logo CRAS
Comptes Rendus. Mécanique
Mécanique des solides numériques
Optimal influence cover for an element free Galerkin MFree method based on artificial neural network
Comptes Rendus. Mécanique, Tome 348 (2020) no. 1, pp. 63-76.

The present investigation presents an efficient meshless method based on the weak form of an element-free-Galerkin method. The formulation of the numerical solution was conducted using an artificial neural network (ANN) approach to compute the optimal number of nodes in the influence domain for each point of interest. The numerical results using the ANN model were tested and compared with different approaches in the literature. Results show a reduction in the computational cost and an enhancement in an error criterion of up to 11%.

Reçu le : 2019-07-04
Révisé le : 2019-09-10
Accepté le : 2019-11-29
Publié le : 2020-03-30
DOI : https://doi.org/10.5802/crmeca.5
Mots clés: Meshless methods, Element free Galerkin, Influence domain, Artificial neural network
@article{CRMECA_2020__348_1_63_0,
     author = {Imane Hajjout and Manal Haddouch and El Mostapha Boudi},
     title = {Optimal influence cover for an element free Galerkin MFree method based on artificial neural network},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {1},
     year = {2020},
     pages = {63-76},
     doi = {10.5802/crmeca.5},
     language = {en},
     url = {comptes-rendus.academie-sciences.fr/mecanique/item/CRMECA_2020__348_1_63_0/}
}
Imane Hajjout; Manal Haddouch; El Mostapha Boudi. Optimal influence cover for an element free Galerkin MFree method based on artificial neural network. Comptes Rendus. Mécanique, Tome 348 (2020) no. 1, pp. 63-76. doi : 10.5802/crmeca.5. https://comptes-rendus.academie-sciences.fr/mecanique/item/CRMECA_2020__348_1_63_0/

[1] T. Mnasri; R. B. Younès; A. Mazioud; J. F. Durastanti FVM-BEM method based on the Green’s function theory for the heat transfer problem in buried co-axial exchanger, C. R. Mécanique, Tome 338 (2010) no. 4, pp. 220-229 | Article | Zbl 1300.80003

[2] B. Ullah (“Structural topology optimisation based on the Boundary Element and Level Set methods”, Thesis, Durham University, May 2014)

[3] P. Profizi; A. Combescure; K. Ogawa SPH modeling of adhesion in fast dynamics: Application to the Cold Spray process, C. R. Méc., Tome 344 (2016) no. 4, pp. 211-224 | Article

[4] Y. Lu; T. Belytschko; L. Gu A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Eng., Tome 113 (1994) no. 3–4, pp. 397-414 | Article | MR 1271012 | Zbl 0847.73064

[5] L. B. Lucy A numerical approach to the testing of the fission hypothesis, Astron. J., Tome 82 (1977), pp. 1013-1024 | Article

[6] B. Nayroles; G. Touzot; P. Villon Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., Tome 10 (1992) no. 5, pp. 307-318 | Article | MR 3850447 | Zbl 0764.65068

[7] W. K. Liu; S. Jun; Y. F. Zhang Reproducing kernel particle methods, Int. J. Numer. Methods Fluids, Tome 20 (1995) no. 8-9, pp. 1081-1106 | Article | MR 1333917 | Zbl 0881.76072

[8] S. N. Atluri; H.-G. Kim; J. Y. Cho A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods, Comput. Mech., Tome 24 (1999) no. 5, pp. 348-372 | Article | Zbl 0977.74593

[9] G. Liu; Y. Gu A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids, J. Sound Vib., Tome 246 (2001) no. 1, pp. 29-46 | Article

[10] G.-R. Liu; Y. Gu A point interpolation method for two-dimensional solids, Int. J. Numer. Methods Eng., Tome 50 (2001) no. 4, pp. 937-951 | Article | Zbl 1050.74057

[11] T. Belytschko; Y. Y. Lu; L. Gu Element-free Galerkin methods, Int. J. Numer. Methods Eng., Tome 37 (1994) no. 2, pp. 229-256 | Article | MR 1256818 | Zbl 0796.73077

[12] S.-H. Lee; Y.-C. Yoon An improved crack analysis technique by element-free Galerkin method with auxiliary supports, Int. J. Numer. Methods Eng., Tome 56 (2003) no. 9, pp. 1291-1314 | Article | Zbl 1106.74426

