Comptes Rendus
Hommage to the man and his career
Ramblings (Memoirs) of a scientist
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 401-422.

This paper is a faithful description of the author’s career as a scientist, which often intersected that of Yves Couder. The emphasis of this paper is a true description of how the science that the author has been associated with really came about. Included are brief descriptions of the science associated with the research paths described. It is hoped that this rather accurate account may be amusing for the senior scientists among us and educational (and possibly useful) for younger scientists.

Publié le :
DOI : 10.5802/crmeca.26
Mots clés : Nonlinear physics, Fracture, Friction, Earthquakes
Jay Fineberg 1

1 The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_6-7_401_0,
     author = {Jay Fineberg},
     title = {Ramblings {(Memoirs)} of a scientist},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {401--422},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.26},
     language = {en},
}
TY  - JOUR
AU  - Jay Fineberg
TI  - Ramblings (Memoirs) of a scientist
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 401
EP  - 422
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.26
LA  - en
ID  - CRMECA_2020__348_6-7_401_0
ER  - 
%0 Journal Article
%A Jay Fineberg
%T Ramblings (Memoirs) of a scientist
%J Comptes Rendus. Mécanique
%D 2020
%P 401-422
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.26
%G en
%F CRMECA_2020__348_6-7_401_0
Jay Fineberg. Ramblings (Memoirs) of a scientist. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 401-422. doi : 10.5802/crmeca.26. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.26/

[1] J. Fineberg Monopole pair production in compact U(1), Phys. Lett. B, Volume 158 (1985) no. 2, pp. 135-139 | DOI

[2] G. Ahlers; D. S. Cannell; V. Steinberg Time-dependence of flow patterns near the convective threshold in a cylindrical container, Phys. Rev. Lett., Volume 54 (1985) no. 13, pp. 1373-1376 | DOI

[3] G. Ahlers; R. P. Behringer Evolution of turbulence From Rayleigh–Benard instability, Phys. Rev. Lett., Volume 40 (1978) no. 11, pp. 712-716 | DOI

[4] J. Fineberg; V. Steinberg Vortex-front propagation in Rayleigh–Benard convection, Phys. Rev. Lett., Volume 58 (1987) no. 13, pp. 1332-1335 | DOI

[5] G. Dee; J. S. Langer Propagating pattern selection, Phys. Rev. Lett., Volume 50 (1983) no. 6, pp. 383-386 | DOI

[6] E. Moses; J. Fineberg; V. Steinberg Multistability and confined traveling-wave patterns in a convecting binary mixture, Phys. Rev. A, Volume 35 (1987) no. 6, pp. 2757-2760 | DOI

[7] J. Fineberg; E. Moses; V. Steinberg Spatially and temporally modulated traveling-wave pattern in convecting binary-mixtures, Phys. Rev. Lett., Volume 61 (1988) no. 7, pp. 838-841 | DOI

[8] M. Marder; J. Fineberg How things break, Phys. Today, Volume 49 (1996) no. 9, pp. 24-29 | DOI

[9] J. Fineberg; S. P. Gross; M. Marder; H. L. Swinney Instability in dynamic fracture, Phys. Rev. Lett., Volume 67 (1991) no. 4, pp. 457-460 | DOI

[10] D. P. Lathrop; J. Fineberg; H. L. Swinney Transition to shear-driven turbulence in Couette–Taylor flow, Phys. Rev. A, Volume 46 (1992) no. 10, pp. 6390-6405 | DOI

[11] W. S. Edwards; S. Fauve Patterns and quasi-patterns in the faraday experiment, J. Fluid Mech., Volume 278 (1994), pp. 123-148 | DOI | MR

[12] O. Lioubashevski; H. Arbell; J. Fineberg Dissipative solitary states in driven surface waves, Phys. Rev. Lett., Volume 76 (1996) no. 21, pp. 3959-3962 | DOI

[13] E. Fort; A. Eddi; A. Boudaoud; J. Moukhtar; Y. Couder Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | DOI

[14] P. B. Umbanhowar; F. Melo; H. L. Swinney Localized excitations in a vertically vibrated granular layer, Nature, Volume 382 (1996) no. 6594, pp. 793-796 | DOI

