the Taylor model.

In the present case, the considered isotropic material will be represented by a cubic polycrys-
talline aggregate of 200 grains, made of a Voronoï tessellation obtained from Neper program [41]
and imported in Abaqus CAE using python scripts [42] (see Figure 2a). The grain boundaries are
simply defined as the boundaries between zones of different orientations. The choice of a re-
duced number of orientations compared to the previous case appears here to be a good com-
promise to obtain both reasonable calculation times and a macroscopic uniaxial tensile stress,
as with the RC Taylor model. The polycrystal is submitted to both symmetry boundary condi-
tions and imposed displacement on the upper and lower faces, while on the lateral ones, uniform
mixed-orthogonal (or block) conditions have been defined to account for periodicity [43,44] (Fig-
ure 2b).

The crystal plasticity mechanical behavior, as defined in (1) to (6), is introduced into Abaqus
using a UMAT subroutine, which is extensively described in [33], and the Euler angle set
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Figure 2. (a) Example of a Voronoï tessellation made of 200 grains and (b) applied bound-
ary conditions.

(ϕ1,Φ,ϕ2) of each Voronoï cell is randomly determined in an ORIENT subroutine, describing
thus an isotropic angle set.

4. Numerical results

4.1. Case study 1: the case of a rate-insensitive material

The first example treated with the simple rate-sensitive (RS) constitutive law described above
is the often encountered case of a material with a very low strain-rate sensitivity (represented by
1/n). This in turns means a very high value of the n exponent. This exponent is usually established
experimentally from flow stresses obtained at different strain rates but same microstructural state
(e.g., dislocation density and thus same stress level), from the slope of the ln–ln stress–strain rate
curve [45]:

n = ∂ ln ĖM

∂ lnΣ

∣∣∣∣
Σ

. (17)

When doing so, values as high as 100–400 have been reported in the literature for various
materials (copper, brass, many steels, . . . .) and this is why some regularized versions of the
present VP formulation have been proposed since calculations performed with very high values
of n (above 200) are practically impossible to achieve, whatever the model used [29, 31]. Another
way of solving this problem is to embed the norm of the applied strain rate into the reference
shear rate γ̇s

0 [30], by imposing it to be equal to the applied macroscopic strain rate, that is,
γ̇s

0 = Ė33imp in the present case. It is then easy to show that in this case, the macroscopic response
does not depend on the selected n value, and that the magnitude of the grain stress is affected
only by the ratio of the grain strain-rate magnitude and the macroscopic strain-rate magnitude,
which is not so large for FCC materials. This procedure is frequently used, especially when
simulations are performed for one single macroscopic strain-rate value.

Let us reproduce in this way, an experimental curve obtained at room temperature for a 304L
stainless steel, whose texture is assumed to be isotropic [46]. In order to identify the hardening
parameters for this case, the reference shear stress has been set equal to the actual strain rate, that
is, 0.001 s−1, and the n exponent to 21, that is, one of the value most often found in the literature
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Figure 3. Tensile curves obtained with the RC Taylor model for the reference case
(Ė33imp/γ̇0 = ĖVM/γ̇0 = 1) and various n values. Comparison with the experimental curve
obtained by Chavez et al. [46] on a 304L stainless steel at room temperature.

Table 1. Imposed and adjusted parameters for the identification of the 304L experimental
curve with the RC Taylor model

Imposed test conditions
(reference case)

ĖVM = Ė33imp = 0.001 s−1

E33max = 0.35

Imposed parameters
γ̇s

0 = γ̇0 = 0.001 s−1

n = 21

Material adjusted
parameters

τs
0 = 100 MPa

h0 = 260 MPa, q = 1.1
τsat = 300 MPa, τini = 100 MPa

“to reproduce negligible viscous behavior” [47] or for material which “possesses a certain rate-
dependency at medium to high temperatures” [14,34,48–51]. The other material parameters have
been manually identified on the experimental curve (see Figure 3); they are listed in Table 1.

It is seen that, for the selected parameters, the agreement, although not 100% perfect, is quite
satisfactory. An automatic identification procedure or the selection of a more physically based
hardening law would probably allow for a better fit over the whole strain range, but this is out of
the scope of the present paper. Much more important, for it is the focus of the present study, it is
seen that when γ̇0 = ĖVM, the influence of the exponent n is indeed very limited and negligible
for n ≥ 21, as reported in many studies using the same law.

But, once this reference case is satisfactorily treated, we may want to see what would happen
if we change now the applied strain rate without changing the value of the reference shear
stress γ̇0. This is illustrated in Figure 4, where simulations have been made using the parameters
listed in Table 1, except for the applied normalized strain rate ĖVM/γ̇0 which has multiplied
or divided by ten, and the exponent n which has been varied from 21 to 111. It is seen that,
when the normalized strain rate is set to ĖVM/γ̇0 = 1/10, there is an influence of the strain rate
on the macroscopic response, and that the curves are almost superimposed only for n ≥ 91.
It is interesting to note that the best agreement with the experimental curve is now found for
n = 41, which means that both reference strain rate γ̇0 and exponent n should be considered
simultaneously for the identification of the hardening parameters, as done in other works, see
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Figure 4. Tensile curves obtained with the RC Taylor model for 2 test parameter sets
different from the reference case, and various n values. Comparison with the experimental
curve obtained by Chavez et al. [46] on a 304L stainless steel at room temperature.

Figure 5. Tensile curves obtained with the RC Taylor model and the Abaqus code for five
different applied normalized strain-rate values (from 0.0001 up to 1 s−1) and n = 21 or 111.

for example [9]: for the identification of the selected 304L tensile curve, taking γ̇0 = 10× ĖVM with
n = 41 indeed provides a slightly better fit than γ̇0 = ĖVM with n = 21. It is also seen in Figure 4a
that the overall stress level is increasing with n, when ĖVM < γ̇0, as a consequence of the used
power law.

If the normalized strain rate is set to ĖVM/γ̇0 = 10, there is again a clear influence of the
strain rate on the macroscopic response, and the curves are again almost superimposed only
for n ≥ 91. The overall stress level is now decreasing when n increases, which better correspond
to the expected influence of rate sensitivity and has already been observed in some other works.
For example, these calculations are in full agreement with the ones performed by Khan et al. [9]
with a similar power law.

Some curves obtained for two different values of n, namely 21 and 111 and various values
of Ė33imp/γ̇0 between 1 and 10−4 (that is 4 orders of magnitude) are now presented in Figure 5.
These curves have been obtained with the RC Taylor model as well as with Abaqus, with the same
material parameters. For the FE simulation, as the elastic part of the curve is also simulated,
the following elastic constants have been considered for 304L steel: C11 = 197,500 MPa, C22 =
125,000 MPa, and C44 = 122,000 MPa. As the boundary conditions imposed to simulate a simple
tensile test are not exactly expressed in the same way for the two approaches, before performing

C. R. Mécanique, 2020, 348, n 10-11, 807-826



Yann Charles et al. 817

Figure 6. Evolution of the macroscopic yield stress as a function of strain rate and strain-
rate sensitivity exponent for all performed simulations.

comparisons of the two sets of calculations, it has been checked that the macroscopic tensile
test was indeed uniaxial in both cases (this would not have been necessarily the case for an
anisotropic material). For comparison purposes, the elastic part of the curves has been taken out
from the Abaqus simulations. It is interesting to note that the Abaqus curves are systematically
below the RC Taylor curves, even though the Taylor model is not used in the pure FC mode (which
would actually correspond to an upper bound). This means that the interactions between grains
are softer in Abaqus than with the selected RC Taylor model. However, it is clear that the influence
of the strain rate for given values of γ̇0 and n are similar for both approaches. It is also worth
noting that n ≥ 111, the convergence is very difficult to achieve with Abaqus, depending on the
material description and imposed strain rate.

The influence of the normalized strain rate ĖVM/γ̇0 and strain-rate sensitivity exponent n on
the overall yield stress is now presented in Figure 6 for all performed situations. This yield stress is
extracted at the first calculation step for the RC Taylor simulations and evaluated at 0.02% plastic
strain for the Abaqus simulations. Clearly this stress value does not vary much with the exponent
for ĖVM/γ̇0 = 1 in both cases, but when this value is changed, the stress can strongly vary. For
example, for n = 21, the stress varies from about 180 to 310 MPa when ĖVM/γ̇0 varies from 0.0001
to 10 with the RC Taylor model. Similarly, with Abaqus, the stress varies from 170 to about 263 MPa
when ĖVM/γ̇0 varies from 0.0001 to 1. The response of the material is thus clearly rate sensitive
for n = 21. The absence of strict linearity observed in the Abaqus simulations can be attributed
to numerical reasons and to the local fluctuations of strain rate and stress, more significant than
with the RC Taylor model, associated with weaker interactions between grains.

Now, by calculating the normalized ratio of this tensile yield stress by the reference shear
stress (taken here equal to 100 MPa), the RC Taylor and Abaqus responses can be compared
to the upper and lower bounds rate-insensitive approaches. It is indeed well known that, for
an isotropic FCC metal in the rate-insensitive limit, this normalized stress is equal to 3.06 for
the upper bound (Taylor model), 2 for the lower bound (static model) and 2.2 for the Sachs–
Kochendorfer model [52]. It is also clear from Figure 6, that this rate-insensitive value can be
estimated for the VP RC Taylor and Abaqus models from the yield stress obtained for ĖVM = γ̇0 and
the highest possible value for the exponent n. The so-obtained values are 2.78 for the RC Taylor
model and about 2.62 for Abaqus. This confirms that the RC Taylor approximation is closer to the
upper bound than to the lower one and that the interactions between grains are slightly softer
with Abaqus. This also affects the hardening capacity as seen in Figure 5.
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Figure 7. Relationship between strain rate and yield stress extracted from experimental
tensile curves obtained on pure aluminum at room temperature [54].

This first study has highlighted the fact that the only way to really neglect rate sensitivity with
the power law is to set γ̇0 = ĖVM, and to keep the macroscopic strain-rate constant; this is indeed
well known from experienced users of VP mean field or full field methods, but much less from
new FE code users, if we look at the recent bibliography on the subject.

4.2. Case study 2: the case of a rate-sensitive material

Furthermore, if some alternatives exist to treat efficiently the case of the rate-insensitive materi-
als, the simple power law (1) is still largely used to treat the case of rate-sensitive materials within
the static regime (typically for strain rates staying below 1.0 s−1). Of course, as already said, it can-
not alone account for the complex rate-sensitivity influence of a real material and the rate sen-
sitivity of the hardening rate should also be considered [9, 32], especially if the treated problems
involve strong flow localization [53, 54]. But, if it is not the case, that is, for moderate strains and
strain rates, Christodoulou and Jonas [54] have shown that the use of the so-called continuous
strain-rate sensitivity as defined by (17), that is, determined at constant structural state, instead
of a more instantaneous one, determined during strain rate change tests, compensates to some
extent for the neglect of the rate sensitivity of hardening. Thus, even with a rather simple harden-
ing law, by paying attention to the identification procedure, it can still reproduce quite precisely
the observed behavior of materials tested at different strain rates and be useful for simulations
for which strong localization is not expected. Let us take the example of pure aluminum (99.99%),
which is more rate sensitive than the previously studied steel. Some experimental data have been
extracted from [53, 54] and the rate sensitivity of the material has been estimated using (17) (Fig-
ure 7). The resulting estimated n value is found to be equal to 15 for an explored strain-rate range
of 0.05 to 0.0005 s−1.

Then, as in the previous example, the identification of the hardening parameters have been
made for a reference case, corresponding to γ̇0 = ĖVM, arbitrarily selected equal to 0.0005 s−1.
We have also fixed the value of q to 1.1, classically selected for aluminum. Therefore, three
parameters remain to be determined, which are h0,τini, and τsat. These three parameters have
been manually adjusted to reproduce the curve corresponding to ĖVM = 0.0005 s−1, and validated
then by simulating the other curves corresponding to ĖVM = 0.005 s−1 and ĖVM = 0.05 s−1. The
result of this first identification is presented in Table 2 and Figure 8a, in which the elastic parts of
the experimental curves have been suppressed. In the validation process, the parameters may be
slightly re-adjusted. In that case, they have to be validated again on the reference case.
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Figure 8. Stress–strain curves obtained for pure aluminum deformed in tension at various
strain rates. The experimental curves are taken from [54] and the simulated ones are
obtained with the RC Taylor model, using two sets of parameters (see Table 2): (a) γ̇0 =
0.0005 s−1 and (b) γ̇0 = 0.05 s−1.

Table 2. Imposed and adjusted parameters for the identification of the aluminum experi-
mental curves with the RC Taylor model

ĖVM (s−1) for the
identified curve

Imposed parameters Adjusted parameters
n γ̇0 (s−1) q h0 (MPa) τini (MPa) τsat (MPa)

0.0005 15 0.0005 1.1 4 15 35
0.05 15 0.05 1.1 5.7 20 47

Once the parameters have been selected for the whole explored strain-rate range, it may be
desirable to modify the reference case, and thus the value of the associated reference strain rate
γ̇0. In that case, it is not necessary to perform the whole identification and validation process. It
can simply be noticed that for a given model, the results of a 2nd identification procedure should
coincide with the result of the 1st one, since the curves to be identified are precisely the same. In
other words, if the material parameters are changed, the predicted stress and strain-rate tensors
at the level of the grains as well as at the level of the sample should coincide at each step of the
calculation and especially at the very beginning and at the saturation level (although this level
may be not reached experimentally). From (3) and the definition of τini and τsat, this implies that

γ̇0

τini
n = constant and

γ̇0

τsat
n = constant (18)

from which the new values of τini and τsat associated with the new selected value of γ̇0 can
be extracted. There remains then one single parameter to be identified, namely the hardening
coefficient h0. The results of this procedure applied to the new reference case γ̇0 = ĖVM = 0.05 s−1

are also presented in Table 2 and Figure 8b. It is seen that the identified curves are very close
to the ones obtained previously for the other set of parameters. Of course, for such a simple
model, simulations are quite rapid (typically less than one minute for the calculation of one single
curve in the presented examples), and thus the total identification procedure, whether performed
manually as in the present case, or through an optimized identification procedure is also quite
fast.

Contrary, for FE simulations, the identification of one set of parameters on one reference curve
and the validation on the other two would take much longer times (depending on the computer).
We can however accelerate the procedure if we first base our identification procedure for FE
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Table 3. Imposed and adjusted parameters for the identification of the aluminum experi-
mental curves with the Abaqus FE code

Simulation Fixed parameters n = 15, ĖVM = γ̇0 = 0.0005 s−1, q = 1.1
Parameters to be identified h0 (MPa) τini (MPa) τsat (MPa)

sim1 (up to σ0)
h01, τini1, τsat1 issued from the
RC Taylor identification

4 15 35

sim2 (up to σsat)
τini corrected by (19) h01,
τsat1 issued from the
RC Taylor identification

4 14 35

sim3 (up to σexpfinal)
τsat corrected by (20)
Identification of h0 with Abaqus

5 14 45

simulations on a preliminary identification step performed with a simpler model like the Taylor
one as explained below.

In order to perform the identification of the three presented Al curves with Abaqus, it is first
set again n = 15 and q = 1.1. The following elastic constants are also considered for aluminum:
C11 = 108,240 MPa, C12 = 62,160 MPa, and C44 = 28,410 MPa. Then one reference case is
selected, for example, the same as previous, γ̇0 = ĖVM = 0.0005 s−1 and a first calculation is
performed with Abaqus (sim1) with the three hardening parameters issued from the RC Taylor
identification, called in the present case h01, τini1, and τsat1. As the two approaches do not lead
to the same response (see Figure 5), it is expected that the predicted curve will not perfectly
fit the experimental one. One first correction can be made on τini by using the proportionality
relationship between initial stress σ0 and τini, illustrated in Figure 1, that is,

σ0sim1

τini1
= σ0exp

τini

∼=
σ0Tay

τini
. (19)

In this expression, σ0Tay represents the value of the yield stress estimated by the RC Taylor
model. This equation allows us to immediately correct the value of τini without any identification
procedure. Once the beginning of the curve has been correctly adjusted, we can repeat the
procedure for the saturation stress, by considering that, if this level is not reached on the
experimental curves, it can be again correctly identified by the RC Taylor model, which means
(σsat)Tay

∼= (σsat)exp. The result of a 2nd Abaqus simulation (sim2) performed with h01, τini, and
τsat1 allows us to write

(σsat)Tay

τsat
= (σsat)sim2

τsat1
, (20)

and to obtain the correct value of τsat again without any identification procedure. It is worth
noting, that this step implies to be able to perform one simulation with RC Taylor and one
simulation with Abaqus up to the saturation level. This may involve convergence problems
with Abaqus (especially if the saturation level has reached at very high strains). In this case, a
classical identification procedure will have to be applied. In any case, there remains then one
single parameter to be identified, which is again the hardening coefficient h0. The procedure
is summarized in Table 3 and illustrated in Figure 9. It is seen that the agreement between
experimental and predicted curves is again quite satisfactory. Again, like for the RC Taylor model,
some other materials parameters can be recalculated if we change the value of γ̇0 without being
obliged to perform the simultaneous identification of all parameters.
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Figure 9. Stress–strain curves obtained for pure aluminum deformed in tension at various
strain rates. The experimental curves are taken from [53] and the simulated ones are
obtained with the RC Taylor model (parameters in Table 2) and with the Abaqus FE code,
with the hardening parameters listed in Table 3, evaluated with the proposed identification
method.

4.3. Case study 3: the transition between static and dynamic regimes

The previous cases have illustrated clearly the fact that the macroscopic response of a polycrys-
talline aggregate strongly depends on both normalized strain rate (ratio of imposed over refer-
ence strain rates) and strain-rate sensitivity exponent; especially, the only configuration where a
strain-rate-independent limit can be reached is for ĖVM = γ̇0, with n greater than 20. This is true
when using simple mean field models such as the RC Taylor one (used here) as well as more com-
plex full field tools such as FE codes. However, when FE simulations are performed, the strain rate,
and thus the strain-rate sensitivity, can significantly vary from one point to another, as recently
underlined by Shahba and Gosh [10] who studied the behavior of strongly anisotropic Ti alloys.
In that case, the choice of the VP parameters γ̇0 and n is not so trivial if we want, for example,
to neglect the influence of strain rate in the whole sample. If one single macroscopic strain rate
is investigated (and if the fluctuations within the simulated structure are expected to be moder-
ate enough), then taking ĖVM = γ̇0 allows to neglect the strain-rate sensitivity as much as possible
and to select an n exponent as small as possible to reduce the computation time, without going to
extensive multiple slip due to overestimated viscosity. Typically, a value around 20 satisfies these
constraints and the hardening parameters can then be simply identified on one experimental
curve (as done in the present case for the 304L material). But if several values of macroscopic or
microscopic strain rate need to be considered, then the selection of the two parameters can be
made according to several procedures:

(i) As suggested by Khan et al. [9], it is possible to arbitrarily select for γ̇0 one of the investi-
gated values of strain rate and to identify the hardening parameters on the correspond-
ing curve and then, to identify the n exponent on the curves obtained for the other strain
rates. According to these authors however, this option is not completely satisfactory if the
associated hardening law is too simplified, as the one used in the present work, since they
argue that it is not possible in this case to reproduce all experimental curves obtained, for
example, on aluminum single crystals over a wide range of strain rate with one single n
parameter. They then propose to select a more complex hardening law, which comprises
an additional strain-rate sensitivity parameter. It is worth mentioning though that the
behavior of the tested Al single crystals observed at varying strain rates is somewhat in
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contradiction with the conclusions drawn recently by Shahba and Gosh [10] who claimed
that in general (and not only for the Ti alloys), the classical phenomenological power law
is valid up to larger strain rates (up to 104 s−1) than the ones investigated by Khan et al. [8],
which do not exceed 103 s−1.

(ii) Alternatively, it can be recognized, as suggested by Canova et al. already in 1988 [1] and
more recently by Uenishi and Teodosiu [55] or by Shahba and Gosh [10], that one single
n parameter cannot reproduce all observed behaviors and that there are indeed three
different regimes:

1. the quasi-static regime associated with strain rates below 1 s−1,
2. the dynamic regime associated with strain rates typically above 100 or even

1000 s−1—depending on the authors—these two regimes being associated either
with significantly different values of n or with different VP flow rules and even dif-
ferent hardening mechanisms [10, 55],

3. the transition regime between the two, within which the n value may vary more or
less smoothly.

To describe this evolution from quasi-static to dynamic regime, Canova et al. [1] proposed
a bilinear expression for the evolution of the true stress as a function of the strain rate, whereas
Uenishi and Teodosiu [55] proposed a parabolic expression, taking into account the effect of tem-
perature within the dynamic regime. As for Shahba and Gosh [10], they propose a so-called uni-
fied flow rule, applicable to a very wide range of applied strain rates and temperatures, “uniquely
capable of seamlessly accounting for the effects of location-dependent thermally activated (at
low strain rates) and drag-dominated (at high strain rates) mechanisms of dislocation glide with-
out any user intervention”. Their law is thus especially well adapted to FE simulations performed
for very high strain rates, for which strain rates at different locations in a heterogeneous polycrys-
talline microstructure are expected to vary significantly even for a uniformly applied macroscopic
strain rate.

If the existence of two different regimes (and possibly of a smooth transition between the two)
is thus well recognized, it is then easy to conclude that the use of the classical VP flow rule with
one single set of parameters (describing both flow and hardening rules) should be allowed within
one of these two regimes only. As long as the influence of temperature is not explicitly included,
as, for example, in the phenomenological hardening law selected in the present work, it is also
easy to recognize that the present formulation is thus more adapted to the quasi-static regime
than to the dynamic one (for which additional microscopic deformation mechanisms are ex-
pected to occur). In this case, the value of γ̇0 should also be selected within the quasi-static
regime, which means typically below 1 s−1. If the parameters are identified as previously ex-
plained, it is then possible to reproduce the behavior of a material within the whole quasi-static
regime with one single set of parameters, as already illustrated for polycrystalline aluminum in
Section 4.2 but also for Al single crystals, as illustrated in Figure 10. The experimental curves ob-
tained on Al single crystals deformed in compression by Khan et al. [9] have been reproduced
with the RC Taylor model (see parameters in Table 4). It is seen that the three curves correspond-
ing to the quasi-static regime are well reproduced (even better than in the original paper with a
different, although also phenomenological hardening law), whereas the one associated with the
dynamic regime (strain rate equal to 1000 s−1) is not with the quasi-static parameters. If now
the n exponent is allowed to be modified for the dynamic regime, then the curve can also be re-
produced with the simple RC Taylor model and saturating hardening law. It is worth mentioning
though, that the strain-rate sensitivity (1/n) is observed here to decrease at high strain rate, in
contradiction with most of the other observations performed in metals [1, 10, 20, 33, 55, 56]. The
reason for this quite unusual dynamic behavior of the tested Al single crystals is not explained in
Ref. [8].
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Figure 10. Experimental (dotted lines from [9]) and simulated (full lines, RC Taylor model)
curves for Al single crystals deformed in compression.

Table 4. Imposed and adjusted parameters for the identification of the Al single crystals
compression curves of Khan et al. [9] with the RC Taylor model

Imposed test conditions
ĖVM = Ė33imp = 1 to 0.001 s−1 (quasi-static)

ĖVM = Ė33imp = 1000 s−1 (dynamic)

Reference case for identification
of the material parameters

Ė33imp = 1

Imposed parameters
γ̇s

0 = γ̇0 = 1 s−1

n = 21 (quasi-static), n = 41 (dynamic)

Adjusted parameters
τs

0 = 5 MPa
h0 = 40 MPa, q = 1.1

τsat = 35 MPa,τini = 5 MPa

5. Conclusions

The aim of the present study was to rationalize the use of the simple VP power law, still widely
used for its simplicity with mean field and full field approaches, to model the behavior of
polycrystalline samples in a wide range of strain rates or temperatures. For this purpose, one
mean field (RC Taylor model) and one full field (Abaqus FE code) approaches have been selected,
with the very same description of the single-crystal behavior (FCC in the present case). These
two approaches have been selected since they can predict heterogeneities of strain, stress, and
strain rate within a polycrystalline sample, as experimentally observed. As a consequence, the
conclusions drawn below are thought to be also applicable to other modeling choices. Through
the simulation of simple tensile tests and the comparison of some simulated and experimental
curves, we have shown that:

(i) with such a rate-sensitive single-crystal constitutive law, it is possible to simulate the
behavior of rate-sensitive or rate-insensitive materials, in the framework of both mean
field or full field approaches, provided that it is remembered that the macroscopic
response of a polycrystalline aggregate will depend on both values selected for the
reference strain rate γ̇0 with respect to the imposed one and the strain-rate sensitivity
exponent n;
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(ii) for rate-insensitive materials, the strain-rate exponent value which allows to approximate
the rate-insensitive limit with sufficient precision depends on the macroscopic strain
rate, as long as the γ̇0 parameter has been selected. If n = 21 is high enough for a strain
rate equal to γ̇0, much higher values must be selected, as soon as the strain rate is
modified. As a consequence, even for n = 21 and ĖVM = γ̇0, some strain-rate sensitivity
can be observed within individual grains, as long as the deformation is not prescribed
to be uniform within the whole polycrystalline sample and that strain-rate variations are
thus observed. Today, this is well known only by a limited part of the FE code users;

(iii) the VP formulation with one single exponent and associated with a simple hardening law
neglecting the temperature effects, is quite adequate to describe the quasi-static regime,
that is, typically for strain rates below 1/s (or below γ̇0), for rate-sensitive materials. Once
all parameters have been identified for one reference case, it is then easy to modify them
to treat another reference case. It has been shown that the identification procedure can
be considerably simplified in this case, since two of the three hardening parameters can
simply be corrected without any identification procedure;

(iv) the identification of all parameters of the constitutive law with an FE code can be greatly
accelerated by relying on the identification previously carried out with a simpler model,
such as the RC Taylor model.

(v) The simple VP formulation studied here can also be used to describe the behavior of
rate-sensitive material in an extended range of strain rate (i.e., including both static and
dynamic regimes), provided that the exponent n is identified separately in both regimes.

Finally, it is worth recalling that this widely used VP formulation is phenomenological. It is thus
not adequate to describe completely all the microscopic mechanisms. If this is desired, this
simple formulation should be enriched to account for a more precise description and more
detailed understanding of strain rate and temperature effects.
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1. Introduction

The flow of rocks in the Earth’s mantle controls many large-scale geodynamic processes. Among
them, mantle convection is of primary importance since it constitutes the main mechanism for
the Earth to evacuate internal heat, and it drives continental drift and associated seismic events.
Quantitative modeling of mantle convection, which also allows investigation of past dynamics
and prediction of future events, depends on our understanding of the rheology of rocks under
thermo-mechanical conditions that prevail in the Earth’s interior.

The Earth’s mantle extends to ca. 2900 km depth where pressure reaches 130 GPa and tempera-
ture is exceeding 3000 K. In response to increasing pressure and temperature with depth, minerals
observed in rocks from the upper mantle transform at depth to denser assemblages. These phase
transitions are responsible to global discontinuities of the velocities of seismic waves across the
corresponding depths. The 410 km discontinuity is generally thought to be caused by the phase
transition of olivine (the low pressure phase of (Mg,Fe)2SiO4) to wadsleyite and the 520 km dis-
continuity by the phase transition of wadsleyite to ringwoodite. These phase transitions give rise
to the so-called transition zone which ends at the 670 km discontinuity where the lower mantle
begins.

The transition zone is a major layer between the upper and lower mantles and is expected
to influence the whole mantle convection depending on its rheological properties. Information
on the mechanical properties of rocks come primarily from laboratory mechanical tests. This
experimental approach is however rendered very challenging since the P , T conditions are
in the range of 15 GPa and 1600 K for wadsleyite in the upper transition zone. Furthermore,
rheological laws deduced from laboratory experiments at strain-rates of typically 10−5 s−1 need
to be extrapolated by ∼10 orders of magnitudes to the extremely low strain-rate conditions (ca.
10−15 s−1) prevailing during Earth’s mantle convection.

In that context, the computational approach is an alternative to infer the viscoplastic behavior
of mantle rocks and offers the potentiality to tackle the extremely low strain-rate conditions
issue, provided all relevant and physical-based deformation mechanisms at play in the mantle
are properly taken into account. However, this requires bridging several characteristic length
scales, from sub-nanometer to sub-meter. To be able to glide, dislocations must overcome their
intrinsic lattice friction, which strongly depends on their structure at the atomic scale (sub-
nm). Core structures of dislocations belonging to given slip systems can be calculated using
the Peierls–Nabarro–Galerkin method [4], relying on first principle simulations of generalized
stacking fault (GSF) surfaces. This allows addressing accurately the effect of pressure on atomic
bonding. Intrinsic lattice friction is then calculated and quantified by the Peierls potential.
At finite temperatures, dislocation glide mobility results from thermally-activated motion of
dislocations over their Peierls potentials. The obtained energy barriers for dislocation glide can
then be combined with Boltzmann statistics to provide a constitutive relation at the grain level
(mm scale), for each available slip systems [5, 6].

To address the rheology of polycrystalline aggregates (sub-m scale), a second scale transi-
tion, from the grain to the polycrystal, must be carried out. In minerals, this is another diffi-
cult task as few independent slip systems are generally available. For example, olivine exhibits
less than 4 independent dislocation slip systems leading to an extreme viscoplastic anisotropy
at the grain scale and, as a consequence, a quite challenging application of mean-field homog-
enization methods. Indeed, as shown by Pierre Gilormini [7, 8], many earlier homogenization
methods provides an unrealistically stiff (i.e. violating a rigourous upper bound) estimation of
the effective rheology. Using the more advanced Partially Optimized Second-Order (POSO) Self-
Consitent (SC) estimate proposed by [9], it has been shown that the overall viscoplastic behav-
ior (flow stress and stress sensitivity) in olivine is controlled by the behavior of accommodation
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mechanisms (dislocation climb, diffusion, grain boundary sliding, . . .) which are not clearly iden-
tified yet [10–13]. Moreover, rocks are subjected to very large strain during mantle convection, in-
ducing the development of pronounced crystallographic textures that can be partly characterized
by the anisotropic velocities of seismic waves [14]. The associated effective viscoplatic anisotropy
may strongly influence the mantle flow pattern in-situ [15,16]. However, the prediction of in-situ
texture distribution is tedious as, besides temperature-related mechanisms such as recrystalliza-
tion and grain growth, the prediction of deformation texture is also sensitive to the used homog-
enization scheme [17]. Regarding the transition zone, texture development associated with large
shear strain have been investigated in [18] for wadsleyite using an earlier extension of the SC
scheme (the tangent approach of [19]) whose inconsistencies have been described in [7, 8] and
partly corrected in [20]. In Tommasi et al. paper [18], the effective viscosity of wadsleyite and its
relation with the active slip systems has not been investigated.

The POSO version of the Self-Consistent scheme was up to recently the most accurate mean-
field method for predicting the effective viscoplastic behavior of highly anisotropic materials
such as mantle rocks. As shown in e.g. [21, 22], this method provides results in very good agree-
ment with computational homogenization (providing reference solutions) e.g. based on the
Fourier Transform (FFT, sometimes also denoted spectral method) introduced by [3]. Among
its advantages, the POSO-SC method complies with the variational upper bound [23] that has
been applied to highly anisotropic polycrystals in [24–26]. However, it lacks duality (stress and
strain formulations lead to different results) and the link between the behavior of the thermo-
elastic polycrystal used as a reference (called Linear Comparison Composite, LCC) and the
non-linear viscoplastic behavior of the real polycrystal of interest requires complex computa-
tion of some corrective terms [27] that is rarely carried out in practice. The above mentioned
limitations of POSO-SC have been ruled out recently with the Fully Optimized Second-Order
(FOSO) method [1, 28], which has, to the best of our knowledge, only been applied yet to
porous sea ice [29].

This paper focusses on the rheological behavior of Mg2SiO4 wadsleyite. In Section 2, we pro-
vide the strength of the various slip systems based on computational mineral physics and the cor-
responding P–T dependent constitutive relation at the grain scale. We present in Section 3 how
the mean-field (FOSO-SC) and full-field (FFT) homogenization schemes have been applied. Re-
sults are then presented and discussed in Section 4 and compared to the available experimental
results.

2. Viscoplastic behavior of slip systems

2.1. At the dislocation scale from generalized stacking fault energies

The modelling of gliding properties of dislocations in wadsleyite has been initiated by Ritterbex
et al. [6] for the Mg end-member of (Mg,Fe)2SiO4, i.e. the pure magnesian Mg2SiO4 composition.
The first step of the model is to identify the most important slip systems and to determine the
specific atomic arrangements which build the dislocation core. Such calculations are usually
performed at the atomic scale. However, the long range displacement fields of dislocations
impose the use of classical molecular dynamic simulation instead of highly accurate density
functional theory based ab-initio calculations.

Another option to compute dislocation core properties is to use the Peierls–Nabarro model
which relies on generalized stacking fault (GSF) energies. GSF’s probes the ability of a perfect crys-
tal structure to undergo a rigid body shear localized in a specific plane, and, combined with the
Peierls–Nabarro approach, allows to search for potential easy slip systems of any crystalline ma-
terials. More importantly, such calculations do not require supercells containing large numbers
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Figure 1. Dislocation modeling in Mg2SiO4 wadsleyite at 15 GPa (a) Generalized Stacking
fault calculated by [30] for a {101} plane. The easy shear path is along 〈111〉. (b) Dislocation
core profile for a 1/2〈111〉{101} dislocation calculated from the Peierls–Nabarro Galerkin
method. S is the disregistry profile.

of atoms so they can be performed by using ab initio methods, ensuring that the effect of high
pressure on bond energy or ion interactions is accurately taken into account. In orthorhombic
wadsleyite (lattice parameters a = 5.70 Å, b = 11.44 Å, c = 8.26 Å at 18.5 GPa), the easiest slip sys-
tems are [100](010) and 1/2〈111〉{101}. An example is provided in Figure 1a which shows a GSF
calculated in a {101} plane at 15 GPa. On the vertical axis is represented the excess energy asso-
ciated with a rigid body shift in the considered plane. One can deduce that in {101} planes, the
easiest shear path is along 〈111〉 directions.

As recalled above, the GSF serves as input for the Peierls–Nabarro model used to compute
dislocation core structures by minimization of the total energy of the system composed of the
elastic strain energy and the inelastic stacking fault energy across the potential glide planes.
Ritterbex et al. [6] used a generalization of the Peierls–Nabarro model in the framework of the
element-free Galerkin method which allows for the introduction of multiple glide planes in order
to describe more general core structures involving spreading in several planes. In wadsleyite, for
all slip systems considered, dislocations exhibit a planar core involving two well-separated partial
dislocations enclosing a stacking fault (see an illustration in Figure 1b).

