logo CRAS
Comptes Rendus. Mécanique
On stability of non-inflectional elastica
Comptes Rendus. Mécanique, Tome 348 (2020) no. 2, pp. 137-148.

This study considers the stability of a non-inflectional elastica under a conservative end force subject to the Dirichlet, mixed, and Neumann boundary conditions. It is demonstrated that the non-inflectional elastica subject to the Dirichlet boundary conditions is unconditionally stable, while for the other two boundary conditions, sufficient criteria for stability depend on the signs of the second derivatives of the tangent angle at the endpoints.

Reçu le : 2018-12-17
Révisé le : 2019-04-05
Accepté le : 2019-12-02
Publié le : 2020-06-24
DOI : https://doi.org/10.5802/crmeca.2
Mots clés: Elasticity, Non-inflectional elastica, Stability
     author = {Milan Batista},
     title = {On stability of non-inflectional elastica},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {2},
     year = {2020},
     pages = {137-148},
     doi = {10.5802/crmeca.2},
     language = {en},
     url = {comptes-rendus.academie-sciences.fr/mecanique/item/CRMECA_2020__348_2_137_0/}
Milan Batista. On stability of non-inflectional elastica. Comptes Rendus. Mécanique, Tome 348 (2020) no. 2, pp. 137-148. doi : 10.5802/crmeca.2. https://comptes-rendus.academie-sciences.fr/mecanique/item/CRMECA_2020__348_2_137_0/

[1] T. Lessinnes; A. Goriely Geometric conditions for the positive definiteness of the second variation in one-dimensional problems, Nonlinearity, Volume 30 (2017), pp. 2023-2062 | Article | MR 3639299 | Zbl 1383.49031

[2] A. E. H. Love A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944 | MR 10851 | Zbl 0063.03651

[3] M. Batista Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions, Int. J. Solids Struct., Volume 51 (2014), pp. 2308-2326 | Article

[4] V. G. A. Goss Snap Buckling, Writhing and Loop Formation in Twisted Rods, Center for Nonlinear Dynamics, University Collage London, 2003

[5] W. P. Reinhardt; P. L. Walker Jacobian elliptic functions, NIST Handbook of Mathematical Functions (F. W. J. Olver, ed.), Cambridge University Press, NIST, Cambridge; New York, 2010 (pp. xv, 951 p)

[6] R. I. Leine The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability, Nonlinear Dynam., Volume 59 (2010), pp. 173-182 | Article | MR 2585284 | Zbl 1183.70002

[7] H. H. E. Leipholz Stability Theory an Introduction to the Stability of Dynamic Systems and Rigid Bodies, Stuttgart B. G. Teubner and John Wiley & Sons, Chichester a.o., 1987

[8] C. Fox An Introduction to the Calculus of Variations, Oxford University Press, London, 1954 | Zbl 0041.42801

[9] I. M. Gelfand; S. V. Fomin Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963 | Zbl 0127.05402

[10] M. Born (“Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum: unter verschiedenen Grenzbedingungen”, PhD Thesis, University of Gottingen, 1906)