[15] H. Arbell; J. Fineberg Temporally harmonic oscillons in Newtonian fluids, Phys. Rev. Lett., Volume 85 (2000) no. 4, pp. 756-759 | DOI

[16] O. Lioubashevski; Y. Hamiel; A. Agnon; Z. Reches; J. Fineberg Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension, Phys. Rev. Lett., Volume 83 (1999) no. 16, pp. 3190-3193 | DOI

[17] H. Arbell; J. Fineberg Pattern formation in two-frequency forced parametric waves, Phys. Rev. E, Volume 65 (2002) no. 3, 2A

[18] T. Epstein; J. Fineberg Necessary conditions for mode interactions in parametrically excited waves, Phys. Rev. Lett., Volume 100 (2008) no. 13 | DOI

[19] I. Shani; G. Cohen; J. Fineberg Localized instability on the route to disorder in Faraday waves, Phys. Rev. Lett., Volume 104 (2010) no. 18 | DOI

[20] E. Sharon; S. P. Gross; J. Fineberg Local crack branching as a mechanism for instability in dynamic fracture, Phys. Rev. Lett., Volume 74 (1995) no. 25, pp. 5096-5099 | DOI

[21] E. Sharon; S. P. Gross; J. Fineberg Energy dissipation in dynamic fracture, Phys. Rev. Lett., Volume 76 (1996) no. 12, pp. 2117-2120 | DOI

[22] J. W. Morrissey; J. R. Rice Crack front waves, J. Mech. Phys. Solids, Volume 46 (1998) no. 3, pp. 467-487 | DOI | MR | Zbl

[23] S. Ramanathan; D. S. Fisher Dynamics and instabilities of planar tensile cracks in heterogeneous media, Phys. Rev. Lett., Volume 79 (1997) no. 5, pp. 877-880 | DOI

[24] E. Sharon; G. Cohen; J. Fineberg Propagating solitary waves along a rapidly moving crack front, Nature, Volume 410 (2001) no. 6824, pp. 68-71 | DOI

[25] A. Sagy; Z. Reches; J. Fineberg Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones, Nature, Volume 418 (2002) no. 6895, pp. 310-313 | DOI

[26] A. Sagy; J. Fineberg; Z. Reches Shatter cones: Branched, rapid fractures formed by shock impact, J. Geophys. Res.-Solid Earth, Volume 109 (2004) no. B10 | DOI

[27] A. Livne; G. Cohen; J. Fineberg Universality and hysteretic dynamics in rapid fracture, Phys. Rev. Lett., Volume 94 (2005) no. 22 | DOI

[28] A. Livne; E. Bouchbinder; J. Fineberg Breakdown of linear elastic fracture mechanics near the tip of a rapid crack, Phys. Rev. Lett., Volume 101 (2008) no. 26 | DOI

[29] E. Bouchbinder; A. Livne; J. Fineberg Weakly nonlinear theory of dynamic fracture, Phys. Rev. Lett., Volume 101 (2008) no. 26 | DOI

[30] T. Goldman; A. Livne; J. Fineberg Acquisition of inertia by a moving crack, Phys. Rev. Lett., Volume 104 (2010) no. 11 | DOI

[31] M. Marder New dynamic equation for cracks, Phys. Rev. Lett., Volume 66 (1991) no. 19, pp. 2484-2487 | DOI | MR | Zbl

[32] A. Livne; E. Bouchbinder; I. Svetlizky; J. Fineberg The near-tip fields of fast cracks, Science, Volume 327 (2010) no. 5971, pp. 1359-1363 | DOI | MR | Zbl

[33] E. Bouchbinder; J. Fineberg; M. Marder Dynamics of simple cracks, Annual Review of Condensed Matter Physics, Vol 1 (J. S. Langer, ed.) (Annual Review of Condensed Matter Physics), Volume 1, 2010, pp. 371-395 | DOI

[34] T. Goldman; R. Harpaz; E. Bouchbinder; J. Fineberg Intrinsic nonlinear scale governs oscillations in rapid fracture, Phys. Rev. Lett., Volume 108 (2012) no. 10 | DOI

[35] E. Bouchbinder; T. Goldman; J. Fineberg The dynamics of rapid fracture: instabilities, nonlinearities and length scales, Rep. Prog. Phys., Volume 77 (2014) no. 4 | DOI | MR