Besides the core structure, i.e. the atomic arrangement within the vicinity of the dislocation
core, Ritterbex et al. computed the lattice friction experienced by dislocations on each slip sys-
tem. The amount of lattice friction is often described as the height of the Peierls potential or
quantified through the maximum of the derivative of the potential, the Peierls stress. Neverthe-
less, whereas Peierls stress or Peierls potential are strictly related to the core of dislocations, the
glide of dislocations at finite temperature is thermally activated. Thermal activation means that
glide at finite temperature is controlled by the nucleation and propagation of unstable kink-pairs
over the Peierls barrier, assisted by the resolved shear stress. Ritterbex et al. provided a full de-
scription of these kink processes according to an elastic interaction model [31]. For wadsleyite,
since dislocations are dissociated, the kink-pair mechanism may involve different types of kink
nucleation events depending on the stress regime. Indeed, kink nucleation must occur on both
partials with sequences of events that can either be correlated or uncorrelated leading to dis-
tinct nucleation enthalpy depending on the stress regime [32]. Finally, from the kink-pair nucle-
ation enthalpy, the dislocation velocity law can be formulated as a function of temperature and
resolved shear stress. The corresponding constitutive relation has to account for these two stress

C. R. Mécanique, 2020, 348, n 10-11, 827-846



O. Castelnau et al. 831

Table 1. Rheological parameters of 1/2〈110〉{110} and [100](010) screw dislocations in
wadsleyite at 15 GPa for τ≥ τc . Units are m·s−1 for A, J for B , and MPa for τ

τc τp Ac Bc αc βc Au Bu αu βu

1/2〈111〉{101} 455 3500 2190 1.97×10−18 0.5 1.6 4380 8.49×10−19 1.0 5.0
[100](010) 4800 1208 2×10−18 0.5 1.03

regimes, leading to two different expressions of the shear-rate on the slip system

γ̇c (τ) = Ac
p
ρm exp

{
− Bc

kbT

[
1−

(
τ

τp

)αc
]βc

}
(1)

γ̇u(τ) = Au
p
ρm

τ−τc

τ
exp

{
− Bu

kbT

[
1−

(
τ−τc

τp

)αu
]βu

}
(2)

where indexes c and u stand for correlated and uncorrelated kink-pair nucleation regimes,
respectively. Here, ρm is the density of mobile dislocations, T is the temperature, τp is the
Peierls stress, A and B are two constants, and kb ' 1.3806×10−23 m2·kg·s−2·K−1 is the Boltzmann
constant. A is related to the shear-rate at τ= τc , marking the transition stress between correlated
and uncorrelated regimes, whereas B is an activation energy. The resolved shear stress τ acting
on the slip system is given by

τ= S :σ (3)

where S is the Schmid tensor (see Appendix A), σ the local deviatoric stress tensor, and “:” the
twice contracted product. The resulting shear-rate on a given slip system is given by

γ̇(τ) = γ̇c (τ) (4)

when τ≤ τc and

γ̇(τ) = 1
2 [γ̇c (τ)+ γ̇u(τ)] (5)

otherwise. For waldsleyite, the modelling that has been performed for dislocations with screw
character which are the rate-limiting ones. The easiest slips include the family 1/2〈111〉{101}
with four individual slip systems (1/2[111̄](101), 1/2[11̄1̄](101), 1/2[111](101̄), 1/2[11̄1](101̄)),
and the additional system [100](010). At stresses higher than τc = 455 MPa as considered here,
the rheology of 1/2〈111〉{101} screw dislocations at 15 GPa is governed by (5) whereas that for
[100](010) is given by (4). The corresponding rheological coefficients are indicated in Table 1.
Finally, the local strain-rate ε̇ at position x inside a grain, resulting from the glide of dislocations
on all slip systems, is given by

ε̇(x) =
S∑

s=1
S(s)γ̇(s)(x) (6)

with S(s) the Schmid tensor for system (s) and S (= 5) the number of slip systems. Note that
the four systems 1/2〈111〉{101} are independent and do not allow axial strain of the crystal
lattice along the lattice direction b (see Appendix A). The fifth system [100](010) does not add
any additional degree of freedom, and therefore the wadsleyite crystal is left with only four
independent slip systems. As discussed in [13, 33], four systems are sufficient to accommodate
locally any viscoplastic deformation of the polycrystalline aggregate.
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2.2. Power law approximation of slip system behavior

Although homogenization models could in principle be applied with constitutive relations hav-
ing an exponential form as (4) and (5), it is more common to use instead a power-law behavior

γ̇pl = γ̇0

∣∣∣∣
τ

τ0

∣∣∣∣
n−1 τ

τ0
(7)

where the index pl stands for power-law. This is the form commonly implemented in homoge-
nization codes. Here, γ̇0 and τ0 are two constants to be determined, a reference shear-rate and a
reference shear stress, respectively. We consider here the value γ̇0 = 10−5 s−1 as a typical strain-
rate achieved during laboratory mechanical tests. Form (7) can be seen as a power-law approxi-
mation of (4) or (5) valid in a range of τ values close to a given reference value denoted τr . To find
τ0, one expresses that the power-law approximation is tangent to the exponential form at τ= τr :

γ̇pl (τr ) = γ̇(τr ) ,
∂γ̇pl

∂τ

∣∣∣∣
τ=τr

= ∂γ̇

∂τ

∣∣∣∣
τ=τr

. (8)

This leads to the following expression for the stress exponent n

n = ∂ log γ̇

∂ logτ

∣∣∣∣
τ=τr

= τr

γ̇(τr )

∂γ̇

∂τ

∣∣∣∣
τ=τr

(9)

while the reference stress τ0 reads

τ0 = τr

(
γ̇(τr )

γ̇0

)−1/n

. (10)

These can be calculated using the following expressions for the derivatives in (9)

∂γ̇c

∂τ
= −a exp

{
b

[
1−

(
τ

τp

)α]β}
αβb

τ

(
τ

τp

)α (
1−

(
τ

τp

)α)β−1

(11)

∂γ̇u

∂τ
= a exp

{
b

[
1−

(
τ−τc

τp

)α]β}{
τc

τ2 − αβb

τ

(
τ−τc

τp

)α (
1−

(
τ−τc

τp

)α)β−1
}

(12)

with a = A
p
ρm , b =−B/(kbT ), and with indexes c and u left for the sake of clarity.

Power-law approximations of the exponential constitutive relations have been calculated
under typical conditions corresponding to high P , T laboratory mechanical tests, i.e. considering
a density of mobile dislocations ρm = 1012 m−2 and a strain-rate γ̇ = γ̇0 (leading to τ0 = τr ). It
is observed that the power-law provides a very good approximation of the original exponential
behavior, as illustrated in Figure 2a at 1700 K. The resulting power-law parameters are provided
in Figure 2b for a large temperature range. It turns out that the rheology of the various slip systems
is strongly non-linear. Values of n are between ∼17 and 100 for the considered temperature range,
with a different behavior for both slip systems. Moreover, the reference shear stress for the system
[100](010) is significantly stiffer (∼3 times) than for 1/2〈111〉{101}.

3. Polycrystal modeling

We now proceed to the next scale transition, i.e. estimation of the effective (average) viscoplastic
behavior of a representative polycrystalline aggregate composed of a large number of grains.
We consider the case for which grains are randomly oriented (random crystallographic texture)
and exhibit equiaxed shapes so that the effective behavior can be considered as isotropic. In the
sequel, effective (or homogenized) quantities are denoted with a tilde (̃.) and volume average
ones with a bar (̄.). The effective viscoplastic behavior thus reads

˙̄εeq = γ̇0

(
σ̄eq

σ̃0

)ñ

(13)
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Figure 2. (left) Power-law approximations of the slip system behaviors for wadsleyite at γ̇=
10−5 s−1: comparison of the original exponential constitutive relation with its power-law
approximation (fit) at 1700 K. (right) Evolution of τ0 and n of the power-law approximations
of the slip system behavior at γ̇= 10−5 s−1, for various temperatures.

where σ̄eq is the effective von Mises equivalent stress (σ̄eq = √
(3/2)σ̄i j σ̄i j ), ˙̄εeq is the effective

von Mises equivalent strain-rate (˙̄εeq =
√

(2/3)˙̄εi j ˙̄εi j ), where σ̄ = 〈σ(x)〉 and ˙̄ε = 〈ε̇(x)〉 are the
mean deviatoric stress and strain-rate tensors respectively.

To estimate the effective reference stress σ̃0 and effective stress sensitivity ñ, and to investi-
gate how the stress/strain-rate are distributed within grains, we make use of two scale transition
methods, the mean-field FOSO-SC scheme recently proposed by [1] and the full-field computa-
tional homogenization based on the FFT method [3]. All results below have been obtained for
uniaxial deformation under a prescribed macroscopic strain-rate ˙̄εeq = γ̇0, so that σ̄eq = σ̃0.

3.1. Mean-field approach—FOSO-SC scheme

Mean-Field homogenization of heterogeneous materials is relatively straightforward when the
mechanical behavior of each mechanical phase (i.e. grains with given orientation) is linear and
homogeneous. This is the case for linear thermo-elastic polycrystalline aggregates where the local
constitutive relation for a phase p reads

ε(x) = M(p) :σ(x)+ε(p)
0 (14)

where M(p) and ε(p)
0 only depend on the crystal orientation of the considered grain. This leads to

an effective behavior of the same form

ε̄= M̃ : σ̄+ ε̃0. (15)

In that case, to estimate the effective compliance given by

M̃ = 〈M(x) : B(x)〉, (16)

with B the stress concentration tensor of the purely elastic problem (i.e. when ε(p)
0 = 0) defined

as σ(x) = B(x) : σ̄, it is sufficient to estimate the phase-average of B, denoted 〈B〉(p). Indeed, the
volume integral in (16) can be transformed into a discrete sum over all mechanical phases

M̃ =
∑
p

fp M(p) : 〈B(x)〉(p), (17)

with fp indicating the volume fraction. This is why mean-field homogenization is very efficient
numerically.
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The situation for non-linear polycrystals as considered here is more complex as the local com-
pliance M(x) defined after (6) depends on the local stress state which is itself heterogeneously
distributed within deforming grains [34]. The solution (17) therefore cannot be used directly. The
standard approach to address this issue relies on a linearization of the non-linear polycrystal of
interest in order to end up with a thermo-elastic-like material (LCC), exhibiting the same mi-
crostructure as the original non-linear one, but for which the standard thermo-elastic homoge-
nized solution applies. Finding the proper linearization procedure is a difficult task, this is why
several propositions can be found in the literature (some of them are listed below). The exact link
between the effective behavior of the non-linear polycrystal and of the linearized thermo-elastic
one is another difficulty that has often been left aside [27]. The impact of the used linearization
procedure on the effective behavior becomes critical for highly non-linear materials or, equiva-
lently, highly anisotropic local behavior or high mechanical contrast between the phases. As seen
in the previous section, waldseyite exhibits both very high non-linearity and anisotropy, which
constitutes a challenge for mean-field homogenization.

The most advanced linearization procedure nowadays, that we will use here, is the Fully
Optimized Second Order (FOSO) scheme proposed recently by [1]. In short, starting from a
variational formulation of the problem, the optimal linearization, leading to the definition of the
linear thermo-elastic comparison material, is defined as an optimization problem. Compared
to the Partially Optimized (POSO) formulation [9], full optimization could be carried out in
FOSO, hence the name. This formulation has several significant advantages compared to the
previous POSO one: (i) there is no duality gap, i.e. stress and strain-rate formulations yield similar
results, (ii) stress and strain-rate field statistics in the linearized and non-linear polycrystals
are identical, there is no need to compute the corrective terms as in [27]. As POSO, the FOSO
approach complies by construction with the known upper bounds for the effective behavior.
First application of FOSO-SC to viscoplastic porous hexagonal polycrystals (similar to sea ice)
yields a rheology in very good agreement with the reference results obtained by the FFT full-field
homogenization [29]. In the FOSO-SC approach, the local behavior of the linear thermo-elastic
comparison polycrystal reads, at the slip system level,

γ̇(s)(x) = m(p)
(s) τ(s)(x)+ ė(p)

(s) (18)

where the compliance m(p)
(s) and stress-free strain-rate ė(p)

(s) depend on both the first moment

τ̄
(p)
(s) = 〈τ(s)(x)〉(p) and second moment ¯̄τ(p)

(s) = 〈τ2
(s)(x)〉(p) of resolved shear stress in the mechanical

phase p:

m(p)
(s) = γ̇(τ̂)− γ̇(τ̌)

τ̂− τ̌ , ė(p)
(s) = γ̇(τ̌)−m(p)

(s) τ̌ (19)

with τ̌ and τ̂ defined as

τ̌= τ̄−
√

1−α
α

√
¯̄τ− τ̄2 sign(τ̄), τ̂= τ̄+

√
1−α
α

√
¯̄τ− τ̄2 sign(τ̄). (20)

In (20),
p

¯̄τ− τ̄2 is the standard deviation of the shear stress distribution acting on the slip system.
Using the value α= 0.5 recommended in [1], τ̌ and τ̂ are therefore one standard deviation below
and above the mean value τ̄.

In comparison, the POSO formulation can be obtained using τ̌ = τ̄ and the same definition
for τ̌ as in (20) while the variational upper bound of [23] corresponds to τ̌ = 0 and τ̂ = ( ¯̄τ)1/2. On
the other hand, the earlier affine scheme [20], which is not based on a variational formulation,
would be obtained by taking the limit of (19) for α→ 1, therefore not making use of the shear
stress fluctuation at the slip system level. The even earlier tangent formulation of [19] applied
to wadsleyite in [18] is based on a similar formulation as the affine one but with a compliance
divided by n and ė(p)

(s) = 0.
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Figure 3. Typical periodic microstructure considered for FFT computations.

Application to wadsleyite has been performed considering equiaxe grain shapes and using a
set of 2000 crystal orientations generated by a Sobol quasi-random sequence, that provides better
overall isotropy than the random orientation usually chosen. As already mentioned, wadsleyite
exhibits highly anisotropic and non-linear behavior at the grain scale, and this makes the nu-
merical convergence of the FOSO-SC model rather delicate. The used numerical procedure is de-
tailed in Appendix B. It is worth noting that the model converges without having to introduce any
additional unphysical slip systems often used in the literature to reach a total of 5 independent
slip systems.

3.2. Full-Field approach—FFT numerical homogenization

The FFT method [3] relies on the 3D microstructure of the considered polycrystal, which consti-
tutes the unit cell, submitted to periodic boundary conditions. This unit cell is discretized into
N1 ×N2 ×N3 voxels. This discretization determines a regular grid in the cartesian space xd and a
corresponding grid in the Fourier space ξd . The heterogeneous problem of a polycrystal exhibit-
ing a different compliance M(x) at each position (x) is rewritten equivalently as a homogeneous
problem with an arbitrary homogeneous compliance M0 and an additional unknown stress-free
strain-rate (or polarization) field. The solution is given by a convolution of the Green tensor as-
sociated to M0 with the polarization field of interest. In the Fourier space, this convolution turns
into a direct product, hence the very high numerical efficiency of the method. An iterative scheme
must be implemented to obtain, upon convergence, the compatible strain-rate field associated
to the balanced stress field for nonlinear rheology, as detailed in [2]. This FFT method provides
the “exact” solution (apart purely numerical errors) for the considered microstructure, but re-
quires significantly more computing ressources than mean-field estimations. Another advantage
of such full-field homogenization is that details of stress and strain-rate distributions within the
microstructure can be obtained.

For the application to wadsleyite, the considered microstructure is a periodical three-
dimensional unit cells randomly generated by Voronoi tesselation, and containing 1000 grains
(Figure 3). Crystal orientations are chosen according to the Sobol sequence introduced in
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Figure 4. Macroscopic response σ̃0 of wadsleyite for various temperatures. Predictions of
FOSO-SC and FFT polycrystal models including dislocation mobility based on the GSF
model are compared to experimental data. The reponse of individual slip on 1/2〈111〉(101)
(τ value for γ̇= 10−5 s−1 as in Figure 2) as well as the static Lower Bound (LB) are shown for
comparison.

Section 3.1, leading to an effective behavior close to isotropic. The unit cell was discretized into
256×256×256 voxels. The effective rheology has been obtained by averaging the model output
for 10 random realizations of such synthetic polycrystalline agregates. The relative statistical un-
certainty of results given below has been estimated according to the method proposed in [35].
For example, we found that using 10 random realizations leads to an error of only 0.1% on the
effective stress σ̃0.

4. Results and discussion

Results provided by the 3-scales homogenization approach described above, from the nanometer
P–T dependent dislocation core structure up to the sub-meter polycrystal scale, is now given for a
typical strain-rate corresponding to laboratory mechanical tests. The reference FFT solution and
the FOSO-SC estimate integrate the rheology of individual slip systems obtained by the Peierls–
Nabarro model described in Section 2.

Figure 4 shows the flow stress σ̃0 for temperatures ranging between 1100 K and 2100 K. First of
all, it can be observed that the mean-field homogeization scheme provides an estimation of the
effective behavior that lies very close to the reference FFT numerical solution. Both estimations
differ by less than 5% for the four temperatures computed by FFT (see numerical values in Table 2
for 1700 K). The FOSO-SC model therefore does an excellent job considering the very strong
viscoplastic anisotropy of wadsleyite crystals (recall that axial strain along lattice direction b is
impossible) and non-linearity (n ' 30 at 1700 K). The effective stress σ̃0 is found to be ∼4.7 times
larger than the flow stress of 1/2〈111〉(101) for the whole temperature range considered.

Concerning the effective stress sensitivity ñ, it is normally related with those of individual
slip systems in a complex way due to the mechanical interaction between the grains during
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Figure 5. Distribution of (left) normalized equivalent stressσeq/σ̄eq and (right) normalized
equivalent strain-rate ε̇eq/˙̄εeq in a 2D section of a 3D FFT microstructure for wadsleyite at
1700 K.

Table 2. Effective flow stress σ̄eq and standard deviations (SD) of the equivalent stress and
strain-rate as predicted by various extensions of the SC scheme at 1700 K

FFT STAT TGT POSO FOSO AFF VAR TAYLOR
σ̄eq 2497 1232 1699 2198 2611 3128 3232 +∞

SD(σeq)/σ̄eq 1.59 0 1.082 0.856 1.749 2.503 1.678
SD(ε̇eq)/˙̄εeq 1.495 2.898 1.238 2.307 1.239 2.869 1.168 0

deformation. The situation for wadsleyite is somehow simplified as both FFT and FOSO-SC
approaches predict no activation at all of system [100](010). In [13], it has however been shown
for olivine that even when the activity of accommodation mechanisms could be considered as
negligeable, their influence on the effective stress sensitivity can be significant. For example, ñ
during the creep of olivine can hardly exceed a value of 2 when dislocation glide with n = 3.5
is accommodated by a linear mechanisms such as Nabarro–Herring or Coble diffusion. Olivine
however exhibits only 3 independent slip systems, compared to 4 systems for wadsleyite. Here,
slip on [100](010) does not relax any kinematic constraint for grains deforming with the four
systems of the 1/2〈111〉{101} family. Consequently, it is observed that system [100](010) has no
effect on the effective stress sensitivity, and we find numerically that ñ for wadsleyite is exactly
equal to the n value of 1/2〈111〉{101} slip, already indicated in Figure 2: it lies between 18 and 50
in the considered temperature range.

The fields of normalized equivalent stress σeq/σ̄eq and strain-rate ε̇eq/˙̄εeq within a section of
a 3D microstructure computed by FFT at 1700 K is shown is Figure 5. Large fluctuations are ob-
served between grains (intergranular heterogeneity) but also inside individual grains (intragran-
ular heterogeneity). Hot spots corresponding to high values are clearly visible, they seem to be es-
sentially located at triple junctions and grain boundaries, but note that locations corresponding
to large equivalent stressesσeq do often not exhibit at the same time a large equivalent strain-rate
ε̇eq. In an attempt to quantify the concentration of stress at grain boundaries, we have computed
for each voxel of the FFT microstructures the distance to the nearest grain boundary. We have
carefully checked the behavior of many grains, and we show in Figure 6 representative results, for
the two grains (#98 and #918) indicated in Figure 5. One can observe that there is a slightly smaller
heterogeneity of the equivalent stress at grain interior for grain #918 compared to voxels close to
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Figure 6. Effect of the distance (normalized by the grain size) to the closest grain boundary
on the normalized equivalent stress for (left) grain #98 and (right) grain #918 indicated in
Figure 5. Each dot correspond to a voxel of the grain.

Figure 7. Distribution of normalized equivalent stress σeq/σ̄eq in grains #98 and #918 for
(left) one microstructure and (right) average over 20 random microstructures. Mean values
and standard deviation are also indicated.

grain boundaries, but such trend is not observed in grain #98. The same analysis was performed
at the polycrystal level, accounting for all grains and voxels. The results are not shown here for the
sake of conciseness, but a similar trend is observed. What can be said is that the largest values of
equivalent stresses are observed only within voxels close to grain boundaries, but this concerns
only a very small volume fraction of the material. The global picture is similar to that shown in
Figure 6 with no significantly larger stress heterogeneity close to grain boundary. A similar analy-
sis was carried out in [36] in the case of cubic polycrystals, and a larger effect of the distance was
found, probably due to the fact that the plastic anisotropy at the grain scale is much smaller in
cubic materials than for wadsleyite. The authors also mentioned a different behavior for hexag-
onal polycrystals, but without providing further details. A more detailed analysis of grain bound-
ary effects and their dependence with the anisotropy and non-linearity of the local constitutive
relation would be necessary and is left for future work.

To be more quantitative, the distribution of equivalent stress for grains #98 and #918 is shown
in Figure 7. Figure 7a shows the stress distribution for these grains within a given random
microstructure. One can observe that they are very different, with an intense narrow peak for
grain #918 and a broad flat distribution for grain #98. None of these can be described by simple
functions such as a log-normal. These are typical features encountered in many grains of the
FFT computations. Stress heterogeneities in grains are due to the viscoplastic anisotropy of the
grain of interest, related to its crystal orientation, and the mechanical interaction of the grain
with its surrounding depending on the behavior of neighboring grains, the grain shape, and the
overall polycrystal behavior. To estimate the relative importance of both sources, we have carried
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Figure 8. (left) Average values of the local (voxel scale) equivalent stress 〈σeq〉(p)/σ̄eq

in individual grains, and (right) standard deviation of the equivalent stress√
〈σ2

eq〉(p) − (〈σeq〉(p))2/σ̄eq. Only 50 grains are shown out the 1000 grains of the mi-
crostructure.

out FFT computations on 20 microstructures, for which the grains size, shape, and location was
random (based on Voronoi tesselation) but keeping the same set of 1000 crystal orientations.
Doing so, it was possible to compute the stress distribution in grains #98 and #918 for those
20 realizations, in which those grains keep the same orientation but change size, shape, and
are embedded in various environments. Results are shown in Figure 7b. Stress distributions
become more similar in shape but still exhibit different mean and standard deviations. This
analysis was generalized for all grains of the microstructure, and the corresponding mean and
standard deviation of σeq are shown in Figure 8. In this figure, the red dots correspond to the
value obtained for a given random microstructure and the blue dots are the average over 20
microstructures. It is observed that the stress distribution in all the grains is very sensitive to the
specific microstructure considered. The stress fluctuation in a given grain due to microstructural
effects, indicated by the spread of the red dots, is of similar amplitude than the overall stress
fluctuation within the whole polycrystal. In the highly anisotropic and non-linear wadsleyite, the
local mechanical state of a grain is thus affected by its crystal orientation but also significantly by
the behavior of neighboring grains. A consequence of this is that special care should be taken
when interpreting experimental observation of grain deformation. The static bound (STAT in
Table 2), assuming a uniform stress within the whole polycrystal and in which grains deformation
can be estimated by the sole knowledge of grains orientation (or associated Schmid factor), is
therefore not adapted. An experimental illustration of this can be found in [37] in which, for 2D
polycrystalline ice (exhibiting only two easy slip systems), no correlation was found between the
grain Schmid factor and the local deformation.

Coming back to the efficiency of FOSO-SC, a challenge for mean-field homogenization mod-
els is the accurate estimation not only of the effective behavior but also of the spread of the me-
chanical states at the various scales, so that good results at the polycrystal scale are obtained for
good reasons. The distribution of normalized stress and strain-rate over the whole polycrystal,
computed with the FFT homogenization using the 20 random realizations, is given in Figure 9.
Long tails are observed up to values as high as ∼5. We have computed the associated standard
deviations as these quantities can be also computed by mean-field models. They are defined as

SD(σeq) =
√
〈σ2

eq(x)− σ̄2
eq〉, SD(ε̇eq) =

√
〈ε̇2

eq(x)− ˙̄ε2
eq〉. (21)

Numerical values are indicated in Table 2. It is found that results obtained with FOSO-SC are
in very good agrement with the FFT reference ones, the difference being ∼10% for the stress
heterogeneity and ∼15% for strain-rates. This is an important result as the partially optimized
version (POSO) of the SC scheme, which was the best available method since 2002, yields
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Figure 9. Probability densities of (left) normalized equivalent stress σeq/σ̄eq and (right)
normalized equivalent strain-rate ε̇eq/˙̄εeq predicted by for the whole 3D microstructure (20
random realizations) at 1700 K.

results that are clearly not as good. The variational bound (VAR) of [23] predicts stress and
strain-rate heterogeneities that are here relatively close to the FFT reference but, as expected,
overestimates the effective stress. Other methods not using the intraphase stress heterogeneities
for the definition of the linear comparison polycrystals, i.e. the tangent (TGT) approach of [19]
and the affine (AFF) one [20] significantly depart from the FFT results, both for the effective
behavior and the field heterogeneities. Finally, the static uniform stress bound (STAT) completely
discards stress fluctuations and underestimate the flow stress by a factor of ∼2, while the Taylor
uniform strain-rate bound (TAYLOR) cannot apply here due to the lack of 5 independent slip
systems.

The effective response and associated stress and strain-rate heterogeneities in polycrystalline
aggregates lacking 5 independent slip systems have been studied mostly in HCP materials.
Hutchinson [33] has shown that in the framework of the linear SC scheme, used in this study
to compute the linear comparison polycrystal, overall polycrystal deformation is possible with
only 4 independent systems. This result has been shown to apply also for non-linear polycrystals
by Nebozhyn et al. [26]. The same authors also showed that in ionic polycrystals with only 3
independent systems, the variational estimate of [23] predicts a flow stress that is proportional
to the square-root of the mechanical contrast between the slip systems, whereas it unrealistically
reaches a plateau at high contrasts for the earlier tangent approach of [19]. A very good match
between the FOSO-SC approach and FFT reference results has been obtained in [1] in the case of
HCP polycrystals at modest non-linearity (n = 3). The present study shows that excellent results
are also obtained at a significantly larger non-linearity.

In Figure 4, our numerical results are compared to the available experimental data in the
literature [38–41]. These experiments take advantage of the latest developments of experimental
deformation at high P , T conditions. Pressure is created by compressing the sample assembly
between two opposed anvils. This assembly contains an internal resistive heater to achieve
high temperature conditions. Deformation in torsion is produced by rotating one anvil. Stress
measurements are performed by X-ray diffraction using synchrotron radiation by measuring the
orientation dependence and changes in lattice spacing for several diffracting planes. To ensure
acquisition of a proper diffraction pattern, the grain size must be maintained small. In all these
experiments, the grain size was in the range 1–5µm. Although the dispersion of this experimental
data set is significant, it concludes consistently that wadsleyite is very strong since, despite the
high temperature involved (ca. 1500–2000 K), the stress level remains very high: several GPa. Our
modeling results are in excellent agreement with these observations. It must be recalled that our
multiscale model relies on the strong assumption that strain is produced by dislocation glide
only. The Peierls Nabarro model has shown that lattice friction is strongly affected by pressure
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in this range, partly due to the strong increase of the elastic constants under pressure. Despite
the small grain size, TEM observations [39–41] agree that dislocation activity is pervasive with
densities of the order of 1013 m−2 and dislocation configurations which emphasize the key role
played by glide under high lattice friction (straight dislocations well-confined in glide planes). In
our dislocation based model, glide overcoming high opposed lattice friction leads to a strongly
non-linear viscoplastic behavior. Experiments provide limited constraints on stress sensitivity
so far, but preliminary estimates from [40, 41] suggest stress exponents in the order of 5–6, i.e.
smaller than predicted here. Although this evidence needs to be consolidated, we can tentatively
invoke the role played by grain boundaries. As underlined above, the grains sizes in these high-
pressure experiments need to be maintained in the micrometer range. At the high temperature
investigated, it is likely that some accommodation processes operate at grain boundaries. Indeed,
evidence for grain boundary sliding and migration was suggested by [39]. In our polycrystalline
models, the grain size is not taken into account explicitly, but grain boundaries are present
and act only as barriers to dislocations glide, leading to strain localizations which cannot be
accommodated by specific grain boundary relaxation mechanisms. It has been demonstrated
in [13] that these accommodation mechanisms can very efficiently decrease the stress exponent.
This might reconcile our numerical values to the few experimental data available.

To finish with, we would like to come back to possible geophysical implications for in situ
mantle deformation, in which strain-rates are many orders of magnitude smaller than the one
considered here. Ritterbex et al. [6] have provided evidence that dislocation glide controls the
mechanical behavior of wadsleyite at lab conditions, and this allows us, in the present paper, to
make the link between atomic and grain scales without the need to handle atomic diffusion. In
contrast, a recent study of Ritterbex et al. [42] handles deformation of wadsleyite at appropriate
mantle strain-rates and show that climb-controlled deformation is expected to operate rather
than glide-controlled deformation as treated in this work. Therefore, the current results cannot
be simply extrapolated to mantle conditions. The present work rather aims to provide a theoreti-
cal framework which enables to explain the high stress data of deformation experiments of poly-
crystalline wadsleyite at lab conditions. The same procedure could however be applied to these
new rheological data, but this is left for future work.

5. Conclusion

This work provides the very first estimation of the rheology of a constituent of the Earth’s mantle
at relevant pressure and temperature in which scales from the atomistic up to polycrystalline ag-
gregate are bridged together using state-of-the-art scale transition models. Here, the dislocation
resistance to shear has been computed relying on generalized stacking faults energies incorpo-
ration the strong influence of pressure on atomic bonding, combined with Peierls–Nabarro ap-
proach. The constitutive equation of a slip system involving these dislocations is then obtained
from the Orowan equation. It shows that, at high temperature and strain-rates representative
of laboratory experiments (10−5 s−1), the rheology at the slip system level is highly non-linear
due to the high lattice friction opposed to dislocation glide. The obtained constitutive relation
at the slip system level has been introduced in the recent Fully Optimized Second Order Self-
Consistent scheme (FOSO-SC) of Ponte Castañeda [1, 28] which allows computing the effective
viscoplastic behavior at the polycrystal scale. Predictions of the latter approach have been com-
pared with the FFT computational homogenization method [3] that provides reference results, in
which the same slip system behavior has been introduced. We found that the obtained flow stress
of wadsleyite polycrystals at 15 GPa matches very well with the available experimental results
from the literature and lies within experimental uncertainties at least for temperatures ranging
between 1500 K and 2100 K. This could be obtained thanks to the fast computation provided by
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the FOSO-SC method. Micromechanical modeling indicates that the stiff slip system [100](010)
is not activated at all and has no effect on polycrystal deformation. Wadleyite therefore deforms
with only the 4 independent systems of the 1/2〈111〉{101} family. The FFT results show that the
deformation of individual grains (mean and standard deviation) in the polycrystalline agregate
is significantly influenced by the behavior of neighboring grains. Finally, comparison with ear-
lier mean-field approaches demonstrates the superior estimations provided by the FOSO-SC
scheme, not only for the effective behavior but also for the overall stress and strain-rate hetero-
geneities.
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Appendix A. Determination of the number of independent slip systems

Cotton and Kaufman [43] proposed a method for determining the number of independent slip
systems in cubic crystals. Here we extend this method to any lattice symmetry. In that case, the
number of independent slip systems not only depends on the Bravais lattice and slip system
indexes, but also on the lattice parameters. For example, out of the six individual slip systems
of the family 1/2〈110〉{110}, only two are independent in the case of a cubic crystal lattice, four
are independent in the case of an orthorhombic crystal, but five for a tetragonal crystal.

Consider a crystal lattice with lattice vectors a, b and c. The reciprocal lattice vectors a∗, b∗

and c∗ are given by

a∗ = b×c

V
, b∗ = c×a

V
, c∗ = a×b

V
, (22)

where V = (a, b, c) is the lattice volume. The vector n normal to a plane of indexes (hkl ) and the
vector b parallel to the Burgers vector of indexes [uv w] are given by

n = ha∗+kb∗+ l c∗, b = ua+ vb+wc. (23)

The strain-rate tensor resulting from dislocations glide on (hkl )[uv w] is proportional to the
Schmid tensor S associated to that system

S = 1
2

(
n̂⊗ b̂+ b̂⊗ n̂

)
(24)

where n̂ and b̂ denote the unit vectors parallel to n and b, respectively. Tensor S is symmetric
and traceless (S11 +S22 +S33 = 0) since plastic deformation due to dislocation glide is isochoric.
Therefore, it has only five independent components, S11, S22, S23, S13 and S12.

The number of independent slip systems in the crystal is the rank of the matrix [M ] containing
as many rows as individual slip systems available in the crystal and five columns filled with the
five independent components of S for each slip system. When decomposing [M ] in a row echelon
form [M ]r , for example using the method rref of the python package sympy, the number of
independent slip systems corresponds to the number of nonzero rows (rows with at least one
nonzero element) of [M ]r .

Appendix B. Numerical method for FOSO-SC

In this section, we present the numerical method used in this work to solve for the FOSO-SC
model. It relies on a linearization step to define the LCC, and an inner loop to solve for the LCC.
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For the sake of comparison with [1] (their Figure 6), we have computed texture development in
an ice polycrystal made of 500 grain orientations deformed under uniaxial compression up to an
overall strain of 150% (in 300 steps), accounting for the evolution of grain shape, and a rheology at
the grain level with n = 3 and reference shear stresses τ0 for prismatic and pyramidal slips taken
60 times larger than for basal slip. Computation with the algorithm below (Fortran90 code) lasts
20 min using a standard laptop, compared to 20 h as indicated in [1]. This was obtained using a
convergence rate parameter κ= 0.5 (step 6 below) and an accuracy er r = 10−4.

For Wadsleyite, the convergence is a little more delicate because of the high non-linearity and
grain anisotropy. We had to use values of κ ranging between 0.1 and 0.005 while increasing the
stress sensitivity incrementally (steps of ∆n ∼ 5).

B.1. Iterative linearization of the non-linear polycrystal

The outer loop of the numerical method works as follows.

(1) Initial guess: start computing the uniform stress (static) bound, and use this solution as
initial guess for the affine SC model, with the same method as described below but using
the appropriated linearization (see Section 3.1). Then compute the intraphase first 〈σ〉(p)

and second 〈σ⊗σ〉(p) moments of the stress field associated to the affine model (see
Section B.2).

(2) With the guess values of 〈σ〉(p) and 〈σ⊗σ〉(p), compute the local compliance M(p) and
stress-free strain-rate ε(p)

0 of the LCC, Equation (14), according to (3), (6) and the FOSO
linearization (18)–(20).

(3) Solve for the effective behavior (M̃, ε̃0) of the LCC, Equation (15), using the method
described in Section B.2, and compute the associated new moments 〈σ〉(p)

LCC and 〈σ⊗
σ〉(p)

LCC.
(4) Invert (15) to compute the effective stress σ̄ associated to the prescribed strain-rate ˙̄ε.
(5) Computed the following four errors:

max
i , j

|〈σi j 〉(p) − σ̄i j |/max
k,l

(σ̄kl ),max
i , j

|〈ε̇i j 〉(p) − ˙̄εi j |/max
k,l

( ˙̄εkl ),

max
i , j

|〈σi j 〉(p)
LCC −〈σi j 〉(p)|/max

k,l
(σ̄kl ),

and

max
i , j ,k,l

|〈σi jσkl 〉(p)
LCC −〈σi jσkl 〉(p)|/max

m,n
(σ̄2

mn).

