Comptes Rendus
Turbulence
Vortex filaments and quantum turbulence
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 501-508.

Après avoir donné mes souvenirs personnels de ma collaboration au début des années 90 avec Yves Couder sur le sujet des filaments vortex dans la turbulence classique, je soutiens que les connaissances actuelles sur la turbulence quantique peuvent être utilisées pour éclairer le problème de l’explosion des filaments classiques.

After giving my personal recollections of my collaboration in the early 90’s with Yves Couder on the subject of vortex filaments in classical turbulence I argue that current insights in quantum turbulence can be used to shed some light on the problem of classical filaments blowup.

Publié le :
DOI : 10.5802/crmeca.41
Keywords: Turbulence, Superfluidity, Counterflow, Vortex breakdown, Reconnection
Mots clés : Turbulence, Superfuidité, Contre-Écoulement, Eclatement tourbillonaire, Reconnexion
Marc Brachet 1

1 Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université Université de Paris, 24 Rue Lhomond, 75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_6-7_501_0,
     author = {Marc Brachet},
     title = {Vortex filaments and quantum turbulence},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {501--508},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.41},
     language = {en},
}
TY  - JOUR
AU  - Marc Brachet
TI  - Vortex filaments and quantum turbulence
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 501
EP  - 508
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.41
LA  - en
ID  - CRMECA_2020__348_6-7_501_0
ER  - 
%0 Journal Article
%A Marc Brachet
%T Vortex filaments and quantum turbulence
%J Comptes Rendus. Mécanique
%D 2020
%P 501-508
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.41
%G en
%F CRMECA_2020__348_6-7_501_0
Marc Brachet. Vortex filaments and quantum turbulence. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 501-508. doi : 10.5802/crmeca.41. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.41/

[1] A. N. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very high Reynolds numbers, Dokl. Akad. Nauk SSSR, Volume 30 (1941), pp. 9-13

[2] A. N. Kolmogorov Decay of isotropic turbulence in an incompressible viscous fluid, Dokl. Akad. Nauk SSSR, Volume 31 (1941), pp. 538-540

[3] A. N. Kolmogorov Energy dissipation in locally isotropic turbulence, Dokl. Akad. Nauk SSSR, Volume 32 (1941), pp. 16-18 | Zbl

[4] H. L. Grant; R. W. Stewart; A. Moilliet Turbulence spectra from a tidal channel, J. Fluid Mech., Volume 12 (1962) no. 2, pp. 241-268 | DOI | Zbl

[5] M. Brachet Géométrie des structures à petite échelle dans le vortex de Taylor–Green, C. R. Acad. Sci. Paris II, Volume 311 (1990), p. 775 | Zbl

[6] M. E. Brachet Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dyn. Res., Volume 8 (1991) no. 1–4, pp. 1-8 | DOI

[7] G. I. Taylor; A. E. Green Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. A, Volume 158 (1937), p. 499 | Zbl

[8] M. Brachet Intégration numérique des équations de Navier–Stokes en régime de turbulence développée, C. R. Acad. Sci. Paris, Volume 294 (1982), pp. 537-540 | MR | Zbl

[9] M. E. Brachet; D. I. Meiron; S. A. Orszag; B. G. Nickel; R. H. Morf; U. Frisch Small-scale structure of the Taylor–Green vortex, J. Fluid Mech., Volume 130 (1983), pp. 411-452 | DOI | Zbl

[10] Z.-S. She; E. Jackson; S. A. Orszag Intermittent vortex structures in homogeneous isotropic turbulence, Nature, Volume 344 (1990) no. 6263, pp. 226-228 | DOI

[11] S. Douady; Y. Couder; M. E. Brachet Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991), p. 983 | DOI

[12] O. Cadot; S. Douady; Y. Couder Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow, Phys. Fluids, Volume 7 (1995) no. 3, pp. 630-646 | DOI

[13] E. J. Hopfinger; F. K. Browand; Y. Gagne Turbulence and waves in a rotating tank, J. Fluid Mech., Volume 125 (1982), pp. 505-534 | DOI

[14] S. Fauve; C. Laroche; B. Castaing Pressure fluctuations in swirling turbulent flows, J. Phys. II France, Volume 3 (1993) no. 3, pp. 271-278 | DOI

[15] P. Abry; S. Fauve; P. Flandrin; C. Laroche Analysis of pressure fluctuations in swirling turbulent flows, J. Phys. II France, Volume 4 (1994) no. 5, pp. 725-733 | DOI

[16] A. Pumir A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence, Phys. Fluids, Volume 6 (1994) no. 6, pp. 2071-2083 | DOI | MR | Zbl

[17] P. Tabeling; G. Zocchi; F. Belin; J. Maurer; H. Willaime Probability density functions, skewness, and flatness in large Reynolds number turbulence, Phys. Rev. E, Volume 53 (1996), pp. 1613-1621 | DOI