[36] C.-H. Chen; E. Bouchbinder; A. Karma Instability in dynamic fracture and the failure of the classical theory of cracks, Nat. Phys., Volume 13 (2017) no. 12, p. 1186+ | DOI

[37] T. G. Boue; G. Cohen; J. Fineberg Origin of the microbranching instability in rapid cracks, Phys. Rev. Lett., Volume 114 (2015) no. 5

[38] I. Kolvin; G. Cohen; J. Fineberg Crack front dynamics: the interplay of singular geometry and crack instabilities, Phys. Rev. Lett., Volume 114 (2015) no. 17 | DOI

[39] I. Kolvin; J. Fineberg; M. Adda-Bedia Nonlinear focusing in dynamic crack fronts and the microbranching transition, Phys. Rev. Lett., Volume 119 (2017) no. 21 | DOI

[40] I. Kolvin; G. Cohen; J. Fineberg Topological defects govern crack front motion and facet formation on broken surfaces, Nat. Mater., Volume 17 (2018) no. 2, p. 140+ | DOI

[41] J. P. Gong; Y. Katsuyama; T. Kurokawa; Y. Osada Double-network hydrogels with extremely high mechanical strength, Adv. Mater., Volume 15 (2003) no. 14, p. 1155+ | DOI

[42] I. Kolvin; J. M. Kolinski; J. P. Gong; J. Fineberg How supertough gels break, Phys. Rev. Lett., Volume 121 (2018) no. 13 | DOI

[43] S. M. Rubinstein; G. Cohen; J. Fineberg Detachment fronts and the onset of dynamic friction, Nature, Volume 430 (2004) no. 7003, pp. 1005-1009 | DOI

[44] O. Ben-David; G. Cohen; J. Fineberg The dynamics of the onset of frictional slip, Science, Volume 330 (2010) no. 6001, pp. 211-214 | DOI

[45] O. Ben-David; J. Fineberg Static friction coefficient is not a material constant, Phys. Rev. Lett., Volume 106 (2011) no. 25 | DOI

[46] I. Svetlizky; J. Fineberg Classical shear cracks drive the onset of dry frictional motion, Nature, Volume 509 (2014) no. 7499, p. 205+ | DOI

[47] I. Svetlizky; D. S. Kammer; E. Bayart; G. Cohen; J. Fineberg Brittle fracture theory predicts the equation of motion of frictional rupture fronts, Phys. Rev. Lett., Volume 118 (2017) no. 12 | DOI

[48] E. Bayart; I. Svetlizky; J. Fineberg Rupture dynamics of heterogeneous frictional interfaces, J. Geophys. Res.-Solid Earth, Volume 123 (2018) no. 5, pp. 3828-3848

[49] E. Bayart; I. Svetlizky; J. Fineberg Slippery but tough: the rapid fracture of lubricated frictional interfaces, Phys. Rev. Lett., Volume 116 (2016) no. 19

[50] E. Bayart; I. Svetlizky; J. Fineberg Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion, Nat. Phys., Volume 12 (2016) no. 2, p. 166+

[51] J. Weertman Unstable slippage across a fault that separates elastic media of different elastic constants, J. Mech. Phys. Solids, Volume 11 (1963) no. NB3, pp. 197-204

[52] J. Weertman Unstable slippage across a fault that separates elastic media of different elastic-constants, J. Geophys. Res., Volume 85 (1980) no. NB3, pp. 1455-1461 | DOI

[53] J. P. Ampuero; Y. Ben-Zion Cracks, pulses and macroscopic asymmetry of dynamic rupture on a bimaterial interface with velocity-weakening friction, Geophys. J. Int., Volume 173 (2008) no. 2, pp. 674-692 | DOI

[54] Z. Q. Shi; Y. Ben-Zion Dynamic rupture on a bimaterial interface governed by slip-weakening friction, Geophys. J. Int., Volume 165 (2006) no. 2, pp. 469-484 | DOI

[55] H. Shlomai; J. Fineberg The structure of slip-pulses and supershear ruptures driving slip in bimaterial friction, Nat. Commun., Volume 7 (2016) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Correspondence between de Saint-Venant and Boussinesq 2: Boussinesq’s professional and private life up to 1886

Willi H. Hager; Kolumban Hutter; Oscar Castro-Orgaz

C. R. Méca (2020)