(6) If the largest of the above errors is larger than er r , then compute new guesses as
κ〈σ〉(p)

LCC + (1−κ)〈σ〉(p) and κ〈σ⊗σ〉(p)
LCC + (1−κ)〈σ⊗σ〉(p) by mixing the initial guess and

the estimation for the LCC, and start again with step 2 above.

B.2. Solving for the thermo-elastic self-consistent LCC

Following e.g. [44] and references therein, for given M(p) and ε(p)
0 , the effective compliance of the

LCC is given by the implicit equation

M̃+M∗ = 〈(M(p) +M∗)−1〉−1 (25)

which is solved by a standard fixed-point iterative method. When all grains exhibit the same
average shape, the Hill influence tensor M∗ is defined as

M∗ = E : M̃, E = (S−1
E − I)−1 (26)

C. R. Mécanique, 2020, 348, n 10-11, 827-846



844 O. Castelnau et al.

with I the identity tensor and SE the Eshelby tensor

SE = P : M̃−1, P = 1

2π|Z|

∫ π

0

∫ π

0
H(ξ)‖Z−1 ·ξ‖−3 sinθdθdφ (27)

with Hi j kl = (1/2)(K −1
i k ξ jξl + K −1

j k ξiξl ) related to the acoustic tensor K = ξ · M̃−1 · ξ and ξ =
(sinθcosφ, sinθ sinφ,cosθ). Z is a symmetrical second order tensor describing the shape of the
ellipsoidal inclusion. Here, integration of P is performed at each iteration of (25) using a gaussian
quadrature method with an increasing number of Gauss points (as in [44]) until an accuracy of
er r /10 is reached. The implicit equation (25) is solved iteratively until a precision of er r /10. Once
M̃ has been solved, one computes the stress concentration tensor of the purely elastic problem

〈B〉(p) = (M(p) +M∗)−1 : (M̃+M∗), (28)

the effective stress-free strain-rate
˙̃ε0 = 〈ε̇(p)

0 : B〉 (29)

and the phase-average residual stress

〈σres〉(p) = (M(p) +M∗)−1 : (˙̃ε0 − ε̇(p)
0 ). (30)

The intraphase first moment of the stress field is

〈σ〉(p) = 〈B〉(p) : σ̄+〈σres〉(p). (31)

The second moment is given by

〈σi jσkl 〉(p) = 1

fp


(σ̄⊗ σ̄) ::

∂M̃

∂M (p)
i j kl

+2
∂˙̃ε0

∂M (p)
i j kl

: σ̄+
〈
ε̇

(p)
0 :

∂〈σres〉(p)

∂M (p)
i j kl

〉
 (32)

where expressions for the derivatives can be found e.g. in [44–46]. Integration of the derivative of
the Eshelby tensor entering in (32) is done using a gaussian quadrature method.
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1. Introduction

Many crystals with b.c.c. (body centered cubic) structure exhibit a specific plastic behaviour at
low temperature characterized by the difficulty of identifying the slip planes along which dis-
locations are gliding, whereas the slip direction (given by the Burgers vector) is clearly defined.
The reason is that screw dislocations can easily cross-slip on several planes containing each slip
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direction which is a zone axis of the crystal. Slip lines are observed to be sinuous and this phe-
nomenon was called pencil glide and non-crystallographic slip by Taylor and Elam [4]. Modifica-
tions of the well-known Schmid law for crystal plasticity were proposed to accommodate pencil
glide and used to predict yield surfaces of polycrystals [5]. Gilormini [1] and Becker [6] applied
such a theory to predict rolling textures based on a homogenization polycrystal approach. Ac-
cording to the pencil glide model used in [1], the Schmid law is applied to slip systems with fixed
crystallographic slip directions and optimized slip plane to maximize the resolved shear stress at
each strain increment. Rolling textures were predicted in [1] using the Taylor model [7] and the
relaxed constraint model [8]. It was shown that the results of the latter model were in better agree-
ment with experimental findings [1]. However, these two homogenization techniques are known
to provide bounds of the actual behaviour. From a computational perspective, an advantage of
the pencil glide model is to reduce the number of slip systems and associated internal variables
and corresponding material parameters. This is the main incentive of the present contribution.

Hill [9], Mecking [10, 11], Kocks [12], van Houtte [13] and Arminjon [14, 15] have proposed
several classes of polycrystal models allowing for non homogeneous stress and strain values
between the various orientation classes of grains. These models essentially lead to deformation
textures in good agreement with measured ones. Depending on specific weighting parameters
present in these models, they can account for the whole span of the solution domain between
the lower and upper bounds. Another class of non-homogeneous models which make use of the
Eshelby theory to estimate the local tress and strain is the viscoplastic self-consistent scheme
(VPSC) [16, 17]. All grains having the same orientation within a given precision are gathered in a
single monocrystalline inclusion embedded in the effective medium. This reflects explicitly some
nonlinear interaction of each grain with its homogenized surroundings [18]. For the quasi-rate-
independent case, there also exists a self-consistent polycrystal plasticity model relying on the
multiplicative decomposition of the deformation gradient, see [19].

In the present work, a fast computational homogenization polycrystal model is introduced,
the so-called β-model which is a tunable extension of the Standard Self-Consistent (SSC) scheme
to investigate the elasto-plasticity of polycrystals [20–25]. The grain/aggregate interaction is still
taken into account via the use of the Eshelby tensor. The β-model incorporates interphase
accommodation variables β(g ) to replace the local plastic strain ε

(g )
p in usual SSC localization

formula. The evolution law for the β-variables contains tunable transition parameters to be
calibrated from full-field simulations of polycrystalline aggregates [26]. Theβ-model formulation
from [23] is extended in the present work to allow for finite deformations using the concept of
local objective frames [21]. The evolution texture in b.c.c. metals is simulated using the β-model.
In the simulations presented in this work, we consider either the restricted glide ({110}〈111〉 +
{112}〈111〉) or the pencil glide 〈111〉 as the plastic slip modes. The responses of these mechanisms
will be compared for single and poly-crystals for various loading conditions in order to assess the
ability of the pencil glide model to mimick the response of the full slip model.

The article is organized as follows. First, the finite deformation framework and the pencil glide
model are depicted. The polycrystal homogenization β-model is then presented in the case of
large deformations. The third section is dedicated to the comparison of the responses of the
pencil glide model and the consideration of all ({110}〈111〉+ {112}〈111〉) slip systems in the case
of single crystals in tension and compression. In the case of polycrystals treated in Section 4,
it is first necessary to calibrate the free parameters of the β-model from a full field simulation
of polycrystalline aggregates. Polycrystal simulations are then performed in the case of tension,
compression, torsion and simple shear loading conditions, considering either pencil glide or the
24 slip systems. Results are compared in terms of overall stress-strain curves, lattice rotation and
evolution of texture components. Computation time of simulations for 1000 grains is also an
important information provided in this work.
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In the following paper, an orientation is given by the three Euler angles ϕ1,Φ,ϕ2 where
the Bunge notation is used. The distribution of orientations, the pole figures and the ODF
(Orientation Distribution Functions) maps are obtained by means of the ATEX software
(http://www.atex-software.eu/).

2. Model description

2.1. Single crystal plasticity at large deformations

The formulation of the present single crystal plasticity model makes use of local objective frames
to develop constitutive models at finite strains [27]. It was proposed in [21] for single and
polycrystals and used recently in [28]. It departs from Mandel’s classical formulation relying on
the multiplicative decomposition of the deformation gradient F [29]. The velocity gradient L is
decomposed into its symmetric part {L} defining the strain rate tensor, and its skew-symmetric
part }L{, called spin tensor. The time-dependent rotation cQ linking the corotational space frame
to the current one is defined as

cQ̇cQT = }L{ and cQ(t = 0) = 1. (1)

The strain rate tensor is pulled back to the corotational frame and split into elastic and viscoplas-
tic parts:

cD = cQT {L}cQ = ėe + ėp. (2)

The Cauchy stress tensorσ and the corotational stress S are computed from the following elastic
law:

S =C : ee, with S = det(F)cQTσcQ (3)

where C denotes the fourth order tensor of elastic moduli.
Plastic deformation is the result of the contribution of all gliding slip systems of the crystal:

ėp =
∑
s∈S

γ̇s {cms ⊗ cns } (4)

where cms and cns respectively are the slip direction and the normal to the slip plane for slip
system s in the corotational space frame, γs being the associated slip amount.

The link between the lattice space frame and the corotational space frame is the rotation #Q
defined as

#Q̇#QT =
∑
s∈S

γ̇s }cms ⊗ cns { and #Q(t = 0) = Q0 (5)

whose initial value depends on the initial crystal orientation. Crystallographic directions are
known in the lattice frame: cms = #Qms and cns = #Qns . The rotation is calculed by using the
exponential map described in Appendix A.

2.2. Pencil glide

The directions along which slip can occur in b.c.c crystals are 〈111〉 with associated unit vectors
mk ,k = 1,2,3,4. Slip under pencil glide conditions can occur on any plane with normal nk which
is parallel to one given mk vector. The driving force for plastic slip along the slip system is the
resolved shear stress τk computed as

τk = (Snk ) ·mk = (Smk ) ·nk . (6)
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According to the pencil glide theory [5, 30, 31], the most probable active slip plane is the one(s)
maximizing the value of the resolved shear stress. This optimization procedure provides the
following formula, valid for non-vanishing shear stress:

nk = mk × (Smk )×mk

τk
(7)

which implies that
τk = ‖mk × (Smk )‖. (8)

2.3. Hardening mechanisms

The plastic slip rate γ̇ for a pencil glide slip system s is expressed by a rate-dependent phe-
nomenological flow rule. The following classical form, taken for example from [32], is adopted:

γ̇s =
〈 |τs |− r s

K

〉n

sign(τs ). (9)

The material parameters K and n characterize the viscosity, and r s is the critical resolved shear
stress including the following form of isotropic hardening, according to [33]:

r s = r0 +Q
∑

l
hsl (1−exp(−bv l )), with v̇ l = |γ̇l |. (10)

Here, r0 denotes the initial critical resolved shear stress, Q, b are material hardening parameters,
hsl is the interaction matrix which represents self-hardening and latent hardening. It must be
noted that, due to the fact that slip plane is likely to change at each load increment, the slip
variable integrated from (9) has no real crystallographic meaning and rather is a nonholonomic
cumulative slip variable depending on the path.

2.4. Polycrystal homogenization: the β-model

Gilormini [1] has used the pencil glide mechanism to predict the rolling textures in b.c.c. poly-
crystals with the Taylor model. The Taylor model provides qualitative agreement with some ex-
perimental results. However other polycrystal homogenization schemes are eligible for the use
of the pencil glide model. In the present work, a generic homogenization model for polycrys-
tals is applied, namely the β-model which can be regarded as a class of reduced order mod-
els [20, 23–25, 32, 34, 35]. The approach is based on the introduction of an interphase accom-
modation variable β(g ) related to the mean plastic strain e(g )

p in each grain orientation number
g . Still using (1) to (3), the stress tensor in the corotational frame is computed by means of the
effective (homogenized) tensor of elastic moduli:

S =CHomo : ee. (11)

The self-consistent homogenization model is used to compute the effective moduli CHomo as the
limit of the series:

CHomo(n) =
∑
g

f(g )C
(g ) : [I−SEsh(n −1) : (I−C−1

Homo(n −1) :C(g ))] (12)

with CHomo(0) =∑
g f(g )C

(g ), f(g ) being the volume fraction of grain orientation g . The equations
to compute SEsh are detailed in Appendix B.

The following scale transition rule is adopted to compute the mean stress for each grain
orientation g :

S(g ) =B(g ) : (S+L∗C : (β−β(g ) )) (13)

where B(g ) is the localization tensor defined as

B(g ) =C(g ) : [I+SEsh :C−1
Homo : (C(g ) −CHomo)]−1 :C−1

Homo. (14)
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In the latter expression, I is the fourth order identity tensor w.r.t. to symmetric second rank
tensors, SEsh is the Eshelby tensor, C(g ) is the elastic stiffness tensor for grain number g and

L∗C =CHomo : (I−SEsh). (15)

The β(g ) variables are obtained by integrating time-independent nonlinear evolution equations
reminiscent of the nonlinear kinematic hardening rule:

β̇
(g ) = ė(g )

p −D :β(g )‖ė(g )
p ‖. (16)

These variables are initialized at 0 in the present work. The plastic strain rate for each grain
orientation g is computed as

ė(g )
p =

∑
s∈S

γ̇
(g )
s {cm(g )

s ⊗ cn(g )
s }. (17)

The Equation (16) involves a constant phenomenological tensor D whose components must be
calibrated. They are determined by comparing the model responses between β-model and a
reference full-field FEM simulation of a polycrystalline aggregate following the strategy depicted
in [36]. The effective accommodation variable β is given by [25, 37]:

β=
∑
g

f(g )L
∗−1
C :B(g ) : L∗C :β(g ). (18)

The macroscopic plastic strain ep generally deviates from the average plastic strain over all grain
orientations by the following contribution:

ep =
∑
g

f(g )e(g)
p +

∑
g

f(g )[C
(g )−1 :B(g ) : L∗C : (β−β(g ))]. (19)

Depending on the choice ofD, theβ-model can reproduce the response of the Kröner model or
other self-consistent schemes better accounting for elasto-plastic accommodation of the grains
than the usual Taylor model [18].

3. Assessment of the pencil glide model for single crystals

3.1. Validation: comparison with Mandel’s original scheme

The formulation of crystal plasticity using two local objective frames will be compared with
Mandel’s model [29] which is based on the multiplicative elastic-plastic decomposition of the
deformation gradient. The comparison is made for simple shear F = 1+γe1 ⊗e2, with prescribed
overall shear γ. According to Mandel’s theory, the Mandel stress tensor is used to compute
the resolved shear stress on each slip system whereas the present theory makes use of the
corotational stress. Due to the fact that elastic strains in metals generally remain small, no
significant discrepancy is expected. The initial orientation of the crystal is e1 = [100] and e2 =
[010]. These simulations are conducted in the absence of strain hardening with a constant critical
resoved shear stress r0, and considering 12 slip systems {110}〈111〉. It can be checked from
Figure 1 that the Cauchy stress components predicted by the Mandel and corotational models
are identical.

The “fish-like” oscillations of the stresses observed in Figure 1 for this orientation of a f.c.c.
single crystal under simple shear were discussed in [21, 38]. It is of interest to consider the
response of b.c.c. crystals to the same loading conditions. Figure 2 provides three Cauchy stress
components for three slip system families, namely 12 slip systems {110}〈111〉, 24 slip systems
{110}+{112}+{123} or 4 pencil glide mechanisms. We have found that the response of 12 b.c.c. slip
systems, see Figure 1, is the same as in the f.c.c. case. The consideration of 24 slip systems leads to
a similar periodic response with slightly lower stress values. The lower envelope of these curves is
obtained using the pencil glide model. In all cases, the rotation rate of the lattice is −γ̇/2, i.e. the
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Figure 1. Simple glide test for a single crystal endowed with 12 slip systems {110}〈111〉:
stress responses of the Mandel and corotational single crystal models.

Figure 2. Simple glide test for a b.c.c. single crystal endowed with 12 slip systems
{110}〈111〉, 24 slip systems {110}+ {112}+ {123} or pencil glide: stress components (MPa)
computed using the single crystal model based on local objective frames, with r0 = 50 MPa,
in the absence of hardening.

spin of the corotational frame. This is a remarkable feature of simple shear for ideally oriented
single crystals.

3.2. Tension of α-iron single crystals

The relevance of the Schmid law is well-known for many f.c.c. crystals deforming by slip on
{111} planes at low and intermediate temperatures. In the case of b.c.c. metals, in particular
α-iron at room temperature, the situation is more complicated since multiple slip planes are
available, namely {110} and {112}, see Table 1. Several experiments [39, 40] have highlighted the
fact that thermal effects are still at play. Slip planes {123} are also possible for the accommodation
of plastic strain [41]. Screw dislocations gliding in {110} slip planes and all dislocations gliding
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Table 1. The slip planes in b.c.c. crystals, with notations from [45, 46]

Notation Plane b Notation Plane b
2A (01̄1) [1̄11] 6′A (11̄2)T [1̄11]
3A (101) [1̄11] 2′′A (211)AT [1̄11]
6A (110) [1̄11] 3′A (121̄)T [1̄11]

2B (01̄1) [111] 4′′B (12̄1)AT [111]
5B (1̄10) [111] 2′B (21̄1̄)T [111]
4B (1̄01) [111] 5′′B (112̄)AT [111]

1C (011) [1̄1̄1] 3′′C (1̄21)AT [1̄1̄1]
5C (1̄10) [1̄1̄1] 5′C (112)T [1̄1̄1]
3C (101) [1̄1̄1] 1′′C (21̄1)AT [1̄1̄1]

1D (011) [11̄1] 6′D (1̄12)T [11̄1]
4D (1̄01) [11̄1] 1′′D (211̄)AT [11̄1]
6D (110) [11̄1] 4′D (1̄2̄1̄)T [11̄1]

Table 2. Chemical elements in ARMCO® commercial iron (% weight), according to [3]

C Mo Si P S Ti Cr Mn Cu Ni Al N Va Sn Pb
0.0026 0.001 0.004 0.002 0.0047 0.016 0.080 0.009 0.011 0.002 0.006 0.002

in {112} planes experience an energy barrier to overcome lattice friction [42, 43]. Besides, cross-
slip in iron is easier owing to the dislocation compact core in b.c.c. crystals [44]. The existence
of multiple cross-slip planes leads to the formation of wavy slip lines characterizing the pencil
glide.

The objective of this section is to compare the description of the tensile behaviour of α-iron
single crystals by crystal plasticity models involving either all slip systems of Table 1 or only 4
pencil glide systems. The results of experiments with ARMCO® iron that contains impurities re-
ported in Table 2 are taken from [3]. The dimensions of the matrix hsl for b.c.c. materials is usually
12×12 considering only one family of slip systems, but in the case of α-iron, the dimensions is
24×24. The difficulty is that the interaction matrix required at least 17 independent coefficients,
as summarized in Table 3. Some of them could be predicted by Dislocation Dynamics simula-
tions [47–49] but many are essentially unknown. Values taken from the works [46,50,51] are used
in the sequel.

In contrast, the pencil glide model requires a 4×4 interaction matrix and only two parameters
must be given to define this matrix, see Table 4. Calibration of these parameters is performed in
order to obtain closest agreement with experimental curves.

The material parameters of both models are reported in Table 5. The power law value n = 20
and low K value ensure rate–independence of the results for the considered range of strain rates.

Initially, the crystallographic axes (X1, X2, X3) of the samples coincide with the axes of the
sample frame, labelled N, S and L to specify the directions normal to the sample observed surface,
the sample side face and the sample loaded face, respectively. Tensile loading is applied along
axis X3 (parallel with L). During the test, the axial material fibers remain parallel to the loading
axis, which means that F13 = F23 = 0. In compression along axis X3, material planes normal to
X3 are assumed to remain parallel, leading to the conditions F31 = F32 = 0. A third condition is
that the rotation with respect to axis X3 vanishes, which leads to F12 = F21 for both tension and
compression.
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Table 3. The interaction matrix in b.c.c. single crystals using {110}+ {112} slip planes and
the associated parameter values used for α-iron. The notations and parameters values are
taken from [46, 50]

Table 4. The interaction matrix in b.c.c. crystals using pencil glide, where H1 = 0.07 and
H2 = 0.09 as found in the present work

[111] [1̄11] [1̄1̄1] [1̄11̄]
[111] H1 H2 H2 H2
[1̄11] H1 H2 H2
[1̄1̄1] H1 H2
[1̄11̄] H1

Table 5. Material parameters used for both pencil glide and {110}〈111〉+ {112}〈111〉 single
crystal models

C11 = 284 GPa C12 = 149 GPa C44 = 105 GPa
r0 = 27 MPa Q = 1285 MPa b = 1.5

n = 20 K = 5 MPa1/n

Simulations are presented for 5 distinct single crystal orientations:

• Orientation 1 (Figure 3a): For this orientation in the centre of the reference triangle, the
primary active slip system leads to a rotation of the L axis towards the [111] slip direction
without activation of the secondary (1̄01)[111] slip system.

• Orientation 2 (Figure 3b): Although the initial orientation for this case is close to a
boundary [001] − [011], and although the secondary traces do not differ much from
those of the primary system, the measured rotation of the L axis towards the [111] slip
direction provides unambiguous evidence of single slip even in the overshoot regime.
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Figure 3. Rotations of the three axes of the sample measured by EBSD (left), and simulated
rotations of the three sample axes: (middle) {110}+ {112} slip systems, (right) pencil glide.
The initial orientation is marked by a square symbol.
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This rotation of the L axis indicates that the primary system is (1̄01)[111], which has
initially a slightly higher Schmid factor. The reported measured rotations of the N and
S axes also correspond with the simulated ones.

• Orientation 3 (Figure 3c): This orientation lies on the boundary [001] − [1̄11]: the two
equally loaded {110} systems were found to activate in spatially separated parts of the
sample with dense and straight slip lines. Then one of the two systems rapidly takes
over and single slip mainly takes place for the rest of the strain path in most of the
sample volume, as assessed by the lattice rotation. The lattice rotation predicted by the
pencil glide model displays some discrepancy with experimental results. The reason is
that it allows here for only one slip system. The interaction between 2 {110} systems is a
junction, and the corresponding coefficient in the interaction matrix has the same value
as the self-hardening, however these coefficients are different when using the pencil glide
model.

• Orientation 4 (Figure 3d): This orientation is situated close to the corner of the domain
where the (11̄2)[1̄11] system has the highest Schmid factor. At the corner, two other slip
systems of the {110} type have equal Schmid factors. The rotation of the L axis was found
to be towards the [1̄11] slip direction, which confirmed the activation of the (11̄2)[1̄11]
slip system, with good agreement between both models.

• Orientation 5 (Figure 3e): The highest Schmid factor for this orientation is for the
(2̄11)[111] system, in competition with the collinear (1̄01)[111] slip system. However, the
Schmid factor ratio is initially 5% higher in favour of the {112} system type, with good
agreement between both models.

Figure 4a shows the experimental stress-train curves for α-iron at ambient temperature. It
can be seen that the hardening modulus for single slip systems {110} and {112} are different.
The tensile tests performed have also reported the dissymmetric occurrence of {112} slip for
orientations near the boundaries of the standard triangle (near direction [001] for twinning
direction, and near direction [011] for anti-twinning direction). The value of the hardening
modulus for the systems {112}AT (activated in antitwinning direction) is greater than for the
systems {110}, and the hardening modulus for the systems {110} is larger than the systems
{112}T (activated in twinning direction). When multiple slip systems are active, the hardening
moduli are larger than for single slip even if the activation of multiple slip systems is not
stable.

Corresponding tensile curves for the full single crystal and the reduced pencil glide models are
provided in Figure 4b. It is found that the pencil glide model predicts the tensile response of α-
iron as accurately as classical crystal plasticity with 24 slip systems. There is little difference even
if the same parameters are used for both models (see Table 5) except the interaction matrix which
differs for both models (see Tables 3 and 4 respectively). The simulated curves are essentially
in good agreement with experimental results. Lattice rotation is also well-predicted in general.
Some discrepancies can be observed in the stress-train curves that can be attributed to the fact
that we did not account for the dissymmetric activation of slip systems {112}. This can be done
but it is out of the scope of the present paper.

4. Assessment of the pencil glide model for α-iron polycrystals

4.1. Identification of scale bridging parameters

In the β-model, D denotes a fourth order phenomenological constant tensor to be calibrated.
Its components are identified by comparing the model responses between the β-model and
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Figure 4. True stress–true strain curves for 6 single crystal orientations: (a) experimental
results, (b) simulation results: {110} + {112} slip systems (continuous line), pencil glide
model (stars). The corresponding initial orientations are indicated in the standard triangle
by a square of the same color.

reference full-field simulations. In this work, the following form is considered for D, as proposed
by [22, 23] for the anisotropic elasto-plastic properties of multi-axial aggregates:

[Dβ(g )] =




D11 D12 D23

D12 D33 D23

D23 D23 D33

D44

D55

D55







β
(g )
11

β
(g )
22

β
(g )
33p

2β(g )
12p

2β(g )
23p

2β(g )
31




(20)

where the components are given in the material frame (X1, X2, X3) of the metal sample, assuming
transverse isotropy for the textures considered in the following simulations. The β variables
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Figure 5. Meshes for full-field finite element model (FEM), and initially isotropic 1000
grain orientation distribution. Each grain contains eight finite elements with quadratic
interpolation and reduced integration.

Table 6. Identified parameters for the β-model

D11 = 10 D12 = 1 D23 = 1 D44 = 5 D55 = 5

are assumed to be deviatoric, i.e. trace(β(g )) = 0, so that the following additional condition
is enforced [22]:

D11 = D33 +D23 −D12. (21)

We keep five independent coeficients Di j to be determined by an identification procedure. With
this form of D, it will be found that β-model predictions fit satisfactorily the results obtained by
the full-field FEM reference for the anisotropic behaviour of polycrystalline aggregates. For that
purpose, an elementary volume V made of a parallelepipedic tessellation of (10× 10× 10) 1000
grains is considered, see Figure 5. Periodic boundary conditions are prescribed. The parameters
D11, D12, D23 can be calibrated from a tensile test on this volume, whereas D44 and D55 are
obtained from shear tests. An isotropic distribution of 1000 orientations is considered for the
simulation and distributed randomly among the square grains of Figure 5. Almost isotropic
CHomo and D tensors are obtained. The found parameters for D are given in Table 6. The same
set of parameters is found to provide a correct fit for both {110}+ {112} and pencil glide models,
as illustrated in Figure 6.

The FEM simulations were performed twice for each loading: one simulation taking the 24
slip systems into account in each grain, and one with the 4 pencil glide systems. The predicted
yield stresses are very close to both models but the pencil glide model predicts significantly
lower hardening. This is due to the fact that the applied resolved shear stresses on the pencil
glide systems are greater than on the {110} + {112} slip systems. Accordingly, the pencil glide
model provides the lowest stress-strain relation possible due to an increase in degrees of freedom
for the selection of the slip plane. Furthermore, the larger number of available slip systems
in the reference model leads to more interactions via the interaction matrix and associated
additional hardening. The mean field β-model is found to overestimate hardening compared
with the reference FEM. It has been checked that different Di j combinations will not reduce
this deviation. It is noted that the same material parameters are used for the single crystal
model in the FEM and mean field simulations. Better agreement can be reached using more
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Figure 6. Tensile (called S22) and shear (called S12) curves for a 1000-grain polycrystal
according to the full field (continuous line) and mean field (dashed lines) models: blue and
green curves for the {110}+ {112} crystal plasticity model; red and orange curves for the
pencil glide model. Stress (resp. strain) values correspond to the Cauchy stress components
σ22 and σ12 (resp. F22 −1 and F12 prescribed components).

Figure 7. Activation zone for the slip direction [1̄11] according to the pencil glide model
(left) and activation zones for slip planes families according to Schmid’s law (right).

sophisticated evolution equations for the β-variables [24] but this is not the focus of the present
work. As such, these results demonstrate that the fast computational β-model is an efficient
homogenization tool correctly reflecting the responses of full-field and mean field models at least
for the considered loading conditions.

4.2. Tensile test

Tensiles tests have been performed for the mean field models with 352 random orientations. The
result is a combination of all the examples of the previous section. In simple tension of single
crystals, single slip leads to rotation of the tensile axis towards a 〈111〉 slip direction. In the case of
polycrystals, because of the deviation of stress and strain from uniaxial tension, the phenomenon
is more subtle. But the average rotation of grains can be similar. Figure 7 shows the activated
zone associated with slip direction [1̄11] for pencil glide (left) and the activated zone in standard
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Figure 8. (a) Initial isotropic (left) and final grain orientations after 50% tensile straining
using {110}+ {112} slip systems (middle) and pencil glide systems (right). (b) Trajectories of
individual grains in the standard triangle in tension using {110}+ {112} slip systems (left)
and pencil glide systems (right).

triangle by Schmid’s law. The lattice rotation will be different if the initial orientation lies in the
green or orange zones. More complex orientation paths are observed for initial orientations close
to boundaries of the standard triangle.

Figure 8a shows the initial and final grain orientations as predicted by the crystal plasticity
model using {110} + {112} slips systems or pencil glide systems. The tensile axis at the end
of the two simulations after 50% strain is close to the boundary [001] − [011], and the zone
[1̄12]− [111]. The pencil glide predicts similar results as the {110}+ {112} model, however with
a more pronounced texture development.

Figure 8b shows the trajectories of individual grains according to both model predictions in
tension. In both cases, if the tensile axis is close to [011]− [1̄11], the tensile axis will start rotating
towards the slip direction [111] (with activation of (2̄11)[111] slip system), as long as single slip
conditions dominate. At larger deformations, a secondary slip system (211)[1̄11] is activated,
associated with [1̄11] slip direction. The tensile axis will then turn towards [011] direction and
stay there. In contrast, if the tensile axis is close to [001]−[1̄11] boundary, at the beginning, double
slip starts right away and the tensile axis turns down to [001] direction. When the grains reach the
activation zone for {110} slip systems, the tensile axis turns down toward [111] direction because
the (1̄01)[111] slip system starts gliding.

If the initial orientation of the tensile axis is close to direction [001], one or multiple slip
systems {112} are activated. But this direction is not stable in tension, so that at the end the tensile
axis will turn up towards slip directions 〈111〉 (if the slip plane is (11̄2), the slip direction is [1̄11]).
At large deformations, the tensile axis will rotate towards the activation zone of {110} slip systems.
Their actual activation depends on the interaction matrix and the corresponding stress value that
would allow for the activation of one or 2 slip systems, (1̄01) or (011). In the case of single slip, the
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Figure 9. Activation zone of {110} + {112} slip systems (color) and pencil glide systems
(dots).

tensile axis will turn down to direction [111]. In the case of double slip, the tensile axis could
remain stable at [1̄12] direction. It is observed that both models provide the same results in this
respect.

If the tensile axis lies in the central region of the standard triangle, the activated slip system
family is {110}, and the tensile axis will rotate towards the slip direction [111]. The trajectory
could pass the boundary [001]− [011], in this case latent hardening will postpone activation of
new systems. At large deformations, the secondary slip system (101)[1̄11] is activated so that
the tensile axis will turn up again to the slip direction [1̄11]. At the end the tensile axis may
stabilize at the boundary [001]−[011]. For such initial orientations, larger differences are observed
between the two model predictions (Figure 8b). With pencil glide, the tensile axis will turn down
to boundary [001]− [011] whereas the consideration of {110}+ {112} slip systems stabilizes the
tensile axis at the upper corner of the green–orange intersection due to three activated slip
systems: (11̄2)[1̄11], (1̄01)[111], (101)[1̄11].

Figure 9 shows the comparison of the activation zones for {110}+{112} slip systems associated
with [111] slip direction (orange, blue) and for pencil glide associate with the same slip directions
(dotted region). Only slight differences can be observed. The circled region coincides with the 3
corner zone of 3 activated slip systems: (11̄2)[1̄11], (1̄01)[111], (101)[1̄11]. More precise compar-
ison is possible looking at the ODF maps of Figure 10. These maps are rather similar for both
models, but in the case of pencil glide, the intensity of hot spots is a little higher: 7.66 compare
to 6.44.

4.3. Compression test

In axial compression along axis X3, assuming that material planes remain parallel to the com-
pression plane leads to the conditions F31 = F32 = 0. The third condition is taken as the rotation
F12 −F21 = 0. Figure 11 shows the initial and final orientations after 0.5 compression straining
(F33 = 0.5) using {110}+ {112} slip systems or pencil glide systems. The compression axis of most
grains at the end of both simulations is close to the boundary [001]− [1̄11] and particularly in
the [001] and [1̄11] directions. Both models predict similar trends. It should be noted that, in ten-
sion, the slip directions of {110}+ {112} slip systems and the pencil glide are the same 〈111〉 but in
compression, the difference between the {110}+ {112} model and pencil glide can reach 15◦.

The trajectories of individual grains are given in Figure 11b. If the compression axis is close
to [011]− [1̄11], the activated slip system is (2̄11)[111], so that the compression axis will rotate
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Figure 10. ODF maps for 352 grains after 0.5 tensile straining according to two crystal
plasticity models.

toward the slip plane normal [2̄11] close to [1̄11] direction. At very large deformations, the
secondary slip systems {112} can be activated and then the compression axis remains stable in the
direction [1̄11].

If the compression axis lies in the middle of the standard triangle, the active slip planes are
{110}, and the compression axis will turn up to the slip plane [1̄01]. Then when the compression
axis goes close to the boundary [001] − [1̄11], the secondary slip system (011)[1̄1̄1] could be
activated, leading to a slow rotation of the compression axis towards direction [1̄11]. If the loading
direction is at the boundary [001] − [011], two slip systems {110} could be activated, then the
compression axis will turn towards the [001] direction.

If the compression axis is close to [001], the activated slip system is (11̄2)[1̄11]. The compres-
sion axis turns down towards [11̄2]. When it passes close to the [001] direction, multi-slip can
occur and [001] will be a stable orientation.

At the end the compression axis will stay close to [001] − [1̄11] zone and most probably
close to the corner directions [001] or [1̄11]. According to the model using {110} + {112}, the
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Figure 11. (a) Initial isotropic texture (left) and final texture after compression straining
using {110}+ {112} slip systems (middle) and pencil glide systems (right). (b) Trajectories of
individual grains in the standard triangle during compression straining using {110}+ {112}
slip systems (left) and pencil glide systems (right).

compression axis could stabilize at the corner where three systems are activated: (11̄2)[1̄11],
(1̄01)[111], (101)[1̄11]. This cannot occur when pencil glide is considered. The ODF maps of
Figure 12 show that the pencil glide and {110} + {112} essentially predict the same texture in
simple compression. The maximum intensity in the case of pencil glide is almost identical: 12.71
compared to 12.62.

4.4. Rolling

Rolling textures are crucial to evaluate the capabilities of crystal plasticity models. Rolling is
simulated here by plane strain compression along axis X3, with the plane strain direction along
axis X2 (ND): Fi j = 0 for i 6= j , F22 = 1, F33 = 1+ε is prescribed. The rolling direction RD is X1.

The rolling textures of b.c.c. metals are generally composed of certain orientation fibers and
their main features can thus be represented in a condensed manner by plotting the orientation
density along these fibers. The most important fibers and the ideal rolling texture components
are described in Table 7 and illustrated in Figure 13. Figure 14 (top figure) shows the textures
obtained from experiments in [52] that can be compared with the results of several crystal
plasticity models.

The bottom Figure 14 presents the pole figures predicted by the Taylor model at 20% defor-
mation. The experimental and predicted textures are similar. The main fibers like α or γ can
be observed. At small deformations the Taylor model is known to provide good predictions of
rolling textures at limited strain levels. Limitations of the Taylor model are expected at large
deformations.

Figure 15 displays the rolling textures as predicted by the β-model at 100% logatithmic strain
(F33 = 0.36) using the {110} + {112} slip systems and the pencil glide. The comparison shows
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Figure 12. ODF maps for 352 grains after 0.5 compression straining according to two
crystal plasticity models.