[13] Y. Belaasilia; A. Timesli; B. Braikat; M. Jamal A numerical mesh-free model for elasto-plastic contact problems, Eng. Anal. Bound. Elem., Tome 82 (2017), pp. 68-78 | Article | MR 3680475 | Zbl 1403.74016

[14] W. Khan; S. Ul-Islam; B. Ullah Analysis of meshless weak and strong formulations for boundary value problems, Eng. Anal. Bound. Elem., Tome 80 (2017), pp. 1-17 | Article | MR 3656433 | Zbl 1403.65163

[15] P. Lancaster; K. Salkauskas Surface generated by moving least squares methods, Math. Comput., Tome 37 (1981) no. 155, pp. 141-158 | Article | MR 616367 | Zbl 0469.41005

[16] I. Hajjout; M. Haddouch; E. M. Boudi An optimal radius of influence domain in element-free Galerkin method, 2018 6th International Renewable and Sustainable Energy Conference (IRSEC) (A. ElHibaoui; M. Essaaidi; Y. Zaz, eds.), IEEE, 345 E 47TH ST, New York, NY 10017 USA, 2018, pp. 911-914

[17] J. Dolbow; T. Belytschko An introduction to programming the meshless element free Galerkin method, Arch. Comput. Methods Eng., Tome 207-241 (1998) no. 5, pp. 207-241 | Article | MR 1655907

[18] X. Zhuang; C. Heaney; C. Augarde On error control in the element-free Galerkin method, Eng. Anal. Bound. Elem., Tome 36 (2012) no. 3, pp. 351-360 | Article | MR 2868637 | Zbl 1245.65161

[19] G. Liu; Z. Tu An adaptive procedure based on background cells for meshless methods, Comput. Methods Appl. Mech. Eng., Tome 191 (2002) no. 17-18, pp. 1923-1943 | Article | Zbl 1098.74738

[20] X. Zhang; P. Zhang; L. Zhang A simple technique to improve computational efficiency of meshless methods, Procedia Eng., Tome 31 (2012), pp. 1102-1107 | Article

[21] Y. Cai; H. Zhu Independent cover meshless method using a polynomial approximation, Int. J. Fract., Tome 203 (2017) no. 1-2, pp. 63-80 | Article

[22] M. Sheng; G. Li; S. Shah A modified method to determine the radius of influence domain in element-free Galerkin method, Proc. Inst. Mech. Eng. C, Tome 229 (2015) no. 5, pp. 795-805 | Article

[23] R. Rossi; M. K. Alves An h-adaptive modified element-free Galerkin method, Eur. J. Mech. - A, Tome 24 (2005) no. 5, pp. 782-799 | Article | MR 2174321 | Zbl 1125.74384

[24] S. Fernández-Méndez; A. Huerta Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng., Tome 193 (2004) no. 12-14, pp. 1257-1275 | Article | MR 2045519 | Zbl 1060.74665

[25] W. Khan; S. Ul-Islam; B. Ullah Structural optimization based on meshless element free Galerkin and level set methods, Comput. Methods Appl. Mech. Eng., Tome 344 (2019), pp. 144-163 | Article | MR 3872759

[26] L. G.R; G. Y.T An Introduction to Meshfree Methods and Their Programming, Springer-Verlag, Berlin/Heidelberg, 2005

[27] H.-J. Chung; T. Belytschko An error estimate in the EFG method, Comput. Mech., Tome 21 (1998) no. 2, pp. 91-100 | Article | MR 1616071 | Zbl 0910.73060

[28] S. Timoshenko; J. N. Goodier Theory of Elasticity, Engineering Societies Monographs, 1951 | Zbl 0045.26402

[29] D. D. Cox; T. Dean Neural networks and neuroscience-inspired computer vision, Curr. Biol., Tome 24 (2014) no. 18, p. R921-R929 | Article

[30] J. S. R. Jang ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern., Tome 23 (1993) no. 3, pp. 665-685 | Article

[31] V. Vapnik The Nature of Statistical Learning Theory, Springer-Verlag, New York, 2000 | Article | Zbl 0934.62009

[32] H. You; Z. Ma; Y. Tang; Y. Wang; J. Yan; M. Ni; K. Cen; Q. Huang Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators, Waste Manag., Tome 68 (2017), pp. 186-197 | Article

[33] D. P. Kingma; J. Ba (Adam: a method for stochastic optimization, arXiv:1412.6980 [cs] (2014))