[18] R. Monchaux; M. Berhanu; M. Bourgoin; M. Moulin; Ph. Odier; J.-F. Pinton; R. Volk; S. Fauve; N. Mordant; F. Pétrélis; A. Chiffaudel; F. Daviaud; B. Dubrulle; C. Gasquet; L. Marié; F. Ravelet Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007) (044502) | DOI

[19] M. Berhanu; R. Monchaux; S. Fauve; N. Mordant; F. Pétrélis; A. Chiffaudel; F. Daviaud; B. Dubrulle; L. Marié; F. Ravelet; M. Bourgoin; Ph. Odier; J.-F. Pinton; R. Volk Magnetic field reversals in an experimental turbulent dynamo, Europhys. Lett., Volume 77 (2007) no. 5 (59001) | DOI

[20] B. Rousset; P. Bonnay; P. Diribarne; A. Girard; J. M. Poncet; E. Herbert; J. Salort; C. Baudet; B. Castaing; L. Chevillard; F. Daviaud; B. Dubrulle; Y. Gagne; M. Gibert; B. Hébral; Th. Lehner; P.-E. Roche; B. Saint-Michel; M. Bon Mardion Superfluid high Reynolds von Kármán experiment, Rev. Sci. Instrum., Volume 85 (2014) no. 10 (103908) | DOI

[21] U. Frisch Turbulence, the Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995 | Zbl

[22] M. Abid; M. Brachet; J. Maurer; C. Nore; P. Tabeling Experimental and numerical investigations of low-temperature superfluid turbulence, Eur. J. Mech. (B)/Fluids, Volume 17 (1998) no. 4, pp. 665-675 | DOI | Zbl

[23] J. Maurer; P. Tabeling Local investigation of superfluid turbulence, Europhys. Lett., Volume 43 (1998) no. 1, pp. 29-34 | DOI

[24] M. Abid; C. Huepe; S. Metens; C. Nore; C. T. Pham; L. S. Tuckerman; M. E. Brachet Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res., Volume 33 (2003) no. 5–6, p. 509 | DOI | MR | Zbl

[25] M. Brachet Gross–Pitaevskii description of superfluid dynamics at finite temperature: a short review of recent results, C. R. Phys., Volume 13 (2012) no. 9, pp. 954-965 | DOI

[26] N. G. Berloff; M. Brachet; N. P. Proukakis Modeling quantum fluid dynamics at nonzero temperatures, Proc. Natl Acad. Sci. USA, Volume 111 (2014), pp. 4675-4682 | DOI | MR | Zbl

[27] C. Nore; M. Brachet; S. Fauve Numerical study of hydrodynamics using the nonlinear Schrödinger equation, Physica D, Volume 65 (1993), pp. 154-162 | DOI | Zbl

[28] O. Lucca-Negro; T. O’Doherty Vortex breakdown: a review, Progr. Energy Combust. Sci., Volume 27 (2001) no. 4, pp. 431-481 | DOI

[29] P. Clark di Leoni; P. D. Mininni; M. E. Brachet Helicity, topology, and Kelvin waves in reconnecting quantum knots, Phys. Rev. A, Volume 94 (2016) (043605)

[30] C. Nore; M. Abid; M. E. Brachet Decaying Kolmogorov turbulence in a model of superflow, Phys. Fluids, Volume 9 (1997) no. 9, pp. 2644-2669 | DOI | MR | Zbl

[31] C. Nore; M. Abid; M. Brachet Kolmogorov turbulence in low-temperature superflows, Phys. Rev. Lett., Volume 78 (1997) no. 20, pp. 3896-3899 | DOI

[32] J. Clyne; P. Mininni; A. Norton; M. Rast Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation, New J. Phys., Volume 9 (2007), p. 301 | DOI

[33] P. Clark di Leoni; P. D. Mininni; M. E. Brachet Dual cascade and dissipation mechanisms in helical quantum turbulence, Phys. Rev. A, Volume 95 (2017) (053636)

[34] K. P. Iyer; K. R. Sreenivasan; P. K. Yeung Reynolds number scaling of velocity increments in isotropic turbulence, Phys. Rev. E, Volume 95 (2017) (021101)

[35] K. P. Iyer; K. R. Sreenivasan; P. K. Yeung Scaling exponents saturate in three-dimensional isotropic turbulence, Phys. Rev. Fluids, Volume 5 (2020) no. 5 (054605)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Linear and non-linear features of the Taylor–Green dynamo

Yannick Ponty; Pablo D. Mininni; Jean-Philipe Laval; ...

C. R. Phys (2008)


Interplay between experimental and numerical approaches in the fluid dynamo problem

Jacques Léorat; Caroline Nore

C. R. Phys (2008)


Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results

Marc Brachet

C. R. Phys (2012)