Table 7. The important fibers and texture components for crystallographic textures of
b.c.c., after [53, 54]

Fiber name Fiber axis Important texture components
α-fiber {110} parallel to RD {001}〈110〉, {112}〈110〉, {111}〈110〉
γ-fiber {110} parallel to ND {111}〈112〉, {111}〈110〉
η-fiber {001} parallel to RD {001}〈100〉, {011}〈100〉

that pencil glide leads to an increase in the intensity of texture. This result is known from other
works [32]. The final textures are rather similar. However there are some differences in the
development of the two fibers α and γ between the models. Figure 16 shows the ODF sections
for ϕ2 = 45◦ as predicted by the β-model using the {110} + {112} slip systems and the pencil
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Figure 13. Description of α-fiber and γ-fiber, after [55].

Figure 14. Top: {110} pole figures for ARMCO® iron (a) as-received; (b) after cold rolling to
64% rolling reduction [52]. Bottom: texture predicted by the Taylor model with {110}+ {112}
slip systems: (a) {100} pole figure, (b) {110} pole figure, after [56].
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Figure 15. Rolling pole figures predicted by the β-model based on two different slip mech-
anisms.

Figure 16. ODF section for φ2 = 45 after 100% logarithmic rolling strain.

glide models. One can observe the distinct development of the two fibers α and γ according to
both models, see also the discussion in the ideal case in [57].

For a more accurate comparison, the evolution of the intensity of the α fiber is plotted in
Figure 17a. All the models predict that the α fiber continuously grows with strain. The shape,
the number of peaks and their location are similar for the two models considered in this work, at
least after 70%. Clearly the final intensity resulting from the pencil glide mechanism is larger,
18, than considering the {110} + {112} slip systems, 12. Comparison with other models shows
that the number of available slips systems controls the intensity of the fiber [59]. For instance
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Figure 17. Comparison of rolling texture fibers as predicted by (a) theβ-model, (b) the Tay-
lor model [58] and (c) the VPSC model, for various combinations of slip system families [58],
against pencil glide.
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Figure 18. Experimental pole figures for ARMCO® iron sheared, after [61].

Table 8. The important fibers and texture components for crystallographic textures of b.c.c.
metals, after [60]

Components {hkl} 〈uv w〉 φ1 Φ φ2

D1 {1̄1̄1} 〈011〉 125.26 45.0 0.0
D2 {1̄1̄1} 〈011〉 54.74 45.0 0.0
E1 {11̄1} 〈121〉 270.0 35.26 45.0
E2 {1̄1̄1} 〈112〉 90.0 35.26 45.0
F {1̄00} 〈011〉 180.0 45.0 0.0
J1 {12̄1} 〈111〉 270.0 54.74 45.0
J2 {1̄1̄2} 〈111〉 90.0 54.74 45.0
T {91̄010} 〈15536〉 46.5 55.3 17.1

in Figure 17b, a different development of the peaks and the intensity values is observed for
the Taylor model [58]. Including the {123} family in addition to {110}+ {112} slip systems makes
the Taylor prediction closer to the predictions of Figure 17a (right), with a maximal intensity of
about 11 and larger peak width. After 50% strain, the β-model predicts a single peak whereas two
peaks are observed in the Taylor simulations. The results of the β-model are closer to the VPSC
(Viscoplastic Self-Consistent) estimates, reproduced in Figure 17c from [58], but the intensities
are found to be higher. The maximum intensities according to the VPSC model for {110} slip
systems and for {110}+ {112}+ {123} slip systems respectively are 11 and 14, instead of 12 and
18 (pencil glide). It follows that not only the number of slips systems controls the intensity but
also the chosen homogenization scheme. The other parameters influencing the peak sharpness
are the interaction matrix and the hardening modulus.

4.5. Simple shear case

The simple shear test conditions correspond to a prescribed value of the component F12 = γ,
whereras all other components of the deformation gradient F−1 vanish. Experiments are often
performed using torsion tests, which may not be equivalent to the simple shear considered
here for simplicity. In b.c.c. materials, the crystallographic texture is composed of several main
components listed in Table 8, after [60].

There are fewer texture evolution results under simple shear in the literature for b.c.c. met-
als than for f.c.c. Williams [61] tested the ARMCO® iron at room temperature, up to a shear
strain of 2.1 (Figure 18). The final texture is dominated by the {112}〈111〉 (J1,J2), {110}〈001〉 (F)
components.

The β-model provides a good estimation of the experimental results as shown in Figure 19.
At γ = 1. there is a slight difference between the pencil glide and the {110}+ {112} slip systems.
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Figure 19. Pole figures showing the crystallographic textures induced by simple shear using
the β-model.

C. R. Mécanique, 2020, 348, n 10-11, 847-876



870 Lu Tuan Le et al.

Figure 20. Volume fractions of main components after simple shear according to the β-
model.

Looking at the volume fraction of these components plotted in Figure 20a shows that the texture
is dominated by the {112}〈111〉 (J1,J2) and {110}〈001〉 (F) components. But the component F is
more important in the pencil glide case (volume fraction = 0.4) than in the {110}+ {112} case
(volume fraction = 0.26), see Figure 20a.

Increasing the shear strain γ leads to significant texture changes, and the pencil glide does
not describle accurately the experimental results. At γ = 1.5 the texture induced by pencil glide
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is dominated by the {112}〈111〉 (J1,J2) components (volume fraction = 0.35) even though the
F component is still present (volume fraction = 0.18). In contrast, {110} + {112} slip leads to a
dominating {110}〈001〉 (F) component (volume fraction = 0.41) (Figure 20b).

At γ = 2.1 the texture resulting from pencil glide is dominated by the {112} 〈111〉 (J1,J2)
components (volume fraction = 0.4) and the F component is fading away. The texture resulting
from {110} + {112} slip systems is dominated only by the {110}〈001〉 (F) components (volume
fraction = 0.5) (Figure 20c).

5. Discussion

Recent detailed studies on iron single crystals show that the pencil glide must be regarded as a
simplified view of actual slip processes occurring on many slip planes [2, 3, 62]. In the present
work we insist on the merits of the pencil glide model from the point of view of computational
efficiency. In metals and alloys deforming by means of many simultaneous plasticity mechanisms
like multiple slip families, twinning and martensitic transformation (like in TRIP-TWIP steels),
accounting for all mechanisms leads to a dramatic increase in the number of internal variables
to be intregrated. This can be accompanied by numerical instabilities or excessive computation
time and storage. The use of pencil glide systems can therefore become advantageous. The
analyses of the previous sections show that the pencil glide model can mimick the results
obtained considering {110} + {112} slip systems in many situations, even though significant
differences have been evidenced in some loading cases.

Some comparisons between both approaches were performed in the past using the Taylor
model for some limited loading conditions. In the present work the more general β-model was
used and new situations were considered for comparison, namely the single crystal case, the
simple shear of polycrystals and detailed analyses of tension, compression and rolling.

It must be emphasized that the final texture also depends on the interaction matrix and
hardening parameters. On the one hand, 24 slip systems are used with the complete interaction
matrix. On the other hand, the pencil glide approach makes use of a reduced interaction matrix.
The full interaction matrix requires as much as 17 parameters: one for self-hardening, one for the
dipolar interaction, twelve for junction formation and three for collinear annihilation. Some of
them controls the activation of secondary slip system, that can be evidenced by the tension and
compression tests. In the work [63], the authors used “full constraint” and “relaxed constraint”
Taylor models. When glide is limited to {112} slip systems, the simulated texture is very sharp
and the tube of orientations {111}(uuw) is not well described by any of these models. On the
other hand, when glide is restricted to {110} systems, the simulations predict all the observed
components. The simulated textures in this case are less sharp. A combination of the simulated
textures however provides most of the features observed experimentally.

The collinear annihilations are known as the strongest interactions between dislocations
because they decrease the length of dislocation sources [64]. It follows that collinear slip systems
are not activated in many cases. This is in contrast to experimental observations showing that
the cross slip mechanism is ubiquitous in b.c.c. crystals, so that dislocations can change plane to
overcome obstacles. This is at the origin of the pencil glide mechanism. In the present work, we
have still adopted the collinear annihilations as the strongest interaction in the matrix. Changing
this value could result in significantly different final textures.

The β-model at large deformations used in the present work is an extended version of the
one proposed in [21] where isotropic elasticity was assumed and the tensor D was reduced to
a scalar. Improvements are still needed like the account of grain shape changes during defor-
mation. The presented β-model assumes that, in contrast to the strain rate tensor, the material
spin is the same for all grains. Special localization rules should also be developed for the spin
tensor.

C. R. Mécanique, 2020, 348, n 10-11, 847-876



872 Lu Tuan Le et al.

6. Conclusion

The homogenizationβ-model at large deformations has been used to predict the crystallographic
textures of b.c.c. metals when accounting for 24 slip systems or when introducing the pencil glide
mechanism instead.

The effect was first analyzed in the case of single crystal behaviour including a detailed
comparison with recent experimental results for α-iron. For simple tension and compression of
various single crystal orientations, no significant difference was found in the overall stress–strain
curves and in lattice rotation whether pencil glide or the 24 {110}+ {112} slip systems were used.

In the rolling and simple shear tests where the number of slips systems and the interaction
matrix control the texture, some discrepancies were found in the predictions based on pencil
glide or {110}+ {112} slip systems, especially at larger deformation values. These discrepancies
are not significant for strain values below 100%.

Finally, it must be underlined that the computational time required for the pencil glide
simulations is three times smaller than for the 24 slips systems. This lower computing time is
a major advantage of the pencil glide approach. This makes the pencil glide model particularly
well-suited for finite element simulations of alloy forming processes using polycrystal models
which are still computationally demanding problems at the present time [28, 65].
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Appendix A.

In this section, the parameterization of space rotations by means of exponential mapping used
in the code is reviewed. Any rotation R can be represented by the elementΦ of the associated Lie
group such that:

R = exp(1×Φ) and Φ= θn = [Φ1,Φ2,Φ3] (22)

where θ is the rotation angle (in radians) around a specified unit axis n. One can rewrite the
expression using the standard matrix exponential series, noting that: exp(A) =∑∞

k=0 1/k !Ak ,

R = exp(1×Φ) = cosθ1+ 1−cosθ

θ2 Φ⊗Φ+ sinθ

θ
1×Φ. (23)

In the matrix form:

R =




cosθ+ 1−cosθ

θ2 Φ2
1

1−cosθ

θ2 Φ1Φ2 −
sinθ

θ
Φ3

1−cosθ

θ2 Φ1Φ3 +
sinθ

θ
Φ2

1−cosθ

θ2 Φ1Φ2 +
sinθ

θ
Φ3 cosθ+ 1−cosθ

θ2 Φ2
2

1−cosθ

θ2 Φ2Φ3 −
sinθ

θ
Φ1

1−cosθ

θ2 Φ1Φ3 −
sinθ

θ
Φ2

1−cosθ

θ2 Φ2Φ3 +
sinθ

θ
Φ1 cosθ+ 1−cosθ

θ2 Φ2
3




(24)
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Defining the spin tensor ṘRT = }L{ =Ω, the following relation can be worked out:

Φ̇= T−1
×
Ω. (25)

Note that any skew-symmetric matrix Ω can be represented by the pseudo–vector
×
Ω such that:

Ωb =
×
Ω×b. In matrix form:

Ω=




0 −
×
Ω3

×
Ω2

×
Ω3 0 −

×
Ω1

−
×
Ω2

×
Ω1 0




so that
×
Ω= [

×
Ω1,

×
Ω2,

×
Ω3]T . (26)

The matrix form of the operator T is

T =




sinθ

θ
+

1− sinθ
θ

θ2 Φ2
1

1− sinθ
θ

θ2 Φ1Φ2 −
1−cosθ

θ2 Φ3
1− sinθ

θ

θ2 Φ1Φ3 +
1−cosθ

θ2 Φ2

1− sinθ
θ

θ2 Φ1Φ2 +
1−cosθ

θ2 Φ3
sinθ

θ
+

1− sinθ
θ

θ2 Φ2
2

1− sinθ
θ

θ2 Φ2Φ3 −
1−cosθ

θ2 Φ1

1− sinθ
θ

θ2 Φ1Φ3 −
1−cosθ

θ2 Φ2
1− sinθ

θ

θ2 Φ2Φ3 +
1−cosθ

θ2 Φ1
sinθ

θ
+

1− sinθ
θ

θ2 Φ2
3




(27)

The rotation angle can be obtained from the rotation matrix R by the following operation:

θ = arccos

(
trace(R)−1

2

)
(28)

and, if θ 6= 0 and Ri j are the components of R, the rotation axis is

n = Φ
θ

= 1

2sinθ
[R32 −R23,R13 −R31,R21 −R12]. (29)

Appendix B.

Each grain is represented by an ellipsoidal inclusion (a1, a2, a3) embedded in a homogeneous
effective medium (HEM) resulting from the average over all the grains. The Eshelby tensor SEsh

is calculated by using the Green function that depends on the inclusion shape and the elasticity
tensor of the HEM CHomo:

SEsh
i j kl =

CHomo
mnkl

8π

∫ 1

−1
dζ3

∫ 2π

0
[Gi m j n(ξ)+G j mi n(ξ)]dω (30)

with

Gi j kl (ξ) = ξkξl
Ni j (ξ)

D(ξ)
(31)

ξ1 =

√
1−ζ2

3

a1
cosω, ξ2 =

√
1−ζ2

3

a2
sinω, ξ3 =

ζ3

a3
(32)

Ki k =CHomo
i j kl ξ jξl (33)

Ni j (ξ) = 1
2εi j kε j mnKkmKln (34)

D(ξ) = εmnl Km1Kn2Kl3 (35)

εi j k is the Levi-Civita symbol. The Gaussian quadrature method is used to compute the integra-
tion in (22):

SE
i j kl =

CHomo
mnkl

8π

M∑
p=1

N∑
q=1

[Gi m j n(ωq ,ζ3p )+G j mi n(ωq ,ζ3p )]Wpq . (36)
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Here M , N are the number of nodes, and Wpq are the weights at the Gauss points. In the present
article, the values M = 32 and N = 32 are applied.
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1. Introduction

The self-consistent (SC) theory is the most commonly used mean-field homogenization method
for estimating the mechanical response behavior of polycrystals based on the knowledge of the
properties and orientation distribution of constituent single-crystal grains. The SC method was
proposed independently by Hershey [1] and Kröner [2] for linear elastic polycrystals, and it was
subsequently expanded for this constitutive regime by Hill [3] and Zeller and Dederichs [4].
Although in the early days of the formulation, computational restrictions limited the applications
of SC models to relatively simple cases, a general implementation of the elastic SC model is now
part of homogenization-based polycrystal mechanics codes such as the VPSC code [5].

Consideration of thermo-elasticity adds a stress-free strain to the elastic constitutive relation
that expresses stress as a linear function of strain. With the addition of this independent term,
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the problem remains linear. The solution of a thermo-elastic self-consistent (TESC) problem for
composites, consisting of a phase made of inclusions embedded in a matrix phase with different
mechanical properties, was introduced by Walpole [6] and further reformulated and extended
by, for example, Willis [7], Buryachenko [8], and Milton [9]. These works identified and, in some
cases, also tackled the case of polycrystals as a special composite made of many mechanical
phases, with distinct properties associated with different single-crystal orientations, with no
matrix phase. Tomé et al. [10] presented the TESC formulation specialized for polycrystals to
predict the thermo-mechanical response of hexagonal close packed (hcp) Zr aggregates, which,
as almost every non-cubic material, has anisotropic thermal properties at the single-crystal level.
The TESC formulation also has important theoretical implications for the development of SC
homogenization of non-linear polycrystals. Indeed, for aggregates of grains deforming in the
viscoplastic regime, the different available SC theories vary in the procedure used to linearize
the non-linear mechanical behavior at the grain level, but eventually all of them make use of
the TESC theory applied to the linearized behavior of an iteratively adjusted generalized thermo-
elastic polycrystalline material.

Despite its relevance, a thorough exposition of the TESC theory with applications to actual
thermo-elastic polycrystal problems is lacking in the literature. Only a brief description can be
found in [10] as one among several applications of different SC models to different deforma-
tion regimes (TESC being one of them) for the interpretation of experimental data on Zr alloys.
The present contribution intends to fill this gap by presenting the polycrystal TESC theory in a
comprehensive manner, which is followed by illustrative examples involving cooling of polycrys-
talline non-cubic metals to study the effect of crystallographic texture and single-crystal elastic
and thermal anisotropy on the effective and local thermo-elastic responses of the aggregate.

2. Model

In the context of the SC theory, a polycrystal is represented by a set of weighted crystal orien-
tations. The orientations represent mechanical phases (i.e. set of single-crystal grains with the
same orientation and morphology surrounded by different neighborhoods) or statistically repre-
sentative “grains” (in what follows, “grains” and mechanical phases will be used interchangeably),
and the weights represent volume fractions. The set of orientations and weights is chosen to re-
produce the initial crystallographic texture of the material. Each grain is treated as an ellipsoidal
elastic inhomogeneous inclusion embedded in an effective homogenized thermo-elastic medium.
The ellipsoidal shape (or distribution of ellipsoidal shapes) represents the morphologic texture
of the polycrystal. The inhomogeneity character derives from the difference in elastic proper-
ties between each individual grain and the effective homogenized medium when expressed in
the same reference system. The inclusion character derives from the possible presence of eigen-
strains such as thermal strains. The inhomogeneous inclusions and the medium generally have
fully anisotropic properties, deriving from the intrinsic single-crystal anisotropy, crystallographic
texture, and/or non-equiaxed morphology. The effective medium represents the average envi-
ronment surrounding each orientation. Deformation is based on anisotropic crystal elasticity
and thermal expansion, which in the case of non-cubic crystals is also anisotropic.

2.1. Local constitutive behavior and homogenization

The local thermo-elastic constitutive behavior in a material point x of the polycrystal, relating the
local strain ε(x) and stress σ(x) is described by the linear relation

εi j (x) =C−1
i j kl (x)σkl (x)+αi j (x)δT (x) = εel

i j (x)+εth
i j (x), (1)

σi j (x) =Ci j kl (x)(εkl (x)−εth
kl (x)), (2)
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where the moduli C(x) and α(x) are the elastic stiffness and the thermal expansion tensors of
the single crystal containing the material point x, which, in general, can be considered to be
piecewise constant within the domain of each grain (g ) and thus can be denoted by C(g ) and
α(g ), respectively; δT (x) is the change in local temperature from the temperature at which the
aggregate is free of thermal stresses; and εel(x) and εth(x) are the elastic and thermal strains,
respectively. The thermal strain can be regarded as a stress-independent eigenstrain induced by
temperature change.

Assuming uniform temperature distribution, the following relation holds within the domain
of grain (g ):

σ(x) = C(g ) : ε(x)−C(g ) : α(g )δT, (3)

ε(x) = C(g )−1
: σ(x)+α(g )δT, (4)

where δT is the uniform change in temperature from the temperature at which the aggregate
is free of thermal stresses. At the aggregate level, a similar constitutive law holds, involving the
effective elastic and thermal moduli:

σ= C : ε−C : αδT, (5)

ε= C
−1

: σ+αδT. (6)

The bars on top indicate the polycrystal’s effective tensors. The effective elastic stiffness C
and effective thermal expansion α are a priori unknown and need to be determined. From
Hill’s lemma [11], the volume averages of the local stress and strain tensors, denoted here as 〈 〉,
correspond to the effective magnitudes ε= 〈ε(x)〉 and σ= 〈σ(x)〉, respectively. Taking volumetric
average of (3) and (4), and using (5) and (6), respectively, leads to the following relations:

C : ε−C : αδT = 〈C(g ) : ε(x)〉−〈C(g ) : α(g )〉δT, (7)

C
−1

: σ+αδT = 〈C(g )−1
: σ(x)〉+〈α(g )〉δT. (8)

These relations couple the elastic and thermal tensors of the grain with those of the aggregate,
and they are completely general. In this work, we provide the algorithm to solve for C andαwithin
the framework of the TESC formulation. However, before describing the latter, it is instructive
to present the also commonly used upper-bound (UB) and lower-bound (LB) approaches. The
simplest expressions for C and α obtained from (7) or (8) follow from assuming uniform strain
ε(x) = ε or uniform stress σ(x) = σ in the aggregate, respectively. In the former case (known as
Voigt assumption in elasticity) and if (7) has to be valid for an arbitrary strain and an arbitrary
temperature increment, the overall moduli are given by

C
UB = 〈C(g )〉 and αUB = C

U B−1

: 〈C(g ) : α(g )〉. (9)

Conversely, if the stress is assumed to be uniform in the aggregate (Reuss assumption in
elasticity) and (8) holds for an arbitrary stress and an arbitrary temperature increment, the overall
moduli are given by the average of the crystal compliances and thermal tensors:

C
LB = 〈C(g )−1〉−1 and αLB = 〈α(g )〉. (10)

The uniform strain approach fulfills compatibility (but not necessarily equilibrium) within the
polycrystal and represents an upper bound for the elastic energy of the aggregate. The uniform
stress approach fulfills equilibrium (but not necessarily compatibility) in the aggregate and
represents a lower bound for the energy. Neither approach fulfills the two conditions given by (7)
and (8) simultaneously. In addition, the elastic constants and thermal expansion coefficients
given by (9) and (10) are different because the average of the inverses does not coincide with
the inverse of the average. Only for the trivial case of elastically and thermally isotropic crystals
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are the tensors independent of grain orientation and both averaging procedures give the same
results.

The estimation of the effective elastic stiffness C and the effective thermal expansion α by
means of the SC approach is described in Section 2.5. For this purpose, we first solve the problem
of an elastic inclusion embedded in a homogeneous medium. Invoking Mura’s [12] concept of
equivalent inclusion, the constitutive behavior at the grain level can be rewritten in terms of the
homogeneous macroscopic moduli by adding and subtracting C : ε(x)−C : αδT to (3) to obtain

σ(x) = C : (ε(x)−ε∗(x))−C : αδT, (11)

where

ε∗(x) = C
−1

: [(C(g ) −C) : ε(x)− (C(g ) : α(g ) −C : α)δT ]. (12)

In this way, the inhomogeneous inclusion is replaced by an equivalent homogeneous inclusion
with elastic stiffness C and eigenstrain field ε∗(x). Subtracting (5) from (11) gives

σ̃(x) = C : (ε̃(x)−ε∗(x)), (13)

where the symbol “˜” denotes local deviations of the corresponding tensor from macroscopic
values: σ̃(x) =σ(x)−σ and ε̃(x) = ε(x)−ε.

In the absence of external body forces, the equilibrium equation is

σi j , j (x) = (σi j + σ̃i j (x)), j = σ̃i j , j (x) = 0. (14)

Replacing (13) in (14), using the relation ε̃i j (x) = (1/2)(ũi , j (x)+ ũ j ,i (x)), and accounting for the
symmetry C i j kl =C i j lk , we get a set of partial differential equations for the local deviation of the
displacement gradient field:

C i j kl ũk,l j (x)+ f ext
i (x) = 0, (15)

where the artificial body force field associated with the heterogeneity of elastic and thermal
constants is defined as

f ext
i (x) =−C i j klε

∗
kl , j (x) =σ∗

i j , j (x). (16)

The field σ∗(x) =−C : ε∗(x) is an eigenstress field, which is also known as polarization field.

2.2. Green function method

The system defined by (15) consists of three differential equations with three unknowns, namely,
the components of the local deviation of the displacement vector field ũi (x). A system of N linear
differential equations with N unknown functions and an inhomogeneity term, such as (15), can
be solved using the Green function method. Let us call Gkm(x−x′) the Green function associated
with ui (x) of a homogeneous infinite medium with elastic stiffness C that gives, in the absence
of any other sources of strain, the displacement at position x along direction k induced by a unit
external body force, with a single non-vanishing component m, applied at x:

C i j kl Gkm,l j (x−x′)+δi mδ(x−x′) = 0, (17)

where δ(x − x′) is the Dirac delta function and δi m is the Kronecker delta function. Once the
solution of (17) is obtained, the solution of (15) is given by the convolution integral, that is, a
linear superposition of elementary contributions to the displacement field given by the Green
function:

uk (x) =
∫

R3
Gkm(x−x′) f ext

m (x′)dx′. (18)

Assuming zero macroscopic strain, the same expression holds for ũi (x):

ũk (x) =
∫

R3
Gkm(x−x′) f ext

m (x′)dx′. (19)

C. R. Mécanique, 2020, 348, n 10-11, 877-891



Carlos N. Tomé and Ricardo A. Lebensohn 881

Taking the Fourier transform of (17),

C i j kl F T [Gkm,l j (x−x′)]+δi mF T [δ(x−x′)] = 0, (20)

and applying the properties of the Fourier transform of the derivative and of the Dirac delta
function,

C i j kl i2kl k j Ĝkm(k)+δi m = 0 (21)

where k is a point/vector of the 3D Fourier space of angular frequencies and i =
p
−1 is the

imaginary unit. Denoting k = kα, where the scalar k and the vector α (this notation is only used
here and in the next section, and it should not be confused with the thermal expansion tensors
αi j used elsewhere) are the modulus and the unit vector associated with k, respectively, we obtain

C i j klαlα j [k2Ĝkm(k)] = δi m . (22)

Defining
Ai k (α) =α jαl C i j kl (23)

allows us to obtain the algorithmic expression to calculate the Fourier transform of the Green
function:

k2Ĝi j (α) = A−1
i j (α). (24)

Since the matrix Ai j is a real function ofα, so is k2Ĝi j . This property leads to real integrals in the
derivation that follows.

2.3. Elastic inclusion and Eshelby tensor

Replacing the eigenstress given by (16) in (19) and taking derivatives yield for the local deviation
of the displacement gradient field

ũk,l (x) =
∫

R3
Gki ,l (x−x′)σ∗

i j , j (x′)dx′. (25)

Using the relation ∂Gi j (x − x′)/∂x = −∂Gi j (x − x′)/∂x′, we can rewrite the integrand of (25) as
Gki ,l (x− x′)σ∗

i j , j (x′) = (Gki ,l (x− x′)σ∗
i j (x′)), j +Gki ,l j (x− x′)σ∗

i j (x′) for integration by parts. Using
the Gauss theorem and the vanishing character of the Green function at infinity, we obtain [12]

ũk,l (x) =
∫

R3
Gki , j l (x−x′)σ∗

i j (x′)dx′. (26)

Equation (26) provides an exact implicit solution to the problem of a general eigenstrain field
ε∗(x) being accommodated elastically and inducing an eigenstress field σ∗(x). Such a solution
requires knowing the local dependence of the eigenstrain or the eigenstress tensor. Here, we
are interested in the specific application to thermo-elastic aggregates, where the elastic stiffness
C(g ), the thermal expansion tensor α(g ), and the thermal dilatation α(g )δT are constant over
the domain of each grain. This leads to the eigenstrain ε∗(g ) adopting a constant value in the
domain of the inclusion and being zero in the domain of the effective medium. Under these
conditions, Eshelby [13] and Mura [12] demonstrated that for a single inclusion of ellipsoidal
shape embedded in an infinite medium, the elastic strain field is uniform in the domain of the
inclusion. Here, however, we follow the more general approach of Berveiller et al. [14], expressing
the average of the local deviation of the displacement gradient field given by (25) over the domain
Ωg of the grain:

ũ(g )
k,l =

(
− 1

Ωg

∫

Ωg

∫

Ωg
Gki , j l (x−x′)dxdx′

)
C i j mnε

∗(g )
mn . (27)

Equation (27) can be interpreted in two ways. If the effective elastic modulus C is assumed to be
the stiffness of an infinite homogeneous matrix in which an ellipsoidal inclusion with constant
eigenstrain ε∗(g ) is embedded, ũ(g )

k,l is the constant value inside domain Ωg obtained from the
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solution of Eshelby’s inclusion problem. On the other hand, in the actual case of a polycrystal, ũ(g )
k,l

should be interpreted as the average value (first moment) of the corresponding field in grain (g ).
Expressing the second derivative of the Green tensor in terms of its Fourier transform, we

obtain

ũ(g )
k,l =

(
1

8π3Ωg

∫

Ωg

∫

Ωg

∫

K 3
(αlα j k2Ĝki (k))exp[−ik · (x−x′)]dkdxdx′

)
C i j mnε

∗(g )
mn

= Tkl i j C i j mnε
∗(g )
mn . (28)

Transforming the integral over the reciprocal space to spherical coordinates such that dk =
sinθdθdφk2 dk and using (22), the tensor Tkl i j can be rewritten as

Tkl i j =
1

8π3Ωg

∫ 2π

0

∫ π

0
αlα j A−1

ki (α)Λ(α)sinθdθdϕ, (29)

where θ and φ are the spherical coordinates of the Fourier unit vectorα and

Λ(α) =
∫ ∞

0

(∫

Ωg

∫

Ωg
exp[−ik(x−x′)]dxdx′

)
k2 dk. (30)

Integration of (30) inside an ellipsoidal domainΩg with main axes (a,b,c) gives [14]

Λ(α) = 8π3

3

(abc)2

[ρ(α)]3 , (31)

where

ρ(α) =
√

(aα1)2 + (bα2)2 + (cα3)2. (32)

Replacing (31) in (29), and recalling thatΩg = (4/3)π(abc), provides an expression of Tkl i j for an
ellipsoidal grain:

Tkl i j =
(abc)

4π

∫ 2π

0

∫ π

0

α jαl A−1
ki (α)

[ρ(α)]3 sinθdθdϕ. (33)

For arbitrary elastic anisotropy, the double integral in (33) has to be solved numerically using, for
instance, a Gauss–Legendre technique [5]. For the purpose of calculating the symmetric strain
tensor, the following symmetric Eshelby tensor is defined:

Si j kl = 1
4 (Ti j mn +T j i mn +Ti j nm +T j i nm)C mnkl . (34)

2.4. Interaction and localization equations

Taking the symmetric part of (28), and using the Eshelby tensor defined in (34), we obtain the
average deviation of strain in grain (g ) with respect to the macroscopic strain:

ε̃(g ) = S : ε∗(g ). (35)

An expression equivalent to (13), relating local deviations in stress, strain, and eigenstrain fields,
also holds for the deviations of average stress, average strain, and average eigenstrain in the grains
with respect to the effective medium. It is straightforward to demonstrate this by integrating (13)
over the grain domain:

σ̃(g ) = C : (ε̃(g ) −ε∗(g )). (36)

Replacing the eigenstrain given by (35) in (36), the following interaction equation is obtained:

σ̃(g ) =−C̃ : ε̃(g ), (37)

where the interaction tensor is defined as

C̃ = C : (I−S) : S−1. (38)
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Using the polycrystal constitutive relation (5) and the grain-averaged constitutive relation ob-
tained from averaging (3) in the domain of grain (g ),

σ(g ) = C(g ) : ε(g ) −C(g ) : α(g )δT, (39)

the interaction equation (37) can be rewritten in terms of total strain tensors. After some algebraic
manipulation, the following strain localization equation is obtained:

ε(g ) = A(g ) : ε+D(g )δT, (40)

where the strain localization tensors are defined as

A(g ) = (C(g ) + C̃)−1 : (C+ C̃), (41)

D(g ) = (C(g ) + C̃)−1 : (C(g ) : α(g ) −C : α). (42)

2.5. Self-consistent equations

The derivation presented in the previous sections solves the problem of a thermo-elastic inclu-
sion embedded in a thermo-elastic effective medium being subject to external loading condi-
tions. In this section, we use the previous result to construct a polycrystal model, consisting in
regarding each grain as an ellipsoidal inclusion embedded in a homogeneous medium with the
same properties as those of the homogenized polycrystal. The properties of such a medium are
not known a priori, and they will be obtained following an iterative SC procedure. The corre-
sponding equations are derived in this section.

The homogenized medium assumption is central to our derivation and needs some discus-
sion. Even if the solution for each individual ellipsoid representing a grain embedded in a homo-
geneous medium is exact, in a real aggregate, grains are not ellipsoidal and are not surrounded by
a homogeneous continuum. Rather, the surrounding neighbors have different orientations and
induce stress gradients inside the grains and across grain boundaries. In addition, grains with the
same orientation in the aggregate are surrounded by different neighbors, and as a consequence,
their associated average stress is not the same. As a result, the grain stress and strain given by
the effective medium approximation have to be regarded as representing the average state of all
grains having the same orientation in the aggregate.

We use the localization equation for the strain (40) to derive two equations. The first equation
follows from replacing (40) in (39):

σ(g ) = C(g ) : ε(g ) −C(g ) : α(g )δT = C(g ) : A(g ) : ε+ (C(g ) : D(g ) −C(g ) : α(g ))δT. (43)

The second equation follows from taking the average of (40) over all grains:

〈ε(g )〉 = 〈A(g )〉 : ε+〈D(g )〉δT. (44)

We recall that 〈 〉 denotes the average over the representative grains weighted by the associated
grain volume fraction. Extracting the effective strain of the medium ε= 〈ε(g )〉 from (44), replacing
it in (43), and averaging the grain stresses give

〈σ(g )〉 = 〈C(g ) : A(g )〉 : (〈A(g )〉−1 : 〈ε(g )〉−〈A(g )〉−1 : 〈D(g )〉δT )

+〈C(g )D(g ) −C(g ) : α(g )〉δT. (45)

Enforcing the condition that the effective stress is equal to the average of the grain stresses
σ= 〈σ(g )〉,

σ= C : ε−C : αδT = 〈σ(g )〉, (46)

leads to

C : ε−C : αδT = 〈C(g ) : A(g )〉 : 〈A(g )〉−1 : ε

− {〈C(g ) : A(g )〉 : 〈A(g )〉−1 : 〈D(g )〉−C(g ) : D(g ) +C(g ) : α(g )}δT. (47)
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For this identity to hold, the strain and temperature factors on the right-hand side have to
coincide with those on the left-hand side. This condition leads to

C = 〈C(g ) : A(g )〉 : 〈A(g )〉−1, (48)

which is an implicit equation for the stiffness because the localization tensor A(g ) is a function of
the interaction tensor C̃(g ) (38), which in turn is a function of C and the Eshelby tensor S, which
is also a function of C. As a consequence, Equation (48) is a fixed-point equation for the effective
polycrystal’s elastic stiffness.

The condition on the term associated with a temperature change is

C : α= 〈A†(g ) : D(g )〉+〈C(g ) : α(g )〉, (49)

where
A†(g ) = (C+ C̃(g )) : (C(g ) + C̃(g ))−1. (50)

Using (42) for D(g ) leads, after some algebraic manipulation, to a direct equation giving the
effective thermal coefficients of the aggregate:

C : α= 〈A†(g )〉−1 : 〈A†(g ) : C(g ) : α(g )〉. (51)

The iterative solution of (48) gives the polycrystal’s elastic stiffness, and the subsequent use of
(51) gives the polycrystal’s thermal coefficients once the effective stiffness is known.

We end this section mentioning that by taking derivatives with respect to the local moduli of
the effective properties given by (48) and (51), it is possible to access information on intragranular
heterogeneity in the form of second moments of the stress field distribution in each mechanical
phase (g ). The algorithms to calculate these second moments from the SC theory for thermo-
elastic polycrystals (based on the original TESC expressions for composites [15,16]) can be found
in [17–19].

3. Applications

The applications discussed in this section include the calculation of effective elastic and thermal
moduli of zirconium, beryllium, and uranium and the evolution of macroscopic strain and
internal stresses during cooling processes.

3.1. Cooling of zirconium

The purpose of this example is to show how texture affects the effective elastic and thermal
constants and also the evolution of internal stress during cooling. We simulate cooling of Zr
from 900 to 300 K for two different crystal orientation distributions: a non-textured aggregate
(see discussion in the next paragraph) and an aggregate with axisymmetric texture, typical
of an extruded bar. The axisymmetric texture is displayed in Figure 1, and the single-crystal
elastic and thermal constants (or coefficients of thermal expansion) are given in Tables 1 [20]
and 2 [21], respectively. In this simulation, the boundary condition is that the macroscopic stress
components are zero, and at 900 K, the grains in the aggregate are assumed to be stress-free.

The UB, LB, and TESC elastic constants calculated using 1000 orientations from a Sobol
sequence [22], obtained by maximizing the separation (in Euler space) of the next orientation
in the sequence from all the previous orientations, are given in Table 1. The effective thermal
moduli are given in Table 2. Observe that the effective properties may deviate slightly from the
exact isotropic conditions (C 11 = C 22 = C 33 and α1 = α2 = α3); for example, note some small
fluctuations in the least significant digits in the predicted values for non-textured aggregates.
The reason is that despite the aforementioned Sobol sequence optimizing the generation of a
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Table 1. Zr single-crystal elastic constants [20] and polycrystal elastic constants predicted
using UB, LB, and TESC models for non-textured and extrusion-texture aggregates (Voigt
notation; units of [GPa])

C11 C22 C33 C23 C13 C12 C44 C55 C66

Crystal 143.5 143.5 164.9 65.4 65.4 72.5 32.1 32.1 35.5

Non-textured aggregate
UB 144.1 144.1 144.1 71.1 71.0 71.1 36.5 36.5 36.5

TESC 143.5 143.5 143.5 71.2 71.2 71.2 36.1 36.1 36.1
LB 142.9 142.9 142.9 71.4 71.4 71.4 35.8 35.8 35.8

Textured aggregate
UB 146.9 146.5 142.4 70.0 69.9 71.3 35.0 34.9 37.8

TESC 145.9 145.7 142.2 70.2 70.1 71.6 34.8 34.7 37.2
LB 145.1 144.8 142.0 70.4 70.3 71.9 34.6 34.6 36.7

Table 2. Zr single-crystal thermal constants [21] and polycrystal thermal constants pre-
dicted using UB, LB, and TESC models for non-textured and extrusion-texture aggregates
(Voigt notation; units of [10−6 K−1])

α1 α2 α3 α1 α2 α3

Crystal 5.7 5.7 10.5 5.7 5.7 10.5
Non-textured Textured

UB 7.28 7.29 7.28 8.09 8.02 5.71
TESC 7.23 7.23 7.23 7.98 7.91 5.87

LB 7.23 7.23 7.23 7.87 7.82 6.00

discrete set of orientations to a uniform distribution, which should produce the same effective
response as that for a very large set of random orientations, the set of 1000 orientations used here
for representing the aggregate is not strictly uniform. In what follows, the polycrystal represented
by these 1000 orientations is referred to as “non-textured aggregate.”

Since Zr is mildly anisotropic elastically, the stiffness components of the textured aggregate
are not very different from those of the non-textured aggregate, but they display a clear axial
symmetry, that is, C11

∼= C22 6= C33, C13
∼= C23 6= C12, and C44

∼= C55 6= C66. On the other hand, the
large thermal anisotropy of the single-crystal thermal coefficients makes the effective properties
strongly dependent on texture. As we show next, it also has an important effect on the internal
stress evolution during cooling.

Figure 2 displays the evolution of overall diagonal strain components as a function of decreas-
ing temperature predicted using TESC. As is to be expected, for the non-textured aggregate, all
three directions contract by the same amount; but for the textured aggregate, this is not the case.
A concentration of basal poles perpendicular to the axial direction of the bar, combined with a
larger thermal coefficient along the c-axis, leads to a larger contraction perpendicular to the bar
axis. This is consistent with the effective thermal coefficients of the aggregate reported in Table 2.

Figure 2 also shows the evolution with temperature of the strain normal to basal (0002) and
prismatic (10–10) planes either perpendicular to axis 1 (radial direction) or axis 3 (axial direction)
of the texture. In the case of the non-textured aggregate, both directions are equivalent, and
the result reflects the fact that the tendency of the crystal is to contract more than the effective
medium along the c-axis and less than the effective medium along the a-axis. The interaction of
the grain (inclusion) with the effective medium partially prevents such behavior, and this leaves
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Figure 1. Basal pole figure of extruded Zr bar.

Figure 2. Microstrain evolution in (10–10) and (0002) planes and macroscopic strain evo-
lution with temperature in non-textured Zr and extruded Zr bar when cooling from 900 K
to 300 K, predicted using TESC.

the c-axis in tension and the a-axis in compression. The same mechanism applies to internal
stress evolution in the textured polycrystal except that now the average contraction is different
along the axial and radial directions and so is the interaction with grains oriented in either of
these directions. The TESC model captures well such a directional interaction. Observe that the
final elastic strains are large (∼1×10−3) and correspond to normal stresses of order 100 MPa. The
larger thermal coefficient perpendicular to the basal plane induces a larger thermal contraction,
which is counteracted by the interaction with the surrounding medium. As a consequence, the
strain along the c-axis is always positive. The opposite is true for the direction normal to the
prismatic planes of the crystal. Texture changes the properties of the effective medium and affects
the result quantitatively. These predictions are consistent with measurements in a Zrly-2 bar
reported by MacEwen et al. [21].

3.2. Cooling of beryllium

To show the relevance of the single-crystal anisotropic moduli, here we perform the same
calculations for another hcp material, beryllium, and compare the results against those for
zirconium. For this purpose, we simulate cooling of Be from 900 to 300 K for a non-textured
aggregate. The single-crystal elastic and thermal constants are given in Tables 3 [20] and 4 [23],
respectively. As before, the boundary condition is zero macroscopic stress components and an
internal stress-free aggregate at 900 K. The latter is in reasonable agreement with the internal
stresses measured by Brown et al. [24] as a function of temperature in a non-textured aggregate.
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Table 3. Be single-crystal elastic constants [20] and polycrystal elastic constants predicted
using UB, LB, and TESC models for a non-textured aggregate (Voigt notation; units of [GPa])

C11 C22 C33 C23 C13 C12 C44 C55 C66

Crystal 292.3 292.3 336.4 14.0 14.0 26.7 162.5 162.5 132.8

Non-textured aggregate
UB 313.6 313.6 313.6 14.9 15.9 14.9 149.3 149.3 149.3

TESC 312.5 312.6 312.5 15.3 15.3 15.3 148.6 148.6 148.6
LB 311.5 311.3 311.5 15.6 15.6 15.6 148.0 148.0 148.0

Table 4. Be single-crystal thermal constants at 450 K [23] and polycrystal thermal constants
predicted using UB, LB, and TESC models for a non-textured aggregate (Voigt notation;
units of [10−6 K−1])

α1 α2 α3

Crystal 13.9 13.9 10.4

Non-textured
UB 12.7 12.7 12.7

TESC 12.7 12.7 12.7
LB 12.7 12.7 12.7

Beryllium is a peculiar hcp material in two aspects: it exhibits an unusually low Poisson modulus
(ν∼ 0.045; varies depending on the crystal direction) and its thermal expansion coefficients have
been reported to increase two-fold from 300 to 900 K [23]. For the purpose of this demonstration,
we have made no attempt at accounting for the variation in thermal coefficients with temperature
and have adopted the coefficients corresponding to 450 K. Another difference from Zr is that
thermal contraction along the c-axis is smaller than perpendicular to it since α33 <α11.

The UB, LB, and TESC polycrystal elastic constants are given in Table 3 and the corresponding
polycrystal thermal moduli are given in Table 4.

Figure 3 displays the evolution of overall diagonal strain components as a function of decreas-
ing temperature predicted using TESC. As is to be expected for a non-textured aggregate, all three
directions contract by the same amount, about 0.8% at room temperature. Figure 3 also shows
the evolution with temperature of the strain normal to basal (0002) and prismatic (10–10) planes,
and the result reflects the tendency of the crystal to contract less than the effective medium along
the c-axis and more than the effective medium along the a-axis. The interaction of the grain (in-
clusion) with the effective medium opposes such a trend, and this leaves the c-axis in compres-
sion and the a-axis in tension, which is opposite to what happens in Zr. The TESC model captures
such a directional interaction and predicts the final crystallographic elastic strains of ∼0.5×10−3,
which correspond to large normal stresses of order ∼100 MPa in prism planes and of ∼−200 MPa
in basal planes (Figure 3). These values are in good agreement with the measurements reported
by Brown et al. [24]. Although the internal stresses are somewhat smaller in a textured aggregate,
they are expected to play an important role in early yielding, stress differential, and elastoplastic
transition when a Be aggregate is subjected to mechanical loading.

3.3. Cooling of uranium

As in the previous cases, the purpose of this example is to show how texture affects the effective
elastic and thermal constants, and the evolution of internal stress, during cooling ofα-U. Inα-U,
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Figure 3. Microstrain evolution in (10–10) and (0002) planes and macroscopic strain evo-
lution with temperature predicted using TESC for non-textured Be when cooling from 900
to 300 K (left); evolution of stress normal to (10–10) and (0002) planes (right).

Figure 4. (100), (010), and (001) poles of rolled α-uranium.

the elastic and thermal constants are more anisotropic than those of Zr, and the single-crystal
symmetry is orthotropic instead of hexagonal.

As before, to evidence texture effects, we simulate the cooling of α-U from 900 to 300 K for
two different crystal orientation distributions: a non-textured aggregate and an aggregate with
rolling texture, see Figure 4. The single-crystal elastic and thermal coefficients are reported in
Tables 5 and 6, respectively. The evolution of internal strains on {100}, {010}, and {001} planes
along directions x1 (rolling), x2 (transverse), and x3 (normal) is also reported. The simulation
imposes all the macroscopic stress components to be zero while cooling from 900 to 300 K.

The UB, LB, and TESC elastic constants calculated for the non-textured and textured ag-
gregates are given in Table 5 and the effective thermal moduli are given in Table 6. The large
anisotropy of the α-U single-crystal thermal coefficients makes the effective properties strongly
dependent on texture. In addition, as shown in Figure 5 (and also in Figure 2 for Zr), the macro-
scopic strains induced by cooling under the condition of zero macroscopic stress are contrac-
tive. The grains, however, develop increasingly compressive and tensile components of stress and
elastic strain that average to zero.

The larger thermal coefficients along the [100] and [001] crystal directions, compared with
[010], induce a larger thermal contraction perpendicular to those planes, which is counteracted
by the interaction with the surrounding medium. As a consequence, the associated internal
strains are always positive. The opposite is true for the [010] crystal direction, which has a nearly
zero thermal coefficient. Texture changes the properties of the effective medium and affects the
results quantitatively but not qualitatively.
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Figure 5. Evolution of microstrains in {100}, {010}, and {001} planes and evolution of
macroscopic strain components in non-textured and rolling-texture α-U when cooling
from 900 to 300 K.

Table 5. α-uranium single-crystal elastic constants [25] and polycrystal elastic constants
predicted using UB, LB, and TESC models for a non-textured and a rolling-texture aggregate
(Voigt notation; units of [GPa])

C11 C22 C33 C23 C13 C12 C44 C55 C66

Crystal 214.8 198.6 267.1 107.6 21.8 46.5 124.4 73.4 74.3

Non-textured aggregate
UB 232.2 232.3 232.1 55.9 56.1 55.9 88.0 88.1 87.9
SC 225.1 225.2 225.1 56.7 56.7 56.6 84.1 84.2 84.1
LB 219.0 219.1 219.0 57.6 57.7 57.5 80.6 80.7 80.6

Textured aggregate
UB 214.0 224.3 241.3 52.3 65.4 58.6 92.3 94.5 85.8
SC 208.5 219.0 233.7 52.8 65.7 59.2 88.7 90.2 81.9
LB 203.8 214.5 227.0 53.5 66.1 59.9 85.5 86.3 78.5

Table 6. α-uranium single-crystal thermal constants [26]. Polycrystal thermal constants
predicted using UB, LB, and TESC models for a non-textured and a rolling-texture aggregate
(Voigt notation; units of [10−6 K−1])

α1 α2 α3 α1 α2 α3

Single crystal 25.41 0.65 20.65 25.41 0.65 20.65

Non-textured Textured
UB 15.11 15.15 15.11 10.64 17.17 17.44
SC 15.38 15.41 15.37 10.01 17.46 18.61
LB 15.56 15.60 15.55 9.21 17.64 19.86

4. Conclusions

In this paper, the TESC formulation is presented in detail and applied to the cooling of polycrys-
talline single-phase non-cubic metals. The TESC model captures the effect of crystallographic
texture and single-crystal elastic and thermal anisotropy on effective and local thermo-elastic
responses.
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Although not shown here, the TESC model can be applied to multiphase polycrystalline
aggregates. In such cases, the heterogeneity in the local thermal response captured by the model
arises from single-crystal thermal anisotropy (i.e. for non-cubic phases) and/or the difference in
thermal properties between phases (including cubic phases).

The results presented here show that depending on temperature change, texture of the aggre-
gate, and level of single-crystal elastic and thermal anisotropy, internal stresses at the grain level
can be significant even in the absence of applied stress, for example, cooling under zero exter-
nal stresses, as in all the cases presented. These internal stresses may play an important role in
promoting plastic yield during cooling or during loading after annealing as well as in determin-
ing subsequent stress differential, for example, different yield in tension versus compression. In
other words, these thermal stresses can significantly affect yielding and the elastoplastic transi-
tion compared with the case of aggregates with stress-free grains. Evidently, the TESC formula-
tion presented here is not able to capture this effect by itself, but it needs to be combined with
model extensions that include crystal plasticity mechanisms such as elastoplastic [27] and elas-
toviscoplastic [28, 29] formulations.
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1. Introduction

The development of multiscale approximations for the mechanical and physical properties of
disordered solids greatly benefits from the identification of specific material systems whose prop-
erties at different length scales can be linked exactly, as they provide guidance and useful bench-
marks for evaluating the relative merits of competing schemes. Several classes of such solvable
systems have been identified when the constitutive phases exhibit linear responses. These in-
clude, for instance, sequential laminates (e.g., [1–3]), dilute dispersions (e.g., [4]), assemblages
of neutral coated inclusions (e.g., [5–8]), symmetric materials (e.g., [9, 10]), and iterated com-
posites (e.g., [11–13]). Comparatively fewer results are available when the constitutive phases ex-
hibit nonlinear responses. Such nonlinear results are typically generated by partially extending
the above linear results, and often require more involved mathematical descriptions. Examples
include sequential laminates (e.g., [14, 15]), symmetric materials (e.g., [16]), and iterated com-
posites (e.g., [17, 18]). Now, these descriptions can simplify considerably when the constitutive
responses are weakly nonlinear (e.g., [19–22]). But, despite this observation, results for weakly
nonlinear composites are seldomly exploited in the development of homogenization methods.

The purpose of this paper is to report exact results for the electrical conductivity of two-
phase composites exhibiting weak nonlinearity. Such composites are characterized by position-
dependent dissipation potentials expressible as an additive composition of a quadratic potential
and a nonquadratic potential weighted by a small parameter. This additive form carries over to
the effective dissipation potential of the composite when expanded to first order in the small pa-
rameter. However, the first-order correction of this asymptotic expansion depends only on the
zeroth-order values of the local fields, namely, the local fields within the perfectly linear compos-
ite conductor. This asymptotic expansion is exploited to derive the exact effective conductivity
of a composite cylinder assemblage (CCA) exhibiting weak nonlinearity of the power-law type.
More specifically, we consider conductors with phase constitutive relation of the type J = εE m ,
where J is the current, E is the electric field, ε is the nonlinear conductivity and m = 1+δ, with
|δ| ¿ 1. The exact asymptotic result (to first order in δ) for these weakly nonlinear composites,
which has not previously been reported in the literature, is then used to assess the capabilities of
various nonlinear homogenization methods.

These nonlinear homogenization methods blossomed from ideas initiated by Willis [23], who
proposed a generalization of the variational bounds of [24] for linear composites, which could
also handle nonlinear composites. The first application of these bounds of the Hashin–Shtrikman
(HS) type to nonlinear composites was pursued by Talbot and Willis [25]. A more general vari-
ational approach consisting in the use of an optimally chosen “linear comparison composite”
(LCC) was advanced by Ponte Castañeda [26, 27] (see also [28] for the special case of power-law
materials). This approach is not only capable of delivering bounds of the HS type, but can also
be used to generate three-point bounds and other estimates, such as self-consistent-type esti-
mates, by means of corresponding bounds and estimates for linear composites. Because of their
bounding properties, these “variational linear comparison” estimates have been shown to de-
liver significantly improved estimates. For example, Gilormini [29] showed that the “classical” ex-
tension [30, 31] of the self-consistent method [32] for nonlinear composites violates the rigorous
bounds of [26]. In addition, Suquet [33] provided a reinterpretation of the variational linear com-
parison method of [26] in terms of the second moments of the fields in the phases of the LCC, thus
providing an alternative explanation for the improvements observed relative to the classical ho-
mogenization schemes using only the averages or first moments of the fields in the phases. How-
ever, it was found that these bounds and estimates were not able to reproduce the exact estimates
of [34] for small heterogeneity contrast. For these reasons, Ponte Castañeda [35] proposed an al-
ternative “tangent second-order” (TSO) variational approach making use of more general LCCs,
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which, while not yielding bounds, was capable of reproducing exactly to second order in the con-
trast the asymptotic expansions of [34]. In spite of giving improved results for small contrast, the
TSO estimates were not as robust as the variational estimates for strongly nonlinear composites
exhibiting strong heterogeneity contrast. More recently, Ponte Castañeda [36] provided a fully
optimized second-order (FOSO) homogenization method combining the advantages of the vari-
ational and TSO methods, which makes use of both the first and second moments of the fields
and has the additional advantage of allowing the estimation of these moments in the nonlinear
composite directly from the corresponding moments in the LCC [37]. In implementing the FOSO
method, one must choose the specific value, a weight-factorαwhich is not dictated by the under-
lying variational procedure. Out of convenience, Ponte Castañeda [36] chose a value of α = 0.5,
and the choice was adopted by Furer and Ponte Castañeda [38], who suggested that the “optimal”
value of α would depend, among other things, on the microstructure, nonlinearity, and proper-
ties of the phases. The exact results reported in this work are used to assess this choice. Finally, it
is also shown that the exact estimate of [15] for the corresponding class of sequentially laminated
nonlinear composite conductors also agrees exactly to first order in the weakly nonlinear limit
with the CCA result.

2. Effective behavior of weakly nonlinear composites

We consider material systems made up of two distinct constitutive phases. The electrical conduc-
tivity of each phase is characterized by a dissipation potential w (r ) (r = 1,2), such that the current
density J and the electric field intensity E are related by

J = ∂w

∂E
(x,E), w(x,E) =

2∑
r=1

χ(r )(x) w (r )(E), (1)

where the characteristic functionsχ(r ) serve to describe the microstructure, being 1 if the position
vector x is in phase r , and 0 otherwise, so thatχ(1)(x)+χ(2)(x) = 1. The potentials w (r ) are assumed
to be strictly convex and bounded from below. The focus is on material systems where the size
of the characteristic particle size is much smaller than the size of the specimen. In that case,
the functions χ(r ) exhibit rapid oscillations and homogenization theory states that the overall
response of the composite is given by the relation between the average current density and the
average electric field over a “representative volume element” Ω. Then, letting 〈·〉 denote the
volume average over Ω, and letting J = 〈J〉 and E = 〈E〉, the overall response can be characterized
by the effective potential w̃ , such that (e.g., [39])

J = ∂w̃

∂E
(E), w̃(E) = min

E∈K (E)
〈w(x,E)〉, (2)

where K (E) is the set of admissible fields E(x), such that there is a continuous scalar field ϕ

in a suitable functional space satisfying E = −∇ϕ in Ω and ϕ = −E · x on ∂Ω. In view of these
differential constraint, the minimizer E must be such that the associated current density field J
be divergence free, i.e., ∇·J = 0 withinΩ. Dual variational formulations are available involving the
Legendre transform of w̃(E), as given by ũ(J) = w̃∗(E).

This constitutive framework can be used to model weakly nonlinear as well as strongly non-
linear behaviors. Weakly nonlinear materials are hereby characterized by dissipation potentials
of the form

w (r )(E) = w (r )
0 (E)+δw (r )(E), (3)

where w (r )
0 is quadratic but w (r ) is not, w (r )

0 and w (r ) are both bounded from below, and δ

is a small parameter. The effective response of this weakly nonlinear composite can then be
determined, at least formally, by expanding the effective potential (2) to first order in δ. Denoting

C. R. Mécanique, 2020, 348, n 10-11, 893-909



896 Joshua Furer et al.

by Eδ and E0 the electric field intensities attaining the minimum in (2)2 for nonzero δ and for
δ= 0, respectively,

w̃(E) = 〈w(x,Eδ)〉 = 〈w0(x,E0)〉+δ
〈

w(x,E0)+ ∂w0

∂E
(x,E0) · ∂Eδ

∂δ

∣∣∣∣
δ=0

〉
+O(δ2). (4)

Then, noting that ∂w0/∂E(x,E0) is the current density field J0 within the composite for δ= 0, and
is therefore divergence free, and that ∂Eδ/∂δ|δ=0 =−∇∂ϕδ/∂δ|δ=0, Hill’s lemma implies that [40]

〈
∂w0

∂E
(x,E0) · ∂Eδ

∂δ

∣∣∣∣
δ=0

〉
=

〈
∂w0

∂E
(x,E0)

〉
·
〈
∂Eδ
∂δ

∣∣∣∣
δ=0

〉
=

〈
∂w0

∂E
(x,E0)

〉
· ∂E

∂δ

∣∣∣∣∣
δ=0

= 0, (5)

since 〈Eδ〉 = E and the expansion is carried out for fixed E. The effective potential of the weakly
nonlinear composite is thus given by

w̃(E) = 〈w0(x,E0)〉+δ〈w(x,E0)〉+O(δ2), (6)

and therefore its evaluation to first order in δ requires knowledge of the linear fields only. This
observation has been exploited in earlier works [19,20,22] to study composites exhibiting weakly
nonlinear responses of the polynomial type. In the next section, results are derived for a different
class of composites exhibiting weakly nonlinear responses of the power-law type.

3. Composite cylinder assemblages with power-law dissipation

We consider a special class of cylindrical dispersions consisting of nonoverlapping homothetic
composite cylinders of infinite sizes filling up the entire material volume, each composed of an
exterior cylinder coating made up of the matrix phase and an interior concentric cylinder made
up of the inclusion phase. These microstructures were introduced by HS [5] and are referred to as
CCAs. When the phases exhibit an isotropic linear response, the assemblage exhibits an in-plane
isotropic linear effective response that can be determined exactly by solving the field equations
within a single composite cylinder subject to uniform boundary conditions (e.g., [5, 41]). When
the phases exhibit a nonlinear response, on the other hand, the computation of the exact
response requires the solution of the field equations throughout the dispersion. In view of the
expansion (6), however, the linear fields within a single composite cylinder still furnish the exact
effective response when the phases exhibit a weakly nonlinear response, at least to first order.
Henceforth, we compute the expansion (6) for assemblages characterized by isotropic dissipation
potentials of the power-law form

w (r )(E) = ε(r )

m +1
E m+1, (7)

where E = |E| represents the magnitude of E, ε(r ) denotes the conductivity of phase r , and the
exponent m > 0 characterizes the degree of nonlinearity. For simplicity, the exponent m is taken
to be the same for both phases. A weakly nonlinear response is reproduced by taking m = 1+δ
and expanding the power-law potentials to first order in δ:

w (r )(E) = ε(r )

2
E 2 +δ ε

(r )

4
E 2(lnE 2 −1)+O(δ2). (8)

This expression is indeed of the form (3) with

w (r )
0 (E) = ε(r )

2
E 2 and w (r )(E) = ε(r )

4
E 2(lnE 2 −1). (9)

Now, it is well known that when both phases exhibit the same nonlinear exponent m, the
effective potential is also of the power-law type with the same nonlinear exponent m (see, for
instance, [40]). In view of the overall (in-plane) isotropy of the assemblage, we can thus write

w̃(E) = ε̃

m +1
E

m+1
, (10)
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where E = |E|. The effective conductivity ε̃ depends on the local conductivities ε(r ), the mi-
crostructural morphology, and, more importantly, it also depends on the exponent m. Thus,

w̃(E) = ε̃0

2
E

2 +δE
2

4
[2ε̃1 + ε̃0(lnE

2 −1)]+O(δ2), (11)

where the constants ε̃0 and ε̃1 are such that ε̃= ε̃0 +δ ε̃1 +O(δ2), and characterize completely the
effective response. Expressions (6), (9) and (11) imply that

ε̃0E
2 = 〈ε(x)E 2

0〉 and 2E
2

[ε̃1 + ε̃0 lnE ] = 〈ε(x)E 2
0 lnE 2

0〉, (12)

which furnish the effective constants ε̃0 and ε̃1 in terms of the linear electric field distribution.
Within any composite cylinder of the assemblage occupying a domain Ωc , the linear electric
potential is solution to the field equations (see, for instance, [41])

−∇· [ε(x)∇ϕ0] = 0 inΩc , ϕ0 =−E ·x on ∂Ωc , ϕ0 ∈ H 1(Ωc ), (13)

where ε(x) =χ(1)(x)ε(1)+χ(2)(x)ε(2). In terms of a polar coordinate system with origin at the center
of the cylinder and polar axis colinear with the applied electric field E, the solution to these
equations can be written as (see, for instance, [41])

ϕ0(x) =




E a1r cosθ 0 ≤ r ≤ ri (inclusion phase)

E

(
a2r + b2

r

)
cosθ ri ≤ r ≤ ro (matrix phase),

(14)

where r and θ are, respectively, the radial and angular coordinates, ri and ro are, respectively, the
inner and outer radii of the matrix coating, and a1, a2, b2 are constants given by

a1 =− 2ε(2)

(ε(1) +ε(2))− c(ε(1) −ε(2))
, (15)

a2 =− (ε(1) +ε(2))

(ε(1) +ε(2))− c(ε(1) −ε(2))
, (16)

b2 =
(ε(1) −ε(2))

(ε(1) +ε(2))− c(ε(1) −ε(2))
r 2

i . (17)

In these expressions, c = (ri /ro)2 denotes the volume fraction of inclusions. The linear electric
field intensity is thus given by

E 2
0 (x) = |∇ϕ0(x)|2 = E

2 ×





a2
1 0 ≤ r ≤ ri(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ ri ≤ r ≤ ro .
(18)

Introducing the field distribution (18) in (12)1, we have that

ε̃0 =
1

πr 2
o

∫ ri

0

∫ 2π

0
ε(1)a2

1r dr dθ+ 1

πr 2
o

∫ ro

ri

∫ 2π

0
ε(2)

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]
r dr dθ,

(19)
and upon integration we obtain

ε̃0 = ε(2) (ε(1) +ε(2))+ c(ε(1) −ε(2))

(ε(1) +ε(2))− c(ε(1) −ε(2))
, (20)

which is the effective conductivity of the linear CCA [5, 41].
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In turn, introducing the field distribution (18) in (12)2, we have that

2ε̃1 + ε̃0 lnE
2 = 1

πr 2
o

∫ ri

0

∫ 2π

0
ε(1)a2

1(ln a2
1 + lnE

2
) r dr dθ

+ 1

πr 2
o

∫ ro

ri

∫ 2π

0
ε(2)

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]

×
(
ln

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]
+ lnE

2
)

r dr dθ, (21)

which in view of (19) simplifies to

ε̃1 = 1

πr 2
o

∫ ri

0

∫ 2π

0

ε(1)

2
a2

1 ln a2
1 r dr dθ+ 1

πr 2
o

∫ ro

ri

∫ 2π

0

ε(2)

2

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]

× ln

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]
r dr dθ, (22)

and upon integration yields (see Appendix A for details)

ε̃1 = cε(1)a2
1 ln |a1|+ (1− c)ε(2)

[
a2

2 ln |a2|+ c(1+ ln |a2|)
(

b2

r 2
i

)2]
. (23)

Replacing the various constants by their expressions (15)–(17), we finally obtain

ε̃1 = ε̃0 ln

[
(ε(1) +ε(2))

(ε(1) +ε(2))− c(ε(1) −ε(2))

]

+ cε(2)

[(ε(1) +ε(2))− c(ε(1) −ε(2))]2

(
4ε(1)ε(2) ln

[
2ε(2)

ε(1) +ε(2)

]
+ (1− c)(ε(1) −ε(2))2

)
. (24)

For later reference, it is noted that in the limiting case of perfectly insulating inclusions
(ε(1) = 0), the exact results (3) and (24) simplify to

ε̃0

ε(2)
= 1− c

1+ c
and

ε̃1

ε(2)
= 1− c

1+ c

[ c

1+ c
− ln(1+ c)

]
. (25)

4. Infinite-rank laminates with power-law dissipation

It is well known that material systems with disparate classes of underlying microgeometries
are most likely to exhibit different effective responses when the local behavior is nonlinear,
even if exhibiting coincident effective responses when the local behavior is linear. Motivated
by this general rule, we consider here material systems with two-dimensional microgeometries
belonging to a fairly rich class confected in [15]. These microgeometries are of “particulate”
type and are constructed by resorting to a differential scheme in combination with two-phase
sequential laminations of infinite rank, and are such that when the constituent phases and the
inclusion distribution are isotropic, and the local constitutive response is linear, their effective
conductivity agrees exactly with that of the CCAs considered in the previous section. More
generally, the effective dissipation potential of these infinite-rank laminates is given by

w̃(E) = ŵ(E,− lnc), (26)

where c = c(2) is the volume fraction of the inclusion phase, and ŵ(E, t ) is solution to the
Hamilton–Jacobi equation

∂ŵ

∂t
(E, t )+ ŵ +H

(
E,
∂ŵ

∂E

)
= 0 with ŵ(E,0) = w (1)(E) (27)

and Hamiltonian
H(E,J) = max

a(n)
〈an · J−w (2)(E+an)〉ν. (28)
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In this last expression, 〈·〉ν = ∫
|n|=1(·)ν(n)ds(n) is an orientational average weighted by the

reduced H-measure ν(n) of the microgeometry. For statistically isotropic composites with power-
law dissipation potentials, this formalism generates an exact result for the effective conductivity
given by (see [42])

ε̃= ε̂(− lnc), (29)

where ε̂(t ) is solution to the ordinary differential equation

dε̂

dt
+h(ε̂) = 0 with ε̂(0) = ε(1) (30)

and

h(z) = z + 1

2π

∫ 2π

0
((m +1)z a∗(θ, z)cosθ−ε(2)[1+2a∗(θ, z)cosθ+a∗(θ, z)2](m+1)/2)dθ. (31)

In this last expression, the function a∗(θ, z) is solution to the optimality condition

z cosθ−ε(2)(a∗(θ, z)+cosθ)(1+2a∗(θ, z)cosθ+a∗(θ, z)2)(m−1)/2 = 0. (32)

This differential equation can be written in integral form as
∫ ε̃

ε(1)

dz

h(z)
= lnc. (33)

We now set m = 1+δ and ε̃= ε̃0+δ ε̃1+O(δ2), and proceed with the expansion of (33) to first order
in δ:

∫ ε̃0+δ ε̃1+O(δ2)

ε(1)

dz

h0(z)+δ h1(z)+O(δ2)
=

∫ ε̃0

ε(1)

dz

h0(z)
+δ

[
ε̃1

h0(ε̃0)
−

∫ ε̃0

ε(1)

h1(z)

h0(z)2 dz

]
+O(δ2) = lnc,

(34)
where use has been made of Leibniz’s rule; thus,

∫ ε̃0

ε(1)

dz

h0(z)
= lnc and ε̃1 = h0(ε̃0)

∫ ε̃0

ε(1)

h1(z)

h0(z)2 dz. (35)

The first identity furnishes the linear conductivity ε̃0, while the second identity furnishes the first-
order correction ε̃1. These identities require the expansion of the integrand h(z), which in turn
requires the expansion of the function a∗(θ) as given by (32). The latter is given by

a∗(θ, z) = z −ε(2)

ε(2)
cosθ−δ z

ε(2)
ln

[
sin2θ+ z

ε(2)
cos2θ

]
cosθ+O(δ2), (36)

while the former is given by

h0(z) = z2 −ε(2)2

2ε(2)
and h1(z) = z2 −ε(2)2

4ε(2)
− z2 +ε(2)2

2ε(2)
ln

(
z +ε(2)

2ε(2)

)
. (37)

In this last expression, use has been made of the integrals (49). Introducing (37)1 into (35)1 and
evaluating the integral we obtain

ε̃0 −ε(2)

ε̃0 +ε(2)

ε(1) +ε(2)

ε(1) −ε(2)
= c. (38)

The solution to this equation for the linear effective conductivity ε̃0 agrees exactly with (3). In
turn, introducing (37) and (38) into (35)2 and evaluating the integral we obtain an expression that
agrees exactly with expression (24) for ε̃1. In conclusion, these infinite-rank laminates exhibit the
same effective response as the CCAs of the previous section not only when the phases exhibit
linear behavior but also when the phases exhibit weakly nonlinear behavior of the power-law
type (to first order in the nonlinearity perturbation parameter δ). The fact that the same weakly
nonlinear conductivity is displayed by the infinite-rank laminates as for the CCAs suggests that
the effective parameter ε̃1 may be only modestly sensitive to microgeometrical details (as is the
case for the effective parameter ε̃0 for linear composites).
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5. Estimates for weakly nonlinear composites based on linear comparison composites

This section provides the relevant formulas for the various nonlinear homogenization estimates
considered in this work, after being specialized to weakly nonlinear, power-law, composite
conductors in two dimensions. In all cases, the effective properties of the LCC are determined
via the estimates of [5] for two-phase composite conductors (specialized to 2D). Therefore, all
the nonlinear estimates recover the exact conductivity of the CCA of the previous section when
the phases exhibit a linear response.

First, it is recalled that variational (VAR) bounds of the HS type for two-phase nonlinear
conductors have been given by Ponte Castañeda [27]. Expressions for the VAR bounds for weakly
nonlinear composites were obtained by Ponte Castañeda [43] for general nonlinear correction
w (r ), which can be specialized for power-law conductors by means of expression (9)2 for w (r ).
The form of the resulting correction ε̃1 for general two-phase composites is somewhat too
cumbersome to include here and it will simply be noted that the result does not recover the
exact result for the CCA given by expression (24), although of course it still provides a bound.
For the special case when the inclusions are assumed to be perfectly insulating (ε(1) → 0), the
result for the effective nonlinear conductivity (for power-law behavior) simplifies considerably to
the expression

ε̃VAR

ε(2)
= 1− c

(1+ c)(m+1)/2
, (39)

while the corresponding result for the weakly nonlinear correction reduces to

ε̃VAR
1

ε(2)
=−1

2

1− c

1+ c
ln(1+ c), (40)

which is indeed seen to be different from the corresponding exact expression (25)2 for the CCA.
Next, it is recalled that the TSO estimates for nonlinear composite conductors were given by

Ponte Castañeda [44]. Two different results were obtained depending on whether one starts with
the primal formulation (w̃), as given by (2), or by the dual formulation obtained by means of the
Legendre transformation (ũ = w̃∗). The result for the primal formulation (w̃) is given by

ε̃TSO =
2∑

r=1
c(r )ε(r )

[
E (r )(1+m) + 1+m

2
E (r )m(1−E (r ))

]
, (41)

where cE (1) + (1− c)E (2) = 1 and E (2) is solution to

1− ε(1)

ε(2)

1− (1− c)E (2)

(cE (2))m
= 1−E (2)

cE (2)

p
m. (42)

The solution to this equation admits the following asymptotic expansion in the small parameter
δ= m −1:

E (2) = ε(1) +ε(2)

(ε(1) +ε(2))− c(ε(1) −ε(2))
+δ c

2

ε(2) −ε(1) −4ε(1) ln
[
ε(1)+ε(2)

2

]

[(ε(1) +ε(2))− c(ε(1) −ε(2))]2
ε(2) +O(δ2). (43)

Upon introducing this expression into (41) and expanding in δ, it can be verified that the TSO
estimate reproduces the exact correction ε̃1 for the conductivity of the weakly nonlinear CCA,
as given (24). The corresponding result for the dual formulation (ũ) is similar in form to the
above result for the primal (w̃) formulation and will not be repeated here, for brevity. However,
it should be noted that while the primal and dual TSO estimates are not identical (i.e., there is a
duality gap), it can be shown that the dual formulation also leads to the exact result for the weakly
nonlinear correction ε̃1 of the CCA.

Finally, we consider the FOSO estimates of [36]. The FOSO method—like the VAR method—
does not have a duality gap, but the final form of the estimate depends on the formulation (primal
or dual). In fact, the initial form of the potentials for the LCC in the primal (w̃) and dual (ũ)
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formulations were chosen by Ponte Castañeda [36] to be slightly inconsistent, for simplicity of the
calculations, and as a consequence of this “nonsymmetric” choice of the LCC, the FOSO delivers
two different sets of estimates depending on whether the derivation is based on electric field
potentials (w), giving rise to the FOSO(W) formulation, or on the current density potentials (u),
giving rise to the so-called FOSO(U) formulation. In spite of the inconsistency in the predictions
of the two formulations, which is due to the lack of symmetry in the form of the energy potential
of the LCC, it should be emphasized that both formulations are fully consistent and do not exhibit
a duality gap. By using a more symmetric choice for the potential of the LCC, Furer and Ponte
Castañeda [38] proposed a “symmetric” version of the FOSO method, which predicts the same
effective response whether one starts from the primal (w̃) or dual (ũ) formulations. As will be
seen below, all three formulations deliver the same estimates in the weakly nonlinear limit.

Since the expressions for the different versions of the FOSO estimates are a bit complicated, we
will consider here only the case of perfectly insulating inclusions (ε(1) → 0), which corresponds to
the case of infinite heterogeneity contrast (recall that the results are exact to second order in the
heterogeneity contrast) and should be representative of more general cases. The expressions for
general nonlinearity are provided in Appendix B. As already mentioned, in the weakly nonlinear
limit, all three estimates are identical to first order in δ= m −1 with correction given by

ε̃FOSO
1

ε(2)
=−1− c

1+ c
ln(1+ c)+ (1− c)

2(1+ c)2 [(1−α) ĵ 2 ln( ĵ 2)+α ǰ 2 ln( ǰ 2)], (44)

where

ĵ 2 = (1−α)

(
1+

p
2c

√
α

1−α + αc

1−α

)
, ǰ 2 =α

(
1−

p
2c

√
1−α
α

+ (1−α)c

α

)
(45)

and where α corresponds to a certain weight factor usually set equal to 1/2.

6. Results and discussion

The exact results derived in Section 3 for CCAs exhibiting weak power-law nonlinearity are
now exploited to assess in more detail the capabilities of the various homogenization estimates
of Section 5. (Since the corresponding results of Section 4 for the infinite-rank laminates are
identical to the results for CCAs, it will not be necessary to refer to those results explicitly in
this section, although the fact that they are identical should of course be kept in mind.) We
begin by recalling that both versions (primal and dual) of the TSO estimates reproduce the exact
result for any volume fraction and heterogeneity contrast. Thus, these estimates are found to
be asymptotically exact not only for weakly heterogeneous systems—to second order in the
contrast—but also for weakly nonlinear systems—to first order in the nonlinearity parameter
δ = m −1. However recomforting, this observation is not necessarily expected to hold for more
general weakly nonlinear systems.

We now focus on the VAR and FOSO estimates, which—unlike the TSO estimates—do not
reproduce the exact nonlinear correction ε̃1 on the effective conductivity. However, it is recalled
that the VAR estimate provides a lower bound for ε̃1, while the various versions of the FOSO
reduce to the same identical result for ε̃1 and depend on a certain weight factor α. Figure 1
provides plots of these estimates for the case of perfectly insulating inclusions, along with the
exact result. For the FOSO estimates, three different values of the parameterα are considered (α=
0.25,0.5,0.75). Part (a) displays plots of the nonlinear correction ε̃1 as a function of the inclusion
volume fraction c, normalized by the matrix conductivity ε(2). Among all these estimates, the
VAR estimate is found to be the least accurate. This is related to the fact that the VAR estimate
actually provides rigorous bounds for the effective conductivity of all composites with statistically
isotropic microstructures—including for the CCAs. However, as shown recently by Furer and
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Figure 1. (a) Exact result and corresponding estimates for the weakly nonlinear correction
ε̃1 as a function of inclusion volume fraction c, normalized by the matrix conductivity ε(2).
(b) The value of α for which the FOSO estimate for ε̃1 reproduces the exact result.

Ponte Castañeda [45], the VAR bounds also hold for microstructures that, while isotropic in the
linear case, are anisotropic in the nonlinear case. Thus the VAR estimate provides an upper
bound on the dissipation potential, which translates into a lower bound on the correction ε̃1.
The FOSO estimates are seen to comply with this bound for the three values of α considered.
Interestingly, the FOSO predictions are seen to be asymmetric about α= 0.5. Of the three values
of α considered, α = 0.5 is found to generate the most accurate predictions. Moreover, these
predictions are quite close to the exact result for the entire range of inclusion volume fraction.
A comparison of the analytical expressions for the exact result and the FOSO estimates with
arbitrary α reveals that the FOSO estimate reproduces the exact result if α is chosen to satisfy
the equation

2c = (1−α)

(
1+

p
2c

√
α

1−α + αc

1−α

)
ln

(
1+

p
2c

√
α

1−α + αc

1−α

)

+α
(

1−
p

2c

√
1−α
α

+ (1−α)c

α

)
ln

(
1−

p
2c

√
1−α
α

+ (1−α)c

α

)
. (46)

The solution to this equation is plotted in Figure 1(b) as a function of the volume fraction of
inclusions c. While clearly dependent on c, this “optimal” value of α is seen to be very close to
the value α= 0.5 advocated by Furer and Ponte Castañeda [38] based on comparisons with other
estimates. In fact, it can be verified that the value α = 0.5 leads to the exact asymptotic result,
ε̃1/ε(2) ∼−c2/2, in the dilute limit (c ¿ 1). These observations for an infinitely contrasted system,
and the fact that the FOSO estimates are exact for weakly contrasted systems to second order,
suggest that the use of α = 0.5 for general material systems provides a reasonable compromise
between accuracy and simplicity.

Next, the influence of α on the FOSO predictions for strongly nonlinear power-law assem-
blages is considered. Thus, Figure 2 shows results for the effective conductivity ε̃, as a function of
nonlinearly m, for a fixed value of c = 0.2. For comparison purposes, results are included for the
three different versions of the FOSO methods—nonsymmetric FOSO(U) and FOSO(W) [36] and
symmetric FOSO [38]—as well as the VAR bounds, the two versions of the TSO estimates (TSO(U)
and TSO(W)) and the exact weakly nonlinear limit to first order in δ= m−1 (and therefore linear
in m). The pairs of Figures 2(a) and (b) and Figures 2(c) and (d) show, respectively, the effective
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Figure 2. Estimates for the effective conductivity with α equal to (a, b) 0.5 and (c, d) the
value for which the FOSO method gives the exact correction (α ≈ 0.5178). Results are
presented as a function of the nonlinear m, for a fixed volume fraction c = 0.2 of the
perfectly insulating phase.

conductivity for both the entire range of nonlinearities (left column), as well as zoomed-in ver-
sions for weak nonlinearities (right column), for α= 0.5 (top row) and the value of α (α≈ 0.5178)
for which the FOSO estimate recovers the exact result in the weakly nonlinear limit (bottom row).
It is noted that the order in which the different methods appear in each legend corresponds to the
order in which the values predicted by the various methods at m = 0 also appear. In particular,
the topmost entry in the legend is the method predicting the largest value of the effective con-
ductivity at m = 0, while the bottom-most entry in the legend is the method predicting the small-
est value at m = 0. As was remarked by Furer and Ponte Castañeda [38], the symmetric FOSO es-
timate always lies somewhere between the FOSO(U) and FOSO(W) estimates, with a maximum
difference of about 5% between the symmetric and nonsymmetric versions for m = 0. Moreover,
the effect of changing α on the various FOSO predictions is relatively minor; for example, as can
be seen in Figures 2(a) and (c), the symmetric FOSO method predicts a value of the effective con-
ductivity for m = 0 slightly above 0.65 whenα= 0.5, while it gives a value slightly below 0.65 when
α≈ 0.5178. On the other hand, the TSO estimates, which are independent of any weight factors,
are very close for values of m between 0.5 and 1, but diverge dramatically in the strongly non-
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linear limit as m approaches zero. In fact the TSO(U) violates the upper bound provided by the
VAR estimates for values of m less than about 0.04. In addition, it is seen in Figure 2(a) that the
FOSO(U) method and the TSO(W) method are rather close for values of 0.5 ≤ m ≤ 1, while, in
Figure 2(c), this agreement continues up to m ≈ 0.2. In fact, the FOSO(U) estimate crosses above
the TSO(W) estimate for 0.3 < m < 1 in Figure 2(a) for α = 0.5, but remains always below it in
Figure 2(c) when α≈ 0.5178.

The magnified results in Figures 2(b) and (d) show more clearly the effect of the choice of
α on the comparisons of the FOSO estimates with the other estimates. As expected, the two
TSO estimates, which give the exact weakly nonlinear behavior, lie tangent to the first-order
approximation in the limit as m → 1 in both figures. On the other hand, the various FOSO
estimates only do so for α≈ 0.5178, as can be seen in Figure 2(d). In fact, consistent with earlier
observations for this value of α, it can also be seen in Figure 2(d) that the FOSO(U) and TSO(W)
estimates appear to agree, as do the FOSO(W) and TSO(U) estimates, even for nonlinearities up
to m = 0.8, again with the symmetric FOSO lying roughly in between the two sets of estimates.
Finally, also consistent with earlier observations, all the estimates are seen to be significantly
lower than the VAR bound. Again, this can be explained by the fact that the VAR bound must hold
for certain nonlinearly anisotropic microstructures, including the finite-rank microstructures
attaining the corresponding linear bounds [45].

7. Closing remarks

This paper provides exact asymptotic estimates for weakly nonlinear power-law composite con-
ductors with CCA and infinite-rank laminated microstructures. It is known that both of these mi-
crostructures attain exactly the 2-D HS bounds [5], when the material behavior is linear. The ob-
jective of this work is to test more general estimates obtained by various nonlinear homogeniza-
tion methods making use of corresponding estimates for LCCs against these exact results in or-
der to assess their accuracy and capabilities. The first finding is that the TSO estimates of the HS
type [44] agree to first order in the nonlinearity parameter with the exact asymptotic result. How-
ever, this surprising result has been found (details not presented in this paper) not to carry over
to the corresponding 3-D conductivity results, and may therefore be little more than a coinci-
dence. Indeed, it is known that the TSO method performs poorly for strongly nonlinear behavior,
as a consequence of the fact that it neglects the effect of the field fluctuations which become very
significant in the strongly nonlinear limit. In particular, the TSO estimates are known to exhibit
a duality gap that increases from zero in the weakly nonlinear limit to very large values in the
strong nonlinear limit.

For these reasons, improved FOSO estimates have been proposed [36], which make use of
both the first and second moments of the field fluctuations in the linearization procedure, albeit
at the expense of having to introduce certain weight factors α (corresponding to weights of the
multiple stationary points of the error function in the LCC methods) in order to ensure that
the resulting estimates do not exhibit duality gaps. Nonetheless, they have the added advantage
that they allow the estimation of the macroscopic behavior, as well as of the first and second
moments of the field statistics, directly from the corresponding estimates for the LCC. The second
important finding of this work is that the FOSO estimates depend on the weight factors even in
the weakly nonlinear limit. However, the FOSO can be made to be consistent with the weakly
nonlinear limit for an appropriate choice of the weight factor α. More importantly, the resulting
value for α, at least in this very special case, is found to be very close to 1/2, which is the value
initially proposed by Ponte Castañeda [36], and found to provide reasonably accurate estimates
also by Furer and Ponte Castañeda [38] in other situations. In fact, the choice α = 1/2 for the
FOSO delivers the exact result for the weakly nonlinear correction to the effective conductivity
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in the limit of dilute concentrations of perfectly conducting particles. Consequently, the choice
of 1/2 for the weight factors α is recommended more generally, at least until this issue is better
understood (see also [46]).

The third significant finding is that the VAR bounds of the HS type [27]—while still rigorous
bounds for weakly nonlinear composites—are not exact to first order in the nonlinearity param-
eter. However, this result is not surprising in view of recent findings by Furer and Ponte Cas-
tañeda [45] showing that the VAR bound of the HS type, which makes use of the HS bounds for
the corresponding LCC, must include microstructures that, while isotropic for linear material be-
havior, can be anisotropic when used for nonlinear composites. In fact, it was shown by Furer
and Ponte Castañeda [45] that the same finite-rank sequential laminates that have been shown
to attain the HS bounds in the linear case [2], also attain the VAR bounds of the HS type for certain
special loadings.

Finally, it was also shown that the estimates of [15] for infinite-rank sequential laminates
coincide with the corresponding exact results for the weakly nonlinear CCA microstructures—
to first order in the nonlinearity parameter. In fact, we have recently verified that this is also
true in 3D conductivity, where the effective properties of the composite sphere assemblage (CSA)
and isotropic infinite-rank laminates agree to first order in the nonlinearity parameter. (Details
are not shown here for brevity.) In any case, this final result seems to suggest that the effective
behavior of weakly nonlinear composites should be relatively insensitive to the specific type
of particulate microstructure involved, just as for linear composites where the CCA/CSA and
sequential laminates (of various ranks) lead to identical macroscopic response.
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Appendix A. Integration in the weakly nonlinear constant (22)

The integration over the angular variable θ in the second term of the right-hand side of (22)
requires the evaluation of

∫ 2π

0

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]
ln

[(
a2 −

b2

r 2

)2

cos2θ+
(

a2 +
b2

r 2

)2

sin2θ

]
dθ. (47)

Making use of standard identities for squared trigonometric functions in the argument of the
logarithm, this expression can be written as

(
a2 −

b2

r 2

)2 ∫ 2π

0
cos2θ ln

[
a2

2 −2a2
b2

r 2 cos(2θ)+
(

b2

r 2

)2]
dθ

+
(

a2 +
b2

r 2

)2 ∫ 2π

0
sin2θ ln

[
a2

2 −2a2
b2

r 2 cos(2θ)+
(

b2

r 2

)2]
dθ. (48)

The two integrals in this expression can be evaluated by noting that for ri ≤ r ≤ ro the ratio
|b2/r 2/a2| < 1, see expressions (16) and (17), and by invoking the integrals (see integrals 4.397-14
4.397-15 in [47])∫ π/2

0
cos2θ ln

[
1+2a cos(2θ)+a2] dθ =−

∫ π/2

0
sin2θ ln

[
1+2a cos(2θ)+a2] dθ = πa

4
(49)

for |a| < 1. Thus, the integral (48) is

2π

[
a2

2 +
(

b2

r 2

)2]
ln a2

2 +4π

(
b2

r 2

)2

. (50)
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In view of this last expression, the second term of the right-hand side of (22) is given by

ε(2)

2

1

πr 2
o

∫ ro

ri

2π

{[
a2

2 +
(

b2

r 2

)2]
ln a2

2 +2

(
b2

r 2

)2}
r dr

= ε(2)

2

∫ 1

c

{[
a2

2 +
(

b2

r 2
o

)2

z−2
]

ln a2
2 +2

(
b2

r 2
o

)2

z−2
}

dz

= ε(2)(1− c)

[
a2

2 ln |a2|+ c(1+ ln |a2|)
(

b2

r 2
i

)2]
. (51)

Appendix B. Fully optimized second-order estimates for power-law conductors with
perfectly insulating inclusions

For the case of perfectly insulating inclusions considered here, the dual (ũ) formulation is
the easiest to work with and therefore we start with the FOSO(U) version. We then give the
corresponding results for the symmetric FOSO version, which is similar in form. Finally, the
results of the FOSO(W) version, which makes use of the more complex primal (w̃) formulation,
is given.

FOSO(U) version. Converting the results of [36] for 2-D viscoplastic composites with porous
inclusions to the mathematically analogous case of 2-D power-law conductors with perfectly
insulating inclusions, it is found that the effective conductivity ε̃FOSO, defined by (10), is given
by

ε̃FOSO

ε(2)
= (1− c)

[
stat

k
{(1−α) ĵ n+1 +α ǰ n+1}

]−1/n

= (1− c)

[
stat

k
f (k(n),n)

]−1/n

, (52)

where n = 1/m and

ĵ =
√

ĵ 2
∥ + ĵ 2

⊥, ǰ =
√

ǰ 2
∥ + ǰ 2

⊥,

ĵ∥ = 1+
√

α

1−α

√
c

2
k1/4, ǰ∥ = 1−

√
1−α
α

√
c

2
k1/4,

ĵ⊥ =
√

α

1−α

√
c

2
k−1/4, ǰ⊥ =−

√
1−α
α

√
c

2
k−1/4. (53)

In addition, k = k(n) is the anisotropy ratio of the LCC, and the optimal value k∗ is determined as
a solution to the equation

∂ f (k∗(n),n)

∂k
= 0. (54)

Then, letting k = k∗(n), as determined by the stationarity condition (54), and making use of the
fact that ∂/∂m =−m−2(∂/∂n), where n = 1/m, it is found that

ε̃1
FOSO

ε(2)
= ∂

∂m

ε̃FOSO

ε(2)
= (1− c)

∂

∂m
[ f (k∗(n),n)]−1/n

= − (1− c)

m2

∂

∂n
[ f (k∗,n)]−1/n

= − (1− c)

m2 [ f (k∗,n)]−1/n
[

log( f (k∗,n))

n2

− 1

n f (k∗,n)

(
∂ f (k∗,n)

∂k

∂k∗

∂n
+ ∂ f (k∗,n)

∂n

)]
. (55)
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Note that the derivative with respect to n in the last line is taken with k∗ held fixed, while the
term (∂ f (k∗,n))/∂k vanishes on account of (54). Using the fact that k∗(1) = 1 and f (1,1) = (1+c),
it follows that

ε̃FOSO
1

ε(2)
= ∂

∂m

ε̃FOSO

ε(2)

∣∣∣∣
m=1

= (1− c)

(1+ c)2 [(1−α) ĵ 2 log( ĵ )+α ǰ 2 log( ǰ )]− 1− c

1+ c
log(1+ c), (56)

where ĵ and ǰ are given as in (53), with k = 1.

Symmetric FOSO version. The symmetric FOSO version is also given (see [38] for details) by an
expression of the form (52), with ĵ∥ and ǰ∥ as given in (53), but with ĵ⊥ and ǰ⊥ obtained as the
solution of equations

ĵ⊥ ǰ⊥(( ĵ∥− ǰ∥)+k(1−2α)( ĵ∥+ ǰ∥))−2k((1−α) ǰ∥ ĵ 2
⊥−α ĵ∥ ǰ 2

⊥) = 0, (57)

4α(1−α) ĵ⊥ ǰ⊥+ (1−2α)
(
(1−α) ĵ 2

⊥−α ǰ 2
⊥
)+ c

2
p

k
= 0, (58)

and chosen in just a way that ǰ⊥ < ĵ⊥. Then, following the same procedure as above, and noting
that in this context, when k = 1, the expressions for ĵ⊥ and ǰ⊥ using the symmetric FOSO method
is the same as those for the FOSO(U) method, we conclude that they will give the same first-order
correction, given by (56).

FOSO(W) version. The implementation of the FOSO(W) version makes use of the primal (w̃)
formulation, which we spell out next and is a bit more complicated, as the average electric
field in the phases are unknown. Nonetheless, it can be shown that an estimate for the effective
conductivity can equivalently be estimated via

ε̃FOSO

ε(2)
= (1− c) stat

k,E
(2)

{(1−α)Ê m+1 +αĚ m+1}

= (1− c) stat
k,E

(2)
g (k(m),E

(2)
(m),m), (59)

where E
(2)

is the average electric field in the matrix phase. The optimal values of k∗ and E
(2)∗

are
then determined via the equations

∂g (k∗,E
(2)∗

,m)

∂k
= 0,

∂g (k∗,E
(2)∗

,m)

∂E
(2)

= 0. (60)

As above, the form of g (k,E
(2)

,m) is different depending on whether one uses the FOSO(W)
method or the symmetric FOSO method. In the former case, we have

Ê =
√

Ê 2
∥ + Ê 2

⊥, Ě =
√

Ě 2
∥ + Ě 2

⊥,

Ê∥ = E
(2) − (E

(2) −1)

√
α

1−α
k−1/4

p
2c

, Ě∥ = E
(2) + (E

(2) −1)

√
1−α
α

k−1/4

p
2c

,

Ê⊥ =−(E
(2) −1)

√
α

1−α
k1/4

p
2c

, Ě⊥ = (E
(2) −1)

√
1−α
α

k1/4

p
2c

, (61)

while in the latter case, Ê∥ and Ě∥ are the same, while Ê⊥ and Ě⊥ are again related through

Ê⊥Ě⊥(k(Ê∥− Ě∥)+ (1−2α)(Ê∥+ Ě∥))−2((1−α)Ě∥Ê 2
⊥−αÊ∥Ě 2

⊥) = 0, (62)

4α(1−α)Ê⊥Ě⊥+ (1−2α)((1−α)Ê 2
⊥−αĚ 2

⊥)+ (E (2) −1)2

p
k

2c
= 0, (63)

and chosen so that Ě⊥ < Ê⊥.
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Once again, when m = 1, so that k = 1, the expressions are the same whether one uses the

FOSO(W) or symmetric FOSO method. Moreover, using the fact that E
(2)∗

(1) = (1+ c)−1, it can
be shown that the FOSO(W) version leads to the same correction ε̃1 as the FOSO(U) version, as
given by (56).

References

[1] J. C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, UK, 1873.
[2] L. Tartar, “Estimations fines des coefficients homogénéisés”, in Ennio de Giorgi Colloquium (P. Krée, ed.), Research

Notes in Math., vol. 125, Pitman Publishing Ltd., London, 1985, p. 168-187.
[3] G. Francfort, F. Murat, “Homogenization and optimal bounds in linear elasticity”, Arch. Ration. Mech. Anal. 94 (1986),

p. 307-334.
[4] A. B. Movchan, S. K. Serkov, “The Pólya-Szegó matrices in asymptotic models of dilute composites”, Eur. J. Appl.

Math. 8 (1997), p. 595-621.
[5] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase

materials”, J. Appl. Phys. 33 (1962), p. 3125-3131.
[6] K. Schulgasser, “Sphere assemblage model for polycrystals and symmetric materials”, J. Appl. Phys. 54 (1983),

p. 1380-1382.
[7] P. Gilormini, “Realizable compressibility and conductivity in isotropic two-phase composites”, C. R. Acad. Sci. Paris

IIb–Mech. 329 (2001), p. 851-855.
[8] G. W. Milton, S. K. Serkov, “Neutral coated inclusions in conductivity and anti-plane elasticity”, Proc. R. Soc. Lond. A

457 (2001), p. 1973-1997.
[9] A. M. Dykhne, “Conductivity of a two-dimensional two-phase system”, Zh. Eksp. Teor. Fiz. 59 (1970), p. 110-115.

[10] V. L. Berdichevskii, “Heat conduction of checkerboard structures”, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 40 (1985),
p. 56-63.

[11] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielek-
trizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen”, Ann. Phys. 416 (1935), p. 636-
664.

[12] M. Avellaneda, “Optimal bounds and microgeometries for elastic two-phase composites”, SIAM J. Appl. Math. 47
(1987), p. 1216-1228.

[13] M. I. Idiart, “Multiphase conductors realizing Aleksandrov’s mean”, SIAM J. Appl. Math. 76 (2016), p. 1792-1798.
[14] I. Harriton, G. deBotton, “The nearly isotropic behaviour of high-rank nonlinear sequentially laminated compos-

ites”, Proc. R. Soc. Lond. A 459 (2003), p. 157-174.
[15] M. I. Idiart, “Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates”,

J. Mech. Phys. Solids 56 (2008), p. 2599-2617.
[16] G. Francfort, P. Suquet, “Duality relations for nonlinear incompressible two-dimensional elasticity”, Proc. R. Soc.

Edinb. 131A (2001), p. 351-369.
[17] J. M. Duva, “A self-consistent analysis of the stiffening effect of rigid inclusions on a power-law material”, J. Eng.

Mater. Technol. 106 (1984), p. 317-321.
[18] O. Lopez-Pamies, “An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids”, J. Appl.

Mech. 77 (2010), article no. 021016.
[19] X. C. Zeng, D. J. Bergman, P. M. Hui, D. Stroud, “Effective medium theory for weakly nonlinear composites”, Phys.

Rev. B 38 (1988), p. 10970-10973.
[20] O. Levy, D. J. Bergman, “Weakly nonlinear composites of random composites: a series expansion approach”, J. Statist.

Phys. 82 (1995), p. 1327-1344.
[21] O. Levy, R. V. Kohn, “Duality relations for non-ohmic composites, with applications to behavior near percolation”,

J. Statist. Phys. 90 (1998), p. 159-189.
[22] Y. P. Pellegrini, “Field distributions and effective-medium approximation for weakly nonlinear media”, Phys. Rev. B

61 (2000), p. 9365-9372.
[23] J. R. Willis, “The overall response of composite materials”, ASME J. Appl. Mech. 50 (1983), p. 1202-1209.
[24] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the elastic behavior of multiphase materials”,

J. Mech. Phys. Solids 11 (1963), p. 127-140.
[25] D. R. S. Talbot, J. R. Willis, “Variational principles for inhomogeneous nonlinear media”, IMA J. Appl. Math. 35 (1985),

p. 39-54.
[26] P. Ponte Castañeda, “The effective mechanical properties of nonlinear isotropic composites”, J. Mech. Phys. Solids 39

(1991), p. 45-71.
[27] P. Ponte Castañeda, “Bounds and estimates for the properties of nonlinear heterogeneous systems”, Phil. Trans. R.

Soc. Lond. A 340 (1992), p. 531-567.

C. R. Mécanique, 2020, 348, n 10-11, 893-909



Joshua Furer et al. 909

[28] P. Suquet, “Overall potentials and extremal surfaces of power law or ideally plastic materials”, J. Mech. Phys. Solids
41 (1993), p. 981-1002.

[29] P. Gilormini, “A shortcoming of the classical nonlinear extension of the self-consistent model”, C. R. Acad. Sci. Paris
IIb–Mech. 320 (1995), p. 115-122.

[30] R. Hill, “Continuum micro-mechanics of elastoplastic polycrystals”, J. Mech. Phys. Solids 13 (1965), p. 89-101.
[31] J. W. Hutchinson, “Bounds and self-consistent estimates for creep of polycrystalline materials”, Proc. R. Soc. Lond. A

348 (1976), p. 101-127.
[32] E. Kröner, “Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls”, Z. Phys. 151

(1958), p. 504-518.
[33] P. Suquet, “Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte

Castañeda’s nonlinear variational procedure”, C. R. Acad. Sci. Paris II 320 (1995), p. 563-571.
[34] P. Suquet, P. Ponte Castañeda, “Small-contrast perturbation expansions for the effective properties of nonlinear

composites”, C. R. Acad. Sci. Paris II 317 (1993), p. 1515-1522.
[35] P. Ponte Castañeda, “Exact second-order estimates for the effective mechanical properties of nonlinear composites”,

J. Mech. Phys. Solids 44 (1996), p. 827-862.
[36] P. Ponte Castañeda, “Stationary variational estimates for the effective response and field fluctuations in nonlinear

composites”, J. Mech. Phys. Solids 96 (2016), p. 660-682.
[37] M. I. Idiart, P. Ponte Castañeda, “Field statistics in nonlinear composites. I. Theory”, Proc. R. Soc. A 463 (2007), p. 183-

202.
[38] J. Furer, P. Ponte Castañeda, “A symmetric fully optimized second-order method for nonlinear homogenization”,

Z. Angew. Math. Mech. 98 (2018), p. 222-254.
[39] J. R. Willis, “Variational estimates for the overall response of an inhomogeneous nonlinear dielectric”, in Homoge-

nization and Effective Moduli of Materials and Media (J. L. Ericksen et al., eds.), Springer-Verlag, New York, 1986,
p. 247-263.

[40] P. Ponte Castañeda, P. Suquet, “Nonlinear composites”, Adv. Appl. Mech. 34 (1998), p. 171-302.
[41] G. W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, UK, 2002.
[42] M. I. Idiart, P. Ponte Castañeda, “Estimates for two-phase nonlinear conductors via iterated homogenization”, Proc.

R. Soc. A 469 (2013), article no. 20120626.
[43] P. Ponte Castañeda, G. deBotton, G. Li, “Effective properties of nonlinear inhomogeneous dielectrics”, Phys. Rev. B

46 (1992), p. 4387-4394.
[44] P. Ponte Castañeda, M. Kailasam, “Nonlinear electrical conductivity in heterogeneous media”, Proc. R. Soc. Lond. A

453 (1997), p. 793-816.
[45] J. Furer, P. Ponte Castañeda, “On the optimality of the variational linear comparison bounds for porous viscoplastic

materials”, J. Mech. Phys. Solids 138 (2020), article no. 103898.
[46] J. C. Michel, P. Suquet, “Effective potentials in nonlinear polycrystals and quadrature formulae”, Proc. R. Soc. Lond.

A 473 (2017), article no. 20170213.
[47] I. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, London, UK, 1994.

C. R. Mécanique, 2020, 348, n 10-11, 893-909





Comptes Rendus
Mécanique
2020, 348, n 10-11, p. 911-935
https://doi.org/10.5802/crmeca.51

Contributions in mechanics of materials

Mechanical dissimilarity of defects in welded

joints via Grassmann manifold and machine

learning

David Ryckelynck ∗, a, Thibault Goesselb and Franck Nguyena

a Mines ParisTech PSL University, Centre des Matériaux, Evry, France
b Mines ParisTech PSL University, France

E-mails: david.ryckelynck@mines-paristech.fr (D. Ryckelynck),
thibault.goessel@mines-paristech.fr (T. Goessel), franck.nguyen@mines-paristech.fr
(F. Nguyen)

Abstract. Assessing the harmfulness of defects based on images is becoming more and more common in
industry. At present, these defects can be inserted in digital twins that aim to replicate in a mechanical model
what is observed on a component so that an image-based diagnosis can be further conducted. However, the
variety of defects, the complexity of their shape, and the computational complexity of finite element models
related to their digital twin make this kind of diagnosis too slow for any practical application. We show that
a classification of observed defects enables the definition of a dictionary of digital twins. These digital twins
prove to be representative of model-reduction purposes while preserving an acceptable accuracy for stress
prediction. Nonsupervised machine learning is used for both the classification issue and the construction
of reduced digital twins. The dictionary items are medoids found by a k-medoids clustering algorithm.
Medoids are assumed to be well distributed in the training dataset according to a metric or a dissimilarity
measurement. In this paper, we propose a new dissimilarity measurement between defects. It is theoretically
founded according to approximation errors in hyper-reduced predictions. In doing so, defect classes are
defined according to their mechanical effect and not directly according to their morphology. In practice,
each defect in the training dataset is encoded as a point on a Grassmann manifold. This methodology is
evaluated through a test set of observed defects totally different from the training dataset of defects used to
compute the dictionary of digital twins. The most appropriate item in the dictionary for model reduction
is selected according to an error indicator related to the hyper-reduced prediction of stresses. No plasticity
effect is considered here (merely isotropic elastic materials), which is a strong assumption but which is not
critical for the purpose of this work. In spite of the large variety of defects, we provide accurate predictions of
stresses for most of defects in the test set.

Résumé. L’évaluation de la nocivité des défauts à partir d’images est de plus en plus courante dans l’industrie.
Aujourd’hui, ces défauts peuvent être insérés dans des jumeaux numériques qui visent à reproduire dans
un modèle mécanique ce qui est observé sur un composant. Ainsi, un diagnostic à partir d’image peut
être mis en place. Mais la variété des défauts, la complexité de leur forme et la complexité de calcul des
modèles d’éléments finis liés à leur jumeau numérique, rendent ce type de diagnostic trop lent pour toute
application pratique. Nous montrons dans cet article qu’une classification des défauts observés permet de
définir un dictionnaire des jumeaux numériques. Ces jumeaux numériques se révèlent représentatifs pour
la réduction de modèle, tout en conservant une précision acceptable pour la prévision des contraintes. Un
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apprentissage automatique non supervisé est utilisé à la fois pour la question de la classification et pour la
construction de jumeaux numériques réduits. Les éléments du dictionnaire sont des médoïdes trouvés par
l’algorithme de partitionnement k-médoïdes. Les médoïdes sont censés être bien répartis dans l’ensemble
des données d’entraînement, selon une métrique ou une mesure de dissimilitude. Dans cet article, nous
proposons une nouvelle mesure de dissimilitude entre les défauts. Elle est fondée théoriquement sur les
erreurs d’approximation des prévisions hyperréduites. Ce faisant, les classes de défauts sont définies en
fonction de leur effet mécanique et non directement en fonction de leur morphologie. En pratique, chaque
défaut de l’ensemble de données d’entraînement est encodé comme un point sur une variété de Grassmann.
Cette méthodologie est évaluée au moyen d’un ensemble de défauts tests totalement différents de l’ensemble
de données d’apprentissage utilisé pour calculer le dictionnaire des jumeaux numériques. L’élément le plus
approprié du dictionnaire, pour la réduction du modèle, est sélectionné en fonction d’un indicateur d’erreur
lié à la prévision hyperréduite des contraintes. Aucun effet de plasticité n’est considéré ici (simplement des
matériaux élastiques isotropes), ce qui est une hypothèse forte mais qui n’est pas critique pour l’objectif de
ce travail. Malgré la grande variété de défauts, nous montrons des prévisions précises des contraintes pour la
plupart des défauts de l’ensemble de test.

Keywords. Data encoding, Hyper-reduction, Reduced order model, ROM-net, Taxonomy of defects, Com-
puter vision.

Mots-clés. Encodage de données, Hyper-réduction, Réduction d’ordre de modèles, ROM-net, Taxonomie de
défauts, Vision par ordinateur.
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1. Introduction

Mechanical modeling based on images is becoming increasingly important in material science
and in industrial applications for the assessment of harmfulness of defects. The early detection of
defects in industrial processes has been studied for more than a decade. In fact, in 2011, scientists
tried to improve the efficiency of early fault detection on gears, which are critical in many
machinery operations [1]. Moreover, nondestructive inspection techniques are able to detect
and locate voids for a wide range of materials and welding processes: resistance seam welding of
aluminum, zinc, and galvanized steel [2]; resistance spot welding of ferritic/martensitic steels [3];
electron beam welding of steel to Fe–Al alloy [4]; laser welding of stainless steels [5] and aluminum
alloys [6].

Here, machine learning enhances the value of data related to defects observed in the past if
these data are available in a memory storage system. In the framework of image-based diagnosis,
machine learning aims to consider the following assertion: if two defects are similar, they have
equivalent harmfulness. Accounting for this similarity should facilitate the prediction of the
harmfulness of new defects by using a training dataset of defects. The purpose of this paper
is to sample a training dataset of defects so that a set of representative defects is defined. The
representative defects are assumed to be well distributed in the training dataset according to
an appropriate metric. This metric classifies defects according to the displacement fluctuations
they cause around them. Here, the sets of both experimental data and simulation data, related
to the representative defects, define a dictionary of digital twins. This dictionary contains the
simulation data for the construction of local reduced order bases [7] in the nonparametric space
of the observed defect. Section 2 presents a schematic view of these ideas.

Pure data-driven approaches have been detailed in the literature for defect diagnosis. Pro-
vided that a wide range of data is available, machine learning methods can eventually detect de-
fects automatically and classify them into different classes given some prescribed criteria. For in-
stance, supervised machine learning is used for defect classification issues related to a freezing
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process in [8]. Convolutional neural networks (CNNs) [9], which are very helpful in computer vi-
sion [10], have been trained to detect and diagnose defects. In [11], a CNN detects defects on an
automotive damper. Another encouraging study published recently uses CNNs to diagnose de-
fects on freight trains with a precision of approximately 80% [12]. An amazing property of CNNs
is their ability to learn features, or kernels [10], solely by using labeled data and deep learning.
However, in our opinion, using deep learning does not necessarily imply forgetting the available
knowledge about the mechanics of materials when it comes to predicting the harmfulness of de-
fects. The purpose of this paper is to couple machine learning and mechanical modeling so that
transfer learning [13] is achieved.

In the mechanics of materials, image-based meshing methods [14,15] enable generating com-
plex finite element meshes of digital images obtained via X-ray computed tomography [16].
The finite element models used as digital twins of mechanical components are fed by a huge
knowledge on mechanical behavior for various materials, metals [17], composites [18], and con-
crete [19] for instance. Unfortunately, they cannot be used as a tool to assess the quality of a com-
ponent in a serial production framework. The required fine meshes of defective components gen-
erally lead to prohibitive computational time as explained in [20]. However, the use of mechanical
knowledge in digital twins would ensure data continuity between the component design phase
and the diagnosis of defect harmfulness [20]. Besides, projection-based model order reduction
methods enable reusing knowledge about materials science while using machine learning to gen-
erate approximation spaces for a fast solution of partial differential equations (PDEs) [21, 22].
Therefore, physics principles and material constitutive equations are preserved in weak formu-
lations of partial derivative equations. In this paper, the machine learning task is restricted to the
construction of an approximation space for the purpose of model order reduction. Here, this ap-
proximation space is piecewise constant over the space of all possible defects. Its numerical rep-
resentation is a dictionary of digital twins based on representative defects. Usually, the manifold
containing the solution of a PDE can be accurately depicted as residing in a small vector space.
Therefore, linear machine learning methods, such as proper orthogonal decomposition [23], sin-
gular value decomposition (SVD), and noncentered principal component analysis, aim at learn-
ing this reduced vector space from simulation data. This subspace is then used as a single ap-
proximation space for the projection-based model order reduction of PDE. In practice, the finite
element shape functions are replaced by vectors, or empirical modes, that span the reduced ap-
proximation space. In some situations, the solution of the governing PDEs lies in a manifold that
cannot be covered by a single vector subspace without increasing its dimension, thus degrading
the computational complexity of projection-based model reduction. In these cases, deep learn-
ing algorithms are useful for reducing the complexity of approximation spaces by using simu-
lation data. For instance, in [24], physics-informed neural networks are proposed for solving su-
pervised learning tasks while respecting any given laws of physics described by general nonlinear
PDEs. These networks are no longer used as projection-based model order reduction schemes.
However, such reduced schemes are found in [25] and [22], where a deep classifier recommends a
reduced order model depending on input variables having a tensor format (e.g., images). In [25],
a CNN recommends a reduced order model related to a loading environment seen on the image
of an experimental setup. In [22], a deep classifier using CNN is trained to recommend hyper-
reduced order models for lifetime prediction depending on a three-dimensional (3D) stochastic
temperature field. These two contributions follow the same neural network architecture termed
ROM-net [22]. Such ROM-nets are trained by using simulation data encoded as points on a Grass-
mann manifold, which is a set of vector subspaces of given common dimensions in the same am-
bient space. This data encoding is quite general when considering simulation data in the frame-
work of projection-based model order reduction. In this paper, it is extended for the classification
of voids according to their mechanical effects on mechanical components.

C. R. Mécanique, 2020, 348, n 10-11, 911-935



914 David Ryckelynck et al.

In the current work, observational data are two-dimensional (2D) slices of experimental 3D
images of voids. These 3D images have been obtained via X-ray computed tomography by
Lacourt [26]. The reduced approximation space for displacements is spanned by two types of
vectors: macroscopic modes of an ideal defect-free medium and fluctuation modes around each
defect. By following the two-scale machine learning approach proposed in [20], the fluctuation
modes are computed by assuming dilution conditions and scale separation for each defect
separately. The volume fraction of the defect is negligible when computing the fluctuation modes.
In linear elasticity, each defect admits an exact reduced basis of fluctuation modes for strains and
displacements. For 2D problems, this ideal reduced basis contains three modes; for 3D problems,
it contains six modes. This reduced basis is said to be ideal because its computation requires
the finite element solution of an elastic problem, which is specific to the defect. In the proposed
approach, such solutions are available only during the training phase of the approximation space.
In the test phase, the ideal reduced basis is not available. The methodology, introduced in [22]
for ROM-nets, aims to take in a dictionary the reduced approximation space related to a similar
defect as a substitute for the ideal reduced basis. Here, this dictionary is called the dictionary of
digital twins. This requires defining the following:

• a dissimilarity evaluation between defects,
• a dictionary of representative defects containing the related digital twins with a small

number of items,
• a classifier that finds the best item in the dictionary for the construction of an approxi-

mation space dedicated to the target digital twin in a test set or for real application.

In this paper, the representative defects are medoids selected by the k-medoids algorithm [27].
The number of medoids has to be prescribed prior to data clustering via the k-medoids algorithm.
Too many items in the dictionary make the classifier too complex and would eventually entail no
complexity reduction for image-based modeling. In this paper, the best item in the dictionary
is approximately selected via an error indicator and not via a CNN as proposed in [22]. This
error indicator measures the discrepancy between the stresses predicted via hyper-reduction
(HR) for the target digital twin and the equilibrated stresses [28]. A theoretical analysis of the
convergence of the hyper-reduced approximation shows that a partial approximation error
has an upper bound that scales linearly with the sines of the principal angles between the
ideal modes and the modes involved in the approximation space. Identical reduced bases have
principal angles equal to zero as well as sines. The convenient space to measure these angles is a
Grassmann manifold [29,30]. The sines of these angles are termed chordal distances [31]. Hence,
the proposed dissimilarity criterion accounts for the mechanical effect of the defects via model
reduction of displacement fluctuations around defects. It is not a direct evaluation of morphology
dissimilarity.

For the sake of simplicity, the target problem used for defect diagnosis is similar to the
micromechanical problem that defines the fluctuation modes. The reader can find in [20, 32, 33]
more complex target mechanical problems that are solved by the HR method used in this paper.
As the finite element approximation space is specific to each defect, we need to design a common
ambient space for the computation of Grassmann distances. This is performed through an
encoding mesh. We have paid particular attention to the compromise to be made between the
accuracy of numerical approximations and the memory space required to save the simulation
data related to the encoding mesh.

The present paper is structured as follows. Section 2 is a commented graphical abstract.
Section 3 presents the projection-based model-reduction method, an upper bound for partial
errors on displacement predictions, and the encoding mesh associated with the Grassmann
manifold. Section 4 details the training dataset of defects, the partition of these data by using the
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Figure 1. (a) Raw data in their original ambient space, (b) the proposed ambient space for
dissimilarity measurement between defects according to a Grassmann distance related to
the subspace spanned by fluctuation modes around each defect.

k-medoids algorithm in the Grassmann manifold, and some validation results. Section 5 presents
the stress prediction results for the test set of defects and the classifier used to select an item from
the dictionary of digital twins. Section 6 draws the conclusion of this paper.

2. Commented graphical abstract

Assume that a training dataset of defects is available with detailed digital twins and all related
data. A schematic view of the training dataset is plotted in Figure 1. Training data are plotted as
blue points in this figure.

We propose to select representative defects and their data to form a dictionary of digital twins
for the purpose of model reduction. Representative defects are assumed to be well distributed
in the training dataset according to a dissimilarity measurement. Two representative defects
are plotted in red and green in Figure 1. The main novelty is a proper dissimilarity definition
between defects so that the representative defects are medoids selected by using the k-medoids
algorithm [27].

The original ambient space (Figure 1(a)) that contains the predictions of fluctuations around
defects in the training dataset does not account for the linearity of elastic balance equations. We
know that displacement fluctuations belong to a small vector subspace spanned by fluctuation
modes, which is denoted by V? for each defect individually. These vector subspaces are points
in a manifold termed Grassmannian. As a result, prior to dissimilarity computation between
defects, the training data are placed in a proper ambient space: a Grassmannian. A sketch of the
Grassmannian ambient space is shown in Figure 1(b).

Displacement fluctuations or stress fluctuations around defects have magnitudes directly re-
lated to the loading magnitude defined in the mechanical target problem. They can be easily
computed. This is the reason why fluctuation magnitudes do not matter in similar linear predic-
tions. Then the Grassmannian ambient space is plotted as a unit circle. The geodesic distance on
this circle is the angle θ shown in Figure 1(b). One can also consider in Figure 1 the chordal dis-
tance, which is the length of the straight line between two points on this circle for small values of
θ. This chordal distance is closely related to an upper bound of partial approximation errors.
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Figure 2. On the left, an experimental defect and its close-up. On the right, the horizontal
component of ∆u?( j ) for two traction modes related to E(1) and E(2) and one shear mode
related to E(3).

In what follows, the simulation data of the representative defects are the training data used for
the HR of digital twins.

Data in the test set cannot be plotted in Figure 1 because their related fluctuation fields have
to be predicted via the proposed dictionary-based model-reduction method.

3. Theoretical results on elastic fluctuation modes

3.1. Projection-based hyper-reduction of the target mechanical problem

This section describes the target mechanical problem used as a digital twin of a target defect. In
the mechanics of materials, the harmfulness of defects is evaluated through the magnification of
the Cauchy stress around each defect. We restrict our attention to the prediction of the Cauchy
stress via the approximate solution of PDEs in linear elasticity of isotropic materials. The principal
variable of these equations is the displacement field.

The domain occupied by the material, denoted by Ω?, is a surrounding box around each de-
fect. We give an example in Figure 2. Formally, Ω? has no parameter. Its morphology totally de-
pends on the observation of a defect through a digital image. In the following, the superscript ?
refers to mathematical objects that are specific to the digital image of a defect. This notation em-
phasizes the variability due to the input image. All mathematical objects with the superscript ?
can be seen as the output of an implicit function depending on Ω? without introducing any pa-
rameter for Ω?. We avoid giving a morphological definition of an input space that contains all
possible values of Ω?. Hence, the proposed setting is a nonparametric mechanical modeling for
digital twins.

The outer boundary of the surrounding box is denoted by ∂EΩ
?. The boundary of the defect,

which is modeled as a void, is denoted by ∂VΩ
?. The local frame follows the principal axes of the

second-order moments of the volume distribution in the defect. These principal axes are denoted
by e1 and e2. All defects have a circumscribed circle of diameter equal to D . The length of Ω?

is 30D . The displacement field and the Cauchy stress are denoted by u? and σ?, respectively.
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The fluctuation of the displacement field is denoted by ∆u?. It is defined as the counterpart of
the homogeneous displacement field such that

u?(x) = E ·x+∆u?(x), ∀x ∈Ω?, ∆u? ∈ V ?, (1)

where E is the macroscopic strain tensor imposed on ∂EΩ
?. It is a given symmetric second-order

tensor. Here, E · x is the defect-free macroscopic mode for displacements; V ? is the usual finite
element approximation space that accounts for the defect geometry and Dirichlet boundary
conditions (2) on ∂EΩ

?.
Here, Ω? is sufficiently large to fulfill a dilution assumption and the following boundary

condition on ∆u?:
∆u?(x) = 0, ∀x ∈ ∂EΩ

?. (2)

The Hooke tensor for elasticity is denoted by C. Hence, the elastic constitutive equation reads as

σ? = C : ε(u?), (3)

where ε(u?) is the deformation tensor, that is, the symmetric part of the displacement gradient.
The weak form of the elastic equilibrium equation reads as follows: find ∆u? ∈ V ? such that

∆u?(x) =
N ?∑
i=1

ϕ?i (x)q?i , ∀x ∈Ω? (4)

∫

Ω?
ε(ϕ?i ) : C : (E+ε(∆u?))dΩ= 0 ∀i ∈ {1, . . . ,N ?}, (5)

where (ϕ?i )N
?

i=1 are the finite element shape functions that span V ? such that ϕ?i = 0 on ∂EΩ
?.

Here, E is a symmetric second-order tensor; it has only three components for 2D problems.
Therefore, as the elastic equations are linear, there exists an ideal reduced basis containing three
fluctuation modes denoted by (ψ?

k )k=1,...,3 such that

∆u?(x) =
N∑

k=1
ψ?

k (x)γ?k , ∀x ∈Ω?, ψ?
k ∈ V ?, k = 1, . . . , N (6)

where γ? ∈ R3 is a vector of exact reduced coordinates. As the fluctuation modes are vectors of
the approximation space, one can introduce the reduction matrix V?, which contains the finite
element coordinates of the fluctuation modes:

ψ?
k (x) =

N ?∑
i=1

ϕ?i (x)V ?
i k , k = 1,2,3, ∀x ∈Ω?. (7)

In what follows, approximate reduced bases for fluctuation modes are denoted by V. In Fig-
ure 1(b), V? is represented by the blue arrow and V is represented by the red arrow. The parameter
V may not be totally specific toΩ?. The approximate continuous modes are

ψk (x) =
N ?∑
i=1

ϕ?i (x)Vi k , k = 1,2,3, ∀x ∈Ω?. (8)

For a given reduced matrix V, the approximate displacement fluctuation reads as

∆u(x) =
N∑

k=1
ψk (x)γk , ∀x ∈Ω?. (9)

The two reduced bases span two vector spaces of the same dimension N in the same ambient
space RN ?

, N < N ?. Each of these vector spaces is a point in a Grassmann manifold, which is
denoted by Gr(N ,N ?). This manifold is a huge space as it contains all the vector subspaces of
dimension N in RN ?

. For instance, it contains also the vector subspaces spanned by all sets of N
vibration modes. Such vibration modes are not relevant here. However, the Grassmann manifold
is equipped with geodesic metrics, which is very convenient for the definition of the dissimilarity
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between defects, as explained in Section 3.2, when considering approximation errors due to the
HR method.

The HR method [34] aims at computing reduced coordinatesγ introduced in (9) by projecting
the equilibrium equation on V via a restriction of the domain Ω? to a reduced integration
domain (RID) denoted byΩ?R . By following the empirical interpolation method [35], interpolation
points are computed for column vectors in V. We choose the RID Ω?R such that it contains the
interpolation points related to both the reduced basis for displacement and a reduced basis for
stresses. We give more details about the construction of Ω?R in Appendix. We define a set of test
reduced functions denoted byψR j :

F =
{

i ∈ {1, . . . ,N ?},
∫

Ω?\ΩR?
(ϕ?i )2 dΩ= 0

}
(10)

ψR j (x) =
N ?∑
i∈F

ϕ?i (x)Vi j , ∀x ∈Ω?, j = 1,2,3. (11)

As explained in [34], these test functions are null on the interface betweenΩ?R and the counterpart
of the domain as if Dirichlet boundary conditions were imposed. On this interface, the displace-
ment follows the shape of the modes ψk . The HR method gives access to reduced coordinates γ
that fulfill the following balance equations:

∆u(x) =
N∑

k=1
ψk (x)γk , ∀x ∈Ω?R (12)

∫

Ω?R

ε(ψR j ) : C : (E+ε(∆u))dΩ= 0, ∀ j = 1, . . . , N . (13)

The matrix form of the hyper-reduced balance equations reads as follows: find γ ∈RN such that

∆u(x) =
N ?∑
i=1

ϕ?i (x)qHR
i , ∀x ∈Ω?R (14)

qHR = Vγ (15)

KHRγ = V[F , :]T F?[F ] (16)

KHR = V[F , :]T K?[F , :]V (17)

K?
i j =

∫

Ω?
ε(ϕ?i ) : C : ε(ϕ?j )dΩ, i , j = 1, . . . ,N ? (18)

F?
i = −

∫

Ω?
ε(ϕ?i ) : C : EdΩ, i = 1, . . . ,N ?, (19)

where V[F , :] denotes a row restriction of matrix V to indices in F . We assume that the matrix
KHR is of full rank. This assumption is always checked in numerical solutions of hyper-reduced
equations. Rank deficiency may appear when the RID construction does not account for the
contribution of a reduced basis dedicated to stresses.

In this paper, the hyper-reduced prediction is supplemented by the following equilibrium step
over the RID: find δu? such that

δu?(x) =
∑

i∈F̃

ϕ?i (x)δq?i , ∀x ∈Ω?R (20)

∫

Ω?R

ε(ϕ?i ) : C : (E+ε(∆u+δu?))dΩ= 0 ∀i ∈ F̃ , (21)

where F̃ is the set of all degrees of freedom inΩ?R except those belonging to elements connected
to the interface between Ω?R and its counterpart. During this correction step, displacements
are frozen on elements connected to the interface between Ω?R and its counterpart. There is
no natural boundary condition on this interface. Here, they are forecast by the hyper-reduced
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prediction. This correction step has been proposed in [36] for the evaluation of contact forces.
This is a local correction step over Ω?R . The solution ueq = Ex +∆u + δu? is a hybrid solution
that weakly couples HR and a finite element approximation over the RID. We refer the reader
to [36–38] for more details about hybrid HR schemes. The equilibrated stress is quite accurate
compared to the stress computed via HR solely. The hyper-reduced stress prediction is denoted
byσHR, while the equilibrated stress is denoted byσeq. Here, δσ? is the correction term for stress
predictions:

σHR = C : (E+ε(∆u)) (22)

δσ? = C : ε(δu?) (23)

σeq = σHR +δσ?. (24)

Property 1. If KHR is of full rank, then the hyper-reduced balance equations are equivalent to an
oblique projection of the finite element prediction:

qHR = V(ΠT V)−1ΠT q?, (25)

whereΠ= K?[:,F ]V[F , :]. Hence, the hyper-reduced prediction of the reduced coordinate vector γ
is a minimizer for f (β):

β ∈RN , f (β) = ‖ΠT (Vβ−q?)‖2
2. (26)

Here,Π is a projector for elastic stresses inΩ?R according to the reduced test functions:

N ?∑
i=1

Πi k (Vγ−q?)i =
∫

Ω?R

ε(ψRk ) : (σHR −σ?)dΩ, (27)

where σ? is the finite element stress prediction.

The proof is straightforward. Here, KHR = ΠT V. The Jacobian matrix for f reads as J =
VTΠΠT V = (KHR)T KHR. If KHR is of full rank, then J is symmetric definite positive and J−1 =
(KHR)−1(KHR)−T . Then, both the minimization problem and the hyper-reduced equation have
a unique solution. The solution of the minimization problem is

q f = V(J)−1VTΠΠT q? (28)

= V(KHR)−1ΠT q?. (29)

SinceΠT q? = V[F , :]T F?[F ], q f = qHR.
We can note that if Ω?R =Ω?, F̃ contains all degrees of freedom indices and δu? = ∆u?−∆u.

However, the correction step has the same computational complexity as the full finite element
model. In this case, the size of Ω? has been carefully chosen so that the reduction in complexity
is not trivial. Here, the most complex operations are indeed the computation of KHR and the
solution of the reduced linear system of equations. They scale linearly with card(F )N 2 and
N 3, respectively. Hence, N 3 has to be sufficiently small compared to N ? if we consider the
computational complexity for the solution of sparse linear systems in the finite element method.

3.2. Approximation errors

Let us introduce three canonical macroscopic strains, E(1), E(2), and E(3):

E(1) = ε(x1e1) (30)

E(2) = ε(x2e2) (31)

E(3) = ε
( x1e2 +x2e1

2

)
. (32)
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In what follows, the three finite element solutions obtained for each of the three canonical
macroscopic strains E(1), E(2), and E(3) are saved in a matrix Q? such that the three displacement
fields read as

u?( j )(x) = E( j ) ·x+∆u?( j )(x) ∀x ∈Ω?, j = 1,2,3 (33)

∆u?( j )(x) =
N ?∑
i=1

ϕ?i (x)Q?
i j , ∀x ∈Ω?, j = 1,2,3. (34)

All mechanical simulations are run with the Z-set software suite. One can find more information
on the software website (http://www.zset-software.com/). The reduced basis V? is obtained by
using a truncated SVD of Q?:

Q? = V?S?W?T , V? ∈RN ?×3, V?T V? = I, (35)

where I is the 3 × 3 identity matrix. Because of the linearity of the elastic problem above, C
is proportional to the Young modulus. Hence, V? does not depend on the value of the Young
modulus thanks to the normalization of the modes. Regarding the Poisson coefficient, for the
sake of simplicity, we restrict our attention to isotropic materials having a Poisson coefficient
equal to 0.3. An example of displacement fluctuations is shown in Figure 2.

Similarly to Céa’s lemma, but in the finite dimension, there exists an upper bound for the
approximation error observed through the projectorΠ. The best projection of the exact solution
in the approximation space via the 2-norm is denoted by γP :

γP = argminq=Vg‖q?−q‖2
2, (36)

where q? = V?γ? and K?q? = F?. Hence, γP = VT V?γ?.

Property 2. There exists a stability coefficient c?, which does not depend on F? (the loading
condition), such that the partial approximation error has the following upper bound:

‖ΠT (q?−Vγ)‖2 ≤ c?‖q?−VγP‖2, (37)

where ‖ΠT (q?−Vγ)‖2 is the partial approximation error that does not account for errors in stress
predictions outside Ω?R . Hence, the smaller the Euclidean distance between the subspace spanned
by V and the finite element prediction, the better the prediction of the stress in Ω?R according to the
projector Π. It is therefore relevant to train V by using a training dataset of defects. When the RID
covers the full domain, a certification of the reduced projection can be achieved, where all errors
admit an upper bound, by following the constitutive relation error proposed in [39, 40].

The proof of the previous property is straightforward in the finite dimension. Let us denote by
α? an upper bound of the highest singular value ofΠ. Then,

‖ΠT (q?−q)‖2
2 ≤ (α?)2‖q?−q‖2

2 ∀q.

Moreover, as γ is a minimizer for f (·), we obtain

‖ΠT (q?−Vγ)‖2
2 ≤ ‖ΠT (q?−VγP )‖2

2 (38)

and

‖ΠT (q?−Vγ)‖2
2 ≤ (α?)2‖q?−VγP‖2

2. (39)

Property 3. If V? ∈ RN ?×N and V ∈ RN ?×N are two orthonormal matrices of the same ambient
space RN ?

, then they span subspaces that belong to the same Grassmann manifold. The partial
approximation error has an upper bound depending on the chordal distance [31], denoted by
d Ch(V?,V), between the subspaces spanned by V? and V, respectively:

‖ΠT (q?−Vγ)‖2 ≤α?d Ch(V?,V)
p

N‖γ?‖2. (40)
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Here, the chordal distance [31] uses the principal angles θ ∈ RN , θk ∈ [0,π/2[ for k = 1, . . . N
computed via the following SVD:

VT V? = Ucos(θ)U?T , UT U = U?T U? = I (41)

d Ch(V?,V) = ‖sin(θ)‖F (42)

‖U?‖2
F = N , (43)

where ‖ · ‖F is the Frobenius norm. Here, cos(θ) and sin(θ) are the cosine and sine diagonal
matrices, respectively. In addition, the following property holds when a full SVD is computed:

U?U?T = I. (44)

The proof is the following:

‖q?−VγP‖2
2 =γ?T (V?−V VT V?)T (V?−V VT V?)γ? =γ?T (I−V?T V VT V?)γ?. (45)

Hence,

‖q?−VγP‖2
2 = γ?T (I−U?cos(θ)2U?T )γ? (46)

‖q?−VγP‖2
2 = γ?T U?(I−cos(θ)2)U?Tγ? (47)

‖q?−VγP‖2
2 = γ?T U?sin(θ)2U?Tγ? (48)

= ‖sin(θ)U?Tγ?‖2
2. (49)

For all matrices A ∈Rn×m and B ∈Rm×n , the following property holds:

‖AB‖F ≤ ‖A‖F ‖B‖F ,

and for a ∈Rn : ‖a‖F = ‖a‖2.
Thus,

‖q?−VγP‖2
2 ≤ ‖sin(θ)U?T ‖2

F ‖γ?‖2
2 ≤ ‖sin(θ)‖2

F N‖γ?‖2
2 (50)

and

‖ΠT (q?−Vγ)‖2 ≤α?‖sin(θ)‖F
p

N‖γ?‖2. (51)

Property 3 is a convergence property for hyper-reduced predictions. If θ = 0, then VU = V?U?

and

0 = ΠT (V?γ?−Vγ) (52)

= ΠT V U(U?Tγ?−UTγ) (53)

= KHRU(U?Tγ?−UTγ) (54)

⇒ γ= UU?Tγ? (55)

⇒ qHR = q? and σHR =σ?. (56)

Hence, the hyper-reduced prediction is the same as the finite element prediction. However, it
uses fewer floating-point operations.

In what follows, we assume that there is a correlation between the approximation error
σHR −σ? in Ω?R and the upper bound in (40). This correlation is evaluated through a numerical
experiment in Section 4.1.

3.3. Grassmannian ambient space

As explained in [29, 30], Grassmann manifolds are the adequate concept when considering
interpolation of reduced order models. Property 3 shows that it is also relevant for data encoding
in a proper ambient space and for the classification of voids according to their mechanical effects.
We state that the target defect Ω? is similar to a defect having V for the ideal reduced basis if
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Figure 3. Encoding mesh with four elements on each half-side of the middle square having
a regular mesh. From left to right: the surrounding box, a close-up, and the same close-up
of a defect.

the chordal distance d Ch(V?,V) is sufficiently small. In what follows, each defect in the training
dataset is encoded by using its ideal reduced basis V? as shown in Figure 1(b).

A common Grassmann manifold is defined for all defects by using a common encoding mesh.
Each finite element prediction related to the training dataset of defects is transferred on this
encoding mesh prior to any machine learning including SVD and dissimilarity computations.
To facilitate the transfer of simulation data, the prediction∆u?( j ) is extended inside the defect by
introducing a very small Young modulus in the void (10−3E). Figure 3 shows the encoding mesh.

This data encoding from the reduced mechanical response of the input, has the huge advan-
tage to be universal. This encoding may be applied in other fields. Each data in the dataset is
supplemented by a reduced basis V?(i ), where i is the defect index.

Several geodesic distances are available between points in Grassmann manifolds. The chordal
distance is one of them. The Grassmann distance is another one, which is more common in the
literature. The Grassmann distance between the subspaces spanned by V? and V, respectively, is
denoted by d Gr(V?,V). It reads as

d Gr(V?,V) = ‖θ‖2

π/2
. (57)

In the following numerical experiment, the Grassmann distance magnifies the distance between
subspaces compared to the chordal distance similarly to the one-dimensional equation θ ≥ sin(θ)
for θ ∈ [0,π/2]. As a result, we choose d Gr for the partition of the training dataset of defects into
classes of defects.

The encoding mesh must have the number of degrees of freedom N as small as possible to
lower the memory use in a storage system, but it must be sufficiently fine to

• lower the norm of transfer errors from the original mesh to the encoding mesh;
• detect dissimilarities between defects up to a given accuracy.

To highlight the influence of the encoding mesh on transfer errors, we varied the number
of elements on each half-side of the middle square that has a regular mesh. Figure 4 presents
the convergence of the Grassmann distance between a perfect circle and an isotropic defect or
an anisotropic defect. Both isotropic and anisotropic defects are shown in Figure 5. Grassmann
distances are calculated for several encoding meshes. The ideal reduced basis for the fluctuation
modes around the circular defect is denoted by V?(0). Here, V?(1) and V?(2) denote the reduced
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Figure 4. Convergence of Grassmann distances with respect to the encoding mesh for
the evaluation of dissimilarity between a circular and an anisotropic (d1) or an isotropic
defect (d2).

Figure 5. Examples of defects (defect in blue, steel in red). The isotropic defect (left) and
the anisotropic defect (right).

bases related to the anisotropic and isotropic defects, respectively. The two Grassmann distances
are

d1 = d Gr(V?(1),V?(0)) (58)

d2 = d Gr(V?(2),V?(0)). (59)

In Figure 4, the Grassmann distances and the encoding mesh successfully distinguish the two
defects, and we observe a convergence of the distances when the mesh exceeds four elements on
each half-side of the middle square. A difference of 20% in the Grassmann distance between the
two defects is consistent as the pilot circular defect and the anisotropic defect are mechanically
very different. The gap may be sufficient to distinguish them during the partition of training data.
Therefore, we suggest keeping the encoding mesh with 609 nodes (four elements on each half-
side).

4. Numerical results on the training dataset of defects

Three-dimensional images of voids have been obtained by Laurent Lacourt [20] via X-ray com-
puted tomography of welded joints. These 3D images have been cut into slices so that we have
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more 2D samples. The dataset contains nI = 2,745 samples of 2D images with only one defect per
image. However, one defect may involve several voids that have a high mechanical interaction.
Eighty percent of these data have been randomly selected as training data. The remaining data
belong to the test set.

4.1. Data clustering

Clustering methods have been already used for the construction of local reduced order bases
in parametric spaces. We refer the reader to [41, 42], for instance, and for more recent examples
to [43]. Local reduced order bases are known to be more accurate over a global reduced basis [41].
Here, the set of possible defects is not a parametric space. For this reason, k-means is useless be-
cause no barycentric coordinates are available here. The k-medoids algorithm [27] circumvents
this difficulty in the case of nonparametric modeling via the selection of representative defects.

All available images in the dataset have been converted into finite element predictions via
image-based digital twins. Displacement fluctuations have been transferred to the encoding
mesh prior to the computation of the related reduced basis V?(i ) (i = 1, . . . ,nI ). Then, a dissimi-
larity matrix has been computed, accounting for all the Grassmann distances between defects in
the training dataset:

DGr
i j = d Gr(V̂?(i ), V̂?( j )), i , j ∈ {1, . . . ,nI }. (60)

A k-medoids clustering algorithm [27] has been used for the partition of data according to their
Grassmann distance. The k-medoids algorithm proposed in [27] can be summarized as follows:

• Initialization step: select K rows in DGr as indices of initial medoids (m1, . . . ,mK ).
• Repeat the following two steps until convergence:

– Data assignment step: assign each point of the dataset to the cluster corresponding
to its closest medoid:

L Gr
i = argmink∈{1,...,K }(DGr[[m1, . . . ,mk , . . .], i ]) i ∈ training dataset. (61)

– Medoid update step: for each cluster, update the medoid by finding the point that
minimizes the sum of distances to all the points in the cluster:

Ck = {i ∈ training dataset|L Gr
i = k}, k = 1, . . . ,K (62)

mk = argmin j∈Ck

( ∑
i∈Ck

DGr[ j , i ]

)
. (63)

We arbitrarily set the number of clusters to K = 5. The set Ck contains the indices of defects
in the cluster number k. Hence, the sizes of the clusters are card(C1) = 554, card(C2) = 200,
card(C3) = 202, card(C4) = 901, and card(C5) = 339.

The defects located in the medoids are shown in Figure 6. These defects have different
anisotropies. The most isotropic defect is m4. The most anisotropic defects are m2 and m3. These
last defects are rather symmetric. In future work, this symmetry should be removed from the
dataset.

Defects m2 and m3 contain two voids. They are so close to each other that fluctuation modes
account for the local interactions between these voids.

4.2. Validation of hyper-reduced predictions for the training dataset

The meta-parameters of HR are set up by using the simulation data available in the training
dataset.

For each medoid m(k) and for each target image number i , we define an image-specific hyper-
reduced model denoted by HR(k, i ) without using the encoding mesh here. The hyper-reduced
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Figure 6. Defects located in the medoids.

model incorporates a reduced basis for displacement fluctuations and a reduced basis for stresses
(V(k,i ), Vσ(k,i )). These reduced bases are computed after the transfer of simulation data from the
mesh of the medoid onto the mesh of the target problem, which is defect-dependent. The matrix
of macroscopic modes related to a defect-free mechanical problem is denoted by Vmacro ∈RN ?×3.
The column number j in Vmacro is related to the macroscopic displacement E( j )x. The complete
reduced basis for displacement reads as

V
(k,i ) = [Vmacro,V(k,i )] ∈RN ?×6.

The hyper-reduced equilibrium equation is (13) with empirical modes obtained by substituting
V(k,i ) for V in (8). A zone of interest is designed automatically around each defect. It contains four
layers of elements from the border of the defect ∂VΩ

?. The construction of the RID follows the
procedure explained in Appendix so thatΩ?R contains the zone of interest.

For each image #i in the training dataset, a hyper-reduced model is built. It is denoted by
HR(k, i ) for each medoid (k = 1, . . . ,5). Hyper-reduction predictions are performed for the three
macroscopic strains E( j ) ( j = 1, . . . ,3). The predicted stresses on the RID are denoted by σHR(k,i , j ).
The finite element prediction of this stress is denoted by σ?(i , j ). The exact error on the stress
prediction inΩ?(i )

R , i ∈ {1, . . . ,nI }, reads as

eHR(k,i ) = 100

√√√√
∑3

j=1 ‖σ?(i , j ) −σHR(k,i , j )‖2
ΩR∑3

j=1 ‖σ?(i , j )‖2
ΩR

, (64)

where ‖ · ‖ΩR = ∫
ΩR

· : ·dΩ for stress tensors. Figure 7 reports the correlation between the exact
error eHR(k,i ) and the chordal distance to the medoid. This plot contains 5 × nI points. The
coordinates of these points are (DCh

mk ,i ,eHR(k,i )). The average chordal distance is 0.7. The average
error is 29%.

The correlation between eHR and d Ch is not perfect, but it is sufficient here for the clustering
of simulation data. In some situations, eHR and d Ch may not be correlated. A good correlation
requires that the target mechanical problem activate all the modes in V?(i ) and V(k,i ), which
means that the related reduced coordinates have no null component. This is the case here.
If one of the reduced components is null, the upper bound can be obviously simplified without
using all the principal angles in d Ch(V?(i ),V(k,i )).
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Figure 7. Correlation plot between eHR(k,i ) and d Ch for all points in the training dataset and
for all hyper-reduced models. The red dot is the average point (x = 0.7, y = 29%).

Figure 8. Density distribution for eHR(1,i ) (%) in cluster #1 for i ∈C1.

For each cluster of data, we have reported in Figures 8–12 the histograms of the density
distribution of eHR(k,i ), for i ∈Ck , inside each cluster separately.

The clustering results are interesting because most of the errors are below 29% (the average
error on the whole dataset). However, many points have an error eHR bigger than 20%. The
clustering may not perform well for clusters where there is a lack of similar data. Here, clusters
C2 and C3 have few points with an error lower than 20%.

Some clusters could be rejected for HR in a sense that a full finite element prediction may be
preferable for the defects in these clusters. In what follows, we do not reject any cluster, and we
include simulation data related to all the medoids in the dictionary of digital twins.

5. Results on the test set of defects
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Figure 9. Density distribution for eHR(2,i ) (%) in cluster #2 for i ∈C2.

Figure 10. Density distribution for eHR(3,i ) (%) in cluster #3 for i ∈C3.

5.1. Selection of a reduced digital twin in the dictionary

In this section, we restrict our attention to simulation data in the test set. This test set aims to eval-
uate the full modeling procedure for the fast prediction of stresses around defects. The average
speedup for the solution of linear systems is 0.03/0.003 = 10 for hyper-reduced predictions. The
average speedup for the computation of the stresses in this equation is 0.01/0.005 = 2. Speedups
of approximately 1000 are obtained for similar 3D problems [20].

An error indicator has been developed for the selection in the dictionary of the medoid that
is expected to give the best stress prediction via HR. This error indicator is similar to the error
eHR(k,i ), where the exact stress σ? is replaced by the equilibrated stress σeq. The error indicator
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Figure 11. Density distribution for eHR(4,i ) (%) in cluster #4 for i ∈C4.

Figure 12. Density distribution for eHR(5,i ) (%) in cluster #5 for i ∈C5.

reads as

η(k,i ) = 100

√√√√
∑3

j=1 ‖δσ(k,i , j )‖2
ΩR∑3

j=1 ‖σeq(i , j ),‖2
ΩR

(65)

where δσ(k,i , j ) is the stress correction in (23), which is computed by the equilibrium step related
to HR(k, i ).

For each defect in the test set, we select a medoid k?(i ) for stress prediction such that

k?(i ) = argminkη
(k,i ). (66)

The best medoid selection aims to lower the error in the prediction of stresses:

k
?(i ) = argmink eHR(k,i ). (67)
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Figure 13. Correlation plot between eHR(k,i ) and η(k,i ) for points in the test set. The color
dots are related to the cluster index k.

Then, we obtain an automatic labeling of the defects in the test set. The estimated labels are
denoted by L

η

i : L
η

i = argminkη
(k,i ). The perfect labels are denoted by Li : Li = argmink eHR(k,i ).

Figure 13 reports the correlation between eHR(k,i ) and the error indicator η(k,i ).
There is a strong correlation between eHR(k,i ) and η(k,i ) for low errors: eHR(k,i ) ≈ η(k,i ) for

eHR(k,i ) < 40%. This correlation exists for every cluster. As a result, this indicator helps us to find
the medoid as if we have the exact finite element prediction.

The better the σeq approximates the σ?, the more accurate the error indicator. The error on
equilibrated stresses reads as

eeq(k,i ) = 100

√√√√
∑3

j=1 ‖σ?(i , j ) −σeq(k,i , j )‖2
ΩR∑3

j=1 ‖σ?(i , j )‖2
ΩR

. (68)

Figure 14 shows the correlation between eeq(k,i ) and η(k,i ). Such a correlation is sufficient to
select the same hyper-reduced order model for the predictions with or without an equilibrium
step. The range of errors on equilibrated stresses is much smaller than that on σHR. Therefore,
the equilibrated stresses are the simulation outputs of interest for the reduced digital twin.

In Figures 15–19, for each cluster of data, we have reported the histograms of the density
distribution of eeq(k,i ), for L

η

i = k, inside each cluster separately.
Most of the errors on equilibrated stresses are lower than 5%. The modeling procedure is very

accurate. Errors related to medoids m1, m4, and m5 are more concentrated below 5% than those
for medoids m2 and m3. Hyper-reduced predictions attached to medoids m2 and m3 are less
accurate. Such results have been anticipated during the clustering procedure.

5.2. Detailed numerical results on hyper-reduced predictions

In this section, we report local numerical results for defects in the test set. The index of the first
image is i = 1664. Its label via the error indicator is L

η

i = 3. This label is the optimal: L
η

i = Li .
It is intentionally related to a medoid of the small cluster C3 for which there is certainly a lack
of observed defects. Related numerical results are shown in Figure 20. The prediction is globally
accurate (eeq(3,1664) = 5%).
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Figure 14. Correlation plot between eeq(k,i ) and η(k,i ) for points in the test set. The color
dots are related to the cluster index k.

Figure 15. Density distribution for eeq(1,i ) (%) in cluster #1 for L
η

i = 1.

Better results are obtained for the test data attached to m4, the medoid of the largest cluster.
The index of the second image is i = 1987. The global error is eeq(4,1987) = 0.2%. Local predictions
of the shear stress for E(3) are reported in Figure 21.

Local predictions are very accurate for this defect certainly because cluster C4 involves a large
number of observed defects.

6. Conclusion

In this paper, local defects are compared according to a mechanical metric using model order
reduction techniques and a Grassmann manifold. Each simulation data related to a defect in a
training set is encoded as a point on a Grassmann manifold by using an ideal reduced basis of
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Figure 16. Density distribution for eeq(2,i ) (%) in cluster #2 for L
η

i = 2.

Figure 17. Density distribution for eeq(3,i ) (%) in cluster #3 for L
η

i = 3.

displacement fluctuations around each defect. This approach can be easily extended to many
types of local defects in homogeneous or locally homogeneous materials.

Five categories of defects are proposed by using a k-medoids algorithm via the Grassmann
distance between the reduced bases attached to each defect. Each category of defect (also called a
“cluster”) has a representative defect in the training set, which is a medoid. It turns out that most
defects in the proposed training set are almost spherical. However, some have a very complex
shape, including several voids in interactions. The hyper-reduced predictions of the stresses
around the defects in a given cluster are compared to the true simulation data. This pertains
to the training data only as a validation of the modeling process. Most of the errors are below
29%. More training data would have probably improved the stress prediction by increasing the
number of defect categories.
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Figure 18. Density distribution for eeq(4,i ) (%) in cluster #4 for L
η

i = 4.

Figure 19. Density distribution for eeq(5,i ) (%) in cluster #5 for L
η

i = 5.

Figure 20. Test defect #1664. From left to right: finite element prediction of the shear stress
related to E(3), the related equilibrated stress σeq on the RID around the defect, and the
error map for this stress component.
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Figure 21. Test defect #1987. From left to right: finite element prediction of the shear stress
related to E(3), the related equilibrated stress σeq on the RID around the defect, and the
error map for this stress component.

The distances to all the representative defects, for data in the test set or for newly observed
defects, are evaluated by a fast error estimator on the hyper-reduced prediction of stress. The fact
that the closest representative defect is a defect in the training set facilitates the interpretation of
its selection.

The error estimation is restricted to an RID around the input defect. The equilibrated stresses
involved in this error estimation are very accurate, with global errors on stress below 5% for data
in the test set, when using the best representative defect. Such excellent results can be explained
by the following facts: (i) the Grassmann metric is theoretically founded for hyper-reduced
predictions as shown in this paper; (ii) both the simulation data of selected representative
defects and the hyper-reduced equations enable the prediction of accurate Dirichlet boundary
conditions on the boundary of the RID for the computation of equilibrated stresses. The larger
the extent of this reduced domain, the more accurate the boundary conditions because they tend
toward a given macroscopic value. However, the larger the RID, the higher the computational
complexity of the error estimator. This complexity limits the number of defect categories when
selecting the best representative defect for stress predictions.

To develop this promising approach to defect classification, more data are needed. Both data
acquisition and data augmentation techniques are in development. In the future, more defect
categories must be defined. In such a case, the selection of the best representative defect could
be carried out by a deep classifier as in ROM-nets.

Appendix. Details about RID construction

Let us introduce two mathematical operators. The first mathematical operator collects the de-
grees of freedom of a subdomainΩα:

C (Ωα) =
{

i ∈ {1, . . .N },
∫

Ωα

ϕ2
i dΩ> 0

}
.

The second mathematical operator aggregates the support of finite element shape functions
having their index in a set G :

L (G ) =∪i∈G supp(ϕi ), L (G ) ⊂Ω.

The extension of this subdomain by adding n layers of connected elements reads as

(L ◦C )n ◦L (G ).

The operator L is suitable for displacement fields because they are approximated by finite
element shape functions. A similar operator is also introduced for stresses. When collecting
simulation data related to stresses, in the matrix Qσ, we store all the stress components at all
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Gauss points for all elements. Each row of Qσ is related to one component of the stress tensor
at a Gauss point in an element. Then, the DEIM algorithm applied to Vσ gives a set of indices of
components of the stress tensor at some Gauss points in some elements. This set is denoted by
P σ. We denote by L σ(P σ) the support of the elements related to set P σ. Here, L σ(P σ) is a
subdomain ofΩ.

In this paper, the RID construction is the following:

ΩR = (L ◦C )◦ (L (P )∪L σ(P σ))∪ΩZOI,

whereΩZOI is the zone of interest.
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1. Introduction

Recently, data-driven description of materials has been gaining popularity. Many complex ma-
terial behaviors resisting traditional modeling procedures, or that are too complex from a mi-
crostructural viewpoint, are approached by using data-based descriptions. Different approaches
are being considered. Among them include those based exclusively on measured data, others
that extract the manifolds related to data, and others that attempt to enforce thermodynamic
and thermomechanical consistency. The interested reader can refer to [1–7] and the numerous
references therein. This work focuses on techniques based on the use of manifolds and their as-
sociated manifold learning procedures for extracting them from the available data.
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Figure 1. Multidimensional data on one- (left), two- (center), and three-dimensional
(right) manifolds embedded in RD .

In general, data involve many dimensions. Consider first a sequence of three-dimensional
(3D) fields defined in a domain Ω ⊂ R3 partitioned into D voxels. Each of these fields contains
many data, one datum at each voxel. Each field can be represented as a point in a vector space
of dimension D (the number of voxels), where we can presume each of the D coordinate axes
as reporting the value that the field of interest takes in the associated voxel. Thus, each field
becomes a point in that high-dimensional space of dimension D , RD . If important correlations
exist among the different fields, these points are expected to be distributed on a low-dimensional
subspace embedded in the D-dimensional space. Techniques aiming at extracting these reduced
subspaces, the so-called slow manifolds, sketched in Figure 1, are key tools for manipulating data
and extracting their hidden information.

Thus, data define in general slow manifolds embedded in very large vector spaces due to the
significant hidden correlations among them. The number of uncorrelated explicative dimensions
usually becomes much smaller than the a priori assumed dimension of the space for accommo-
dating the data. The extraction of these slow manifolds can be successfully accomplished by using
linear and nonlinear dimensionality reduction techniques such as principal component analysis
(PCA) in the linear case and its nonlinear counterparts (`PCA, kernel-based PCA [k-PCA], LLE,
tSNE, etc.) [8–12].

These techniques can be applied to several physical systems. Moreover, when the slow mani-
fold is determined, the solution at any point on it can be computed very accurately from a sim-
ple interpolation of neighboring data on the manifold [13], enabling almost real-time predictions
and the associated real-time decision-making.

However, extracting knowledge from data associated with an existing but hidden model
requires the following:

• identifying the manifold intrinsic dimension,
• discovering hidden parameters,
• discarding useless parameters, and
• discovering the models originating the data.

These questions are addressed, illustrated, and discussed in the present work in a purely
methodological manner, aiming at illustrating the key concepts that could open numerous future
possibilities in the field of mechanics of materials, processes, structures, and systems.

In our previous works, we addressed problems involving thousands of dimensions [13–16],
proving that despite the apparent richness in many cases, the embedding regards a relatively
low-dimensional space. However, in most of the problems that we have treated until now,
their complexity prevented fine analyses of their solutions. The present paper, which is purely
methodological, considers simple problems defined in low dimensions, with known solutions
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being easily visualizable, for facilitating an analysis and discussion. Of course, and as proved in
the works just referred to, all the methodologies apply to multidimensional settings.

2. Unsupervised manifold learning

Let us consider a vector y ∈ RD containing experimental or synthetic data from measurements
or numerical simulation. These results are often referred to as snapshots. If they are obtained
by numerical simulation, they consist of nodal values of the essential variable. Therefore, these
variables will be somehow correlated and, notably, there will be a linear transformation W
defining the vector ξ ∈ Rd , with d < D , which contains the still unknown latent variables such
that

y = Wξ. (1)

The D ×d transformation matrix W, which satisfies the orthogonality condition WT W = Id ,
is the main ingredient of the PCA and can be computed as detailed in Appendix A from the
covariance matrix associated with a number (M) of snapshots y1, . . . ,yM, which constitute the
columns of matrix Y.

While PCA works with the covariance matrix (i.e., YYT ), multidimensional scaling (MDS) works
with the Gram matrix containing scalar products (i.e., S = YT Y) as described in Appendix A.

On the other hand, the k-PCA is based on the fact that data not linearly separable in D
dimensions could be linearly separated if previously projected to a space in Q > D dimensions.
However, the true advantage arises from the fact that it is not necessary to write down the
analytical expression of that mapping as described in Appendix A.

3. An illustrative structural mechanics case study

Consider first a hypothetical mechanical system consisting of a prismatic beam whose three
dimensions, height, width, and length, are denoted, respectively, by h, b, and L, all of them being
measurable quantities. In what follows, we consider a particular output P that constitutes also a
measurable quantity (buckling critical load, etc.) assumed related to those parameters from an
existing but actually hidden model even if in what follows we will consider hypothetical, and most
of the time, unphysical models.

Thus, we consider a set of data composed of M measures yi = {hi ,bi ,Li ,Pi }, i = 1, . . . ,M, with
hi , bi , and Li being randomly chosen from a uniform probability distribution in their respective
intervals of existence, Ih , Ib , and IL , respectively, defined from the following:





Ih = [hmin,hmax]
Ib = [bmin,bmax]
IL = [Lmin,Lmax].

(2)

Without any other pre-existing knowledge, one expects the output depending on the three ge-
ometrical parameters (i.e., P = P (h,b,L)). In what follows, we consider three different scenarios.

3.1. Output depending on a single parameter

In this section, we assume a quite simple model that relates the output to a single parameter,

P =αb, α ∈R+, (3)

where α = 1000 in the numerical tests carried out. We perform M = 1000 measures, where
Ih ∈ [0.1,0.2], Ib ∈ [0.15,0.2], and IL ∈ [1,1.5].
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Figure 2. Eigenvalues λ ∈ [λ110−6,λ1].

The measures constitute a set of M= 1000 points in R4 on which the k-PCA is applied by using
the Gaussian kernel

κ(yi ,y j ) = exp
− ‖yi −y j ‖2

2β2 , (4)

where β= 10.
Figure 2 depicts the highest eigenvalues among M resulting from the k-PCA, those lying

between the highest value λ1 and 10−6λ1.
The slow manifold associated with ξ is represented by selecting the first three reduced coor-

dinates (ξ1,ξ2,ξ3) as shown in Figure 3, where its one-dimensional (1D) intrinsic dimension is
noted. This result was expected from the considered model expressed by (3). The points on the
slow manifold are colored depending on the values of h, b, L, and P , evidencing that b constitutes
the latent variable and that the output P scales (visually) linearly with it.

The process of coloring the data points in the embedded manifold deserves some additional
comments due to the fact that this is used in all the analyses reported in the present paper. Man-
ifold learning techniques look for a low-dimensional manifold defined by data points. As soon as
the slow manifold is extracted, the different data points can be mapped on it. This visualization
is only possible when the number of dimensions allows a simple graphical representation (as is
the case for the problems addressed in the present paper). Then, these points can be colored de-
pending on the value of the different initial coordinates, and one expects that if there is a corre-
lation (direct or inverse and linear or nonlinear) between the initial and reduced coordinates, the
colors must exhibit a certain grading.

Even if this analysis seems quite dependent on the low dimensionality of the embedding, in
higher dimensional embeddings, the analysis can be performed by using local statistics. Thus,
by considering a data point in the slow manifold and its closest neighbors, a local statistical
analysis can be easily performed with the standard deviation indicating the dispersion of the
data (equivalent to the local dispersion of colors).

One could be slightly surprised by the nonlinearity that the manifold exhibits despite the
linearity of model (3). This nonlinearity is an artifact of the nonlinear kernel (4) used. As the model
is linear, one could expect the ability of the PCA to address the problem at hand. For this purpose,
it suffices transforming the kernel into its linear counterpart, giving rise to the PCA

κ(yi ,y j ) = yi ·y j . (5)
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Figure 3. Slow manifold in the 3D space defined by the first reduced coordinates (ξ1,ξ2,ξ3).
Each point is colored according to the value of the coordinate h (top left), b (top right), L
(bottom left), or P (bottom right).

Figure 4. Slow manifold ξwhen considering the PCA linear dimensionality reduction. Each
point is colored according to the value of the variable b.

In this case, as expected, a single nonzero eigenvalue results, and consequently the dimension
of the reduced space becomes one (i.e., ξ= ξ). The associated manifold is depicted in Figure 4.

Now, we consider a slightly different model, again depending on a single variable but in a
nonlinear manner, according to

P =αh2, (6)
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Figure 5. Slow manifold in the 3D space defined by the first three reduced coordinates
(ξ1,ξ2,ξ3). Each point is colored according to the value of the coordinate h (left) or P (right).

Figure 6. Slow manifold in the 3D space defined by the first three reduced coordinates
(ξ1,ξ2,ξ3). Each point is colored according to the value of the coordinate L (left) or P (right).

where again α= 1000. Figure 5 depicts the 1D slow manifold, where points are colored according
to the values of the variables h and P . Here, even if the direct relation can be noted, its nonlinear-
ity is much less evident to visualize.

Finally, we consider the model

P = α

L2 , (7)

whereα= 1000. Figure 6 depicts the 1D slow manifold, where points are colored according to the
values of the variables L and P to emphasize the inverse relation between them.

3.2. Output depending on two parameters

In this section, we consider a model involving two of the three variables, in particular,

P =αh3

L2 , (8)

where α= 1000.
Figure 7 depicts the two-dimensional (2D) slow manifold, where points are colored according

to the values of variables h, b, L, and P . Here, the direct and inverse effects of h and L with respect
to P can be noted as well as the fact that parameter b seems, and in fact is, useless.
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Figure 7. Slow manifold in the 3D space defined by the first three reduced coordinates
(ξ1,ξ2,ξ3). Each point is colored according to the value of the coordinate h (top left), b (top
right), L (bottom left), or P (bottom right).

3.3. Identifying hidden variables

The previous case studies revealed the ability to extract the intrinsic dimensionality of the slow
manifold as well as the possibility to identify useless parameters. The present case addresses a
very different situation in which the model involves the three variables in the discussed case, h,
b, and L. However, only two of them were measured, namely h and L with the output P , with b
remaining inaccessible.

Thus, we have

P =αbh3

L2 , (9)

whereα= 1000. Therefore, the M= 1000 collected data yi , i = 1, . . . ,M, reads as yi = {hi ,Li ,Pi } ∈R3.
Figure 8 depicts the reduced points (ξ1,ξ2,ξ3), which as can be seen are distributed in a

domain ω ⊂ R3. However, no dimensionality reduction is noted, and the embedding remains
3D. A direct consequence is that many values of the output P exist for the same values on the
measured inputs h and L, related to the different values of b, which affect the output P . However,
as b is not measured, its value is not considered in the data points.

Such a multivalued output does not represent any conceptual difficulty. It indicates that even
if both variables participate in the output, there may be others that were not considered or those
considered may be useless for explaining the output.
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Figure 8. Reduced representation ξi ∈ R3 of the data yi ∈ R3, where the reduced points are
colored according to the value of the output P .

Figure 9. Reduced points colored according to the values of the coordinates h (left) and L
(right).

To conclude about the pertinence of these variables with respect to the considered output,
we consider coloring the reduced data depending on the h and L values (refer to Figure 9). We
compare them with the one where the color scales with the output P reported in Figure 8.

Thus, one could conclude that both variables h and L are relevant for explaining the output P .
If we assume that the output P should be univocally explained from a small number of variables,
clearly only two variables (here h and L) are not sufficient. One extra dimension suffices for
recovering a single-valued output, that is, considering the reduced points in four dimensions R4.

As visualizing things in four dimensions is quite a difficult task, for the sake of clarity in the
exposition, in what follows, we propose addressing a simpler model involving lower dimensional
spaces.

We consider the simpler model

P =αbh3, (10)

where α= 1000. However, the M= 1000 collected data yi , i = 1, . . . ,M, only deal with h and P , (i.e.,
yi = {hi ,Pi } ∈R2).

Figure 10 depicts the dataset yi = {hi ,Pi }, where it can be noted that many values of the output
P are found for the same value of the variable h.

For univocally expressing the output P , we consider again the k-PCA. We compute the reduced
dataset in a 3D space by considering the first three coordinates (ξ1,ξ2,ξ3), while coloring these
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Figure 10. Dataset yi = {hi ,Pi }, i = 1, . . . ,M.

Figure 11. Reduced points colored according to the values of the coordinates h (left) and P
(right).

points with respect to h, to prove that h represents an explanatory variable, or with respect to P
(refer to Figure 11). Figure 12 depicts the same manifold but now colored by using the hidden
variable b, which proves that it contributes to explaining the output P and constitutes the hidden
variable. Even if we just proved that a latent variable exists, and that it corresponds to b, as in
practice we ignore this fact, we never measure the quantity b. Furthermore, it is even possible
that we ignore its existence; the proposed procedure is only informative but not constructive.

Obviously, there is no unique choice. The same behavior is obtained by coloring the reduced
dataset with respect to any function bp hq , where p, q ∈ R. Thus, any measurable variable ensur-
ing such a uniform color grading could be used as the latent variable for constructing the model.
There are an infinite number of possibilities but with certain constraints; in the present case, it
must involve b.

To conclude this section, we address a similar but more complex situation. We consider now
the richer model (9) with α= 1000. The M = 1000 collected data yi , i = 1, . . . ,M, only deal with the
input variable h and the output P (i.e., yi = {hi ,Pi } ∈ R2), where two variables, b and L, involved
in model (9) remain hidden.

Figure 13 depicts the dataset yi = {hi ,Pi }, where again it can be noted that many values of the
output P are found for the same value of the variable h.

For univocally expressing the output P , we consider again the k-PCA. We compute the reduced
dataset in a 3D space by considering again the first three coordinates (ξ1,ξ2,ξ3) while coloring
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Figure 12. Reduced points colored according to the value of the output b.

Figure 13. Dataset yi = {hi ,Pi }.

these points with respect to h to prove that h represents an explanatory variable of the output P
as Figure 14 proves. Figure 15 clearly reveals that by coloring the reduced points with respect to
the two variables b and L taken solely, they do not represent the unique hidden variable able to
explain using h the output P . The hidden latent variable according to model (9) should combine
b and h. Figure 16 proves that the combined parameter b/L2 perfectly works when compared
with the manifold colored with respect to the output P .

It is important to note that the latent variable must involve the term b/L2 up to any power and
eventually a multiple of any power of h.

3.4. Discussion

The previous numerical experiments allow drawing a conclusion on the ability of unsupervised
manifold learning techniques for identifying useless data and the existence of latent variables.

The procedure is based on the ability of embedding high-dimensional data in a low-
dimensional space, where the dimension represents an approximation of the inherent dimen-
sionality of the data.
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Figure 14. Reduced points colored according to the value of the coordinate h.

Figure 15. Reduced points colored according to the values of the variables b (left) and L
(right).

Figure 16. Reduced points colored according to the values of the variables b/L2 (left) and
P (right).

When the expected dimensionality reduction does not occur and the k-PCA reveals univocally
that an extra dimension is required to accommodate the data, this indicates the existence of a
hidden latent variable.

However, when the dimensionality reduction applies, by analyzing locally the manifold (any
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Figure 17. Elastic behavior (left), elastic–perfectly plastic behavior (center), and elastoplas-
ticity with linear hardening (right).

embedded data point with its closest neighbors) with respect to every original coordinate at-
tached to each embedded data point, one can conclude that correlations exist between the ini-
tial and reduced coordinates (color grading or low statistical variance). When the dispersion in-
creases to a large extent, one can infer that the initial coordinate analyzed is not directly corre-
lated (even if it could be correlated in a more complex or combined manner) as discussed.

To prove the generality of these conclusions, Section 4 addresses a more complex scenario. It
deals with the constitutive modeling of materials, particularly those whose behavior depends on
the deformation history of the material.

4. Simple mechanical behaviors

In this section, we consider some simple 1D mechanical behaviors as that depicted in Figure 17.
Figure 18 shows a set of M = 1500 strain–stress pairs yi = {εi ,σi }, i = 1, . . . ,M, related to an
hypothetical 1D elastic–plastic behavior with linear hardening. The depicted points represent
the final mechanical state (strain–stress) of M loading–unloading random trajectories. It can be
noted that with only the information of possible mechanical states, given a strain value, there are
many probable values of permissible stresses and vice versa.

There is nothing physically inconsistent in having multivalued fields, but if one is looking for
single-valued stress, then an extra latent variable must be introduced.

If, as in Section 3, we apply the k-PCA on the dataset yi , i = 1, . . . ,M, as expected, the 2D
manifold appears embedded in the R3 space as depicted in Figure 19. This indicates that three
mechanical variables, stress and strain completed by a latent extra variable p, are mutually
related (e.g., σ=σ(ε, p)), giving rise to a 2D manifold embedded in R3.

As previously discussed, many latent variables could be certainly considered for obtaining for
example a single-valued stress value. Historically, the plastic strain εp , illustrated in Figure 20,
was widely considered as a latent variable. Coloring the reduced points ξi depicted in Figure 19
according to the plastic strain results in the colored manifold shown in Figure 21. This validates
the choice of the plastic strain as a latent variable.

5. Toward alternative representations of the mechanical state

An alternative representation of the mechanical state, avoiding the choice of nonevident latent
variables, consists in assuming that the stress at time t depends on the whole strain history, that
is, on ε(τ), τ≤ t .

When memory effects are neglected, the mechanical state can be described at time t from
the strain and stress increments and the present state of stress–strain. That is, ∀ti = i∆t , yi =
{εi ,σi ,∆σi /∆εi }, where ∆εi has a given magnitude and two possible signs (positive in loading
and negative in unloading).

C. R. Mécanique, 2020, 348, n 10-11, 937-958



Ruben Ibanez et al. 949

Figure 18. Strain–stress mechanical states related to elastic–plastic behavior with linear
hardening.

Figure 19. Elastic–plastic manifold embedded in the 3D space.

Different scenarios can be analyzed:

• Linear elastic regime without plastic strain. In this case, as expected, the slow manifold
constituted by the reduced states ξi related to the mechanical states yi , depicted in
Figure 22, in the 3D space (ξ1,ξ2,ξ3) becomes 1D.

• Nonlinear elastic behavior (with the tangent modulus ET = Eε2) without plastic strain.
In this case, the results are similar to those just discussed. In Figure 23, the nonlinear
behavior can be noted.
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Figure 20. Plastic strain definition (left) and mechanical states yi colored according to the
plastic strain (right).

Figure 21. Manifold colored according to the plastic strain.

• Linear elastic regime with nonzero plastic strain (perfect plasticity—no hardening). In
the present case, in the mechanical state within the elastic domain, we recover from yi a
reduced slow manifold of dimension two as expected, which is depicted in Figure 24.

• Linear elastic regime with nonzero plastic strain (perfect plasticity—no hardening) with
activated damage. In the present case, with respect to the previously discussed scenario,
we presume that the material degrades with the magnitude of the plastic strain and the
tangent modulus decreases accordingly. As Figure 25 depicts, this case is quite similar to
the previous scenario. However, when coloring with respect to the tangent modulus, the
expected uniform degraded map is noted.

• The present case study considers, in addition to the points inside the elastic domain,
another set of mechanical states on the elastic domain boundary with a different
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Figure 22. Slow manifold related to linear elastic behavior and colored according to the
tangent modulus (i.e., ∆σi /∆εi ).

Figure 23. Slow manifold related to nonlinear elastic behavior and colored according to the
tangent modulus (i.e., ∆σi /∆εi ).

instantaneous tangent modulus when loading and unloading. As Figure 26 reveals, the
mechanical manifold is now richer with points on the elastic domain boundary separated
from the elastic manifold. In the solution depicted in Figure 26, damage is not activated.
In the presence of damage, the reduction in elastic tangent modulus scales with the plas-
tic strain. The slow manifold is colored according to the tangent modulus as shown in
Figure 27.

• The last scenario adds an extra richness to the constitutive behavior. At the mechani-
cal states within the elastic domain, the elastic tangent modulus is affected by a latent
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Figure 24. Strain–stress points associated with states within the elastic domain with
nonzero plastic strains (left) and the associated slow manifold colored according to the tan-
gent modulus (right).

Figure 25. Slow manifold related to damageable elastic–plastic behavior operating within
the elastic domain colored according to the tangent modulus.

variable that is the product of the plastic strain with another extra variable. The latter,
which could represent strain-rate sensitivity, is assumed to take arbitrary values here due
to the fact that we are more interested in methodological aspects than in physical con-
siderations. The considered mechanical states are depicted in Figure 28. When apply-
ing the k-PCA to the set of mechanical states yi = {εi ,σi ,∆σi /∆εi }, the resulting mani-
fold remains 3D. As expected, no dimensionality reduction is accomplished as Figure 29
reveals, where many values of the elastic tangent modulus can be found for the same
values of the stress and strain. To investigate the nature of this behavior, we depict in Fig-
ure 30 the elastic tangent modulus versus the plastic strain, where as expected it can be
noted that the former does not depend exclusively on the latter. By applying the k-PCA
to the data shown in Figure 30, which are nonseparable in two dimensions, one expects
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Figure 26. Slow manifold related to elastic–plastic behavior operating within the elastic
domain and on the elastic domain boundary colored according to the tangent modulus.

Figure 27. Slow manifold related to elastic–plastic behavior operating within the elastic
domain and on the elastic domain boundary, colored according to the tangent modulus,
when damage is activated.

to separate them by embedding in a 3D space as previously discussed and as Figure 31
proves. Finally, Figure 32 presents the slow manifold from Figure 31 but now colored with
respect to the plastic strain or the extra latent variable.
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Figure 28. Mechanical states within the elastic domain, colored according to the tangent
modulus, the last depending on the product of two latent variables, the plastic strain, and
another arbitrarily chosen variable.

Figure 29. Slow manifold related to elastic–plastic behavior operating within the elastic
domain, colored according to the tangent modulus, with the last scaling with the product
of the plastic strain and an extra latent variable.

Figure 30. Elastic tangent modulus versus the plastic strain.
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Figure 31. Slow manifold related to the data consisting of the elastic tangent modulus and
the plastic strain.

Figure 32. Slow manifold of the elastic tangent modulus colored according to the plastic
strain (left) and the extra latent variable (right).

6. Conclusion

The present work introduced, tested, and discussed issues related to manifold dimensionality
with two major purposes: (i) first, when too many measurable variables are employed, manifold
learning is able to discard the useless variables; (ii) second and more important, the same
technique can be employed for discovering the necessity of employing and then measuring an
extra latent variable that is able to recover and ensure single-valued outputs. Both issues were
analyzed and discussed in two case studies, one with respect to structural mechanics and the
other with respect to path-dependent material constitutive behaviors.

Indeed, the physical interpretation of the discovered latent variable could imply the introduc-
tion of other measurable variables. This topic should be deeply analyzed.

The main interest in discovering these manifolds is that for a new accessible mechanical state,
the output can be inferred by a simple interpolation from its neighbors on the manifold. The
main aim of the present work is the construction and analysis of these manifolds. Future works,
currently in progress, will focus on their use in performing data-driven simulations.
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Appendix A. From principal component analysis to its kernel-based counterpart

A.1. Principal component analysis

Let us consider a vector y ∈RD containing experimental results or synthetic data from a numeri-
cal simulation. These results are often referred to as snapshots. If they are obtained by numerical
simulation, they consist of nodal values of the essential variable. Therefore, these variables will
be somehow correlated and, notably, there will be a linear transformation W defining the vector
ξ ∈Rd , with d < D , which contains the still unknown latent variables, such that

y = Wξ. (11)

The D ×d transformation matrix W, which satisfies the orthogonality condition WT W = Id , is
the main ingredient of the PCA [8].

Assume that there exist M different snapshots y1, . . . ,yM, which we store in the columns of a D×M
matrix Y. The associated d ×M reduced matrixΞ contains the associated vectors ξi , i = 1, . . . ,M.

The PCA usually works with centered variables. In other words,




M∑
i=1

yi = 0,

M∑
i=1

ξi = 0,

(12)

implying the necessity of centering data before applying the PCA.
The PCA proceeds by guaranteeing maximal preserved variance and minimal correlation in

the latent variable set ξ. The latent variables in ξ are therefore uncorrelated, and consequently
the covariance matrix of ξ,

Cξξ = E{ΞΞT }, (13)

should be diagonal.
To extract the d uncorrelated latent variables, we proceed from

Cy y = E{YYT } = E{WΞΞT WT } = WE{ΞΞT }WT = WCξξWT . (14)

Pre- and post-multiplying by WT and W, respectively, and making use of the fact that WT W = I,
give us

Cξξ = WT Cy y W. (15)

The covariance matrix Cy y can then be factorized by applying the singular value decomposi-
tion,

Cy y = VΛVT , (16)
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where V contains the orthonormal eigenvectors; Λ is a diagonal matrix containing the eigenval-
ues sorted in descending order.

Substituting (16) into (15), we arrive at

Cξξ = WT VΛVT W. (17)

This equality holds when the d columns of W are taken to be collinear with d columns of V.
We then preserve the eigenvectors associated with the d nonzero eigenvalues,

W = VID×d , (18)

which gives

Cξξ = Id×DΛID×d . (19)

We therefore conclude that the eigenvalues in Λ represent the variance of the latent variables
(diagonal entries of Cξξ).

A.2. Multidimensional scaling

The PCA works with the covariance matrix of the experimental results, YYT . However, the MDS
works with the Gram matrix containing scalar products (i.e., S = YT Y) [8].

The MDS preserves pairwise scalar products:

S = YT Y =ΞT WT WΞ=ΞTΞ. (20)

Computing the eigenvalues of S, we arrive at

S = UΛUT = (UΛ1/2)(Λ1/2UT ) = (Λ1/2UT )T (Λ1/2UT ), (21)

which in turn gives

Ξ= Id×MΛ
1/2UT . (22)

A.3. Kernel-based principal component analysis

The k-PCA is based on the fact that data not linearly separable in D dimensions could be linearly
separated if they are previously projected to a space in Q > D dimensions. However, the true
advantage arises from the fact that it is not necessary to write down the analytical expression of
that mapping.

The symmetric matrixΦ= ZT Z, with Z containing the snapshots zi ∈RQ , i = 1, . . . ,M, associated
with yi ∈ RD , has to be decomposed into eigenvalues and eigenvectors. The procedure for
centering data zi is carried out in an implicit way.

The eigenvector decomposition reads as

Φ= UΛUT , (23)

giving rise to

Ξ= Id×MΛ
1/2UT . (24)

The difficulties of operating in a high-dimensional space of dimension, in general, Q À D ,
and the mapping unavailability are circumvented by introducing the kernel functional κ (also
known as the kernel trick). This allows computing scalar products in RQ while operating in RD by
applying the Mercer theorem. This theorem establishes that if κ(u,v) (where u ∈ RD and v ∈ RD )
is continuous, symmetric, and positive definite, then it defines an inner product in the mapped
space RQ . Many different kernels exist; some of them are reported in [8].
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