Comptes Rendus
Biology and Mechanics
Yves Couder: Putting mechanics back into the shoot apical meristem
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 679-684.

In 2008, we published an article proposing that the microtubular cytoskeleton in plants use maximal tensile stress directions to guide organ growth []. Yves Couder was instrumental in that project. Here are some memories and prospects from this collaborative and interdisciplinary endeavor.

Publié le :
DOI : 10.5802/crmeca.19
Mots clés : Morphogenesis, Mechanical stress, Microtubules, Interdisciplinary research, Plant development
Jan Traas 1 ; Olivier Hamant 1

1 Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342, Lyon, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_6-7_679_0,
     author = {Jan Traas and Olivier Hamant},
     title = {Yves {Couder:} {Putting} mechanics back into the shoot apical meristem},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {679--684},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.19},
     language = {en},
}
TY  - JOUR
AU  - Jan Traas
AU  - Olivier Hamant
TI  - Yves Couder: Putting mechanics back into the shoot apical meristem
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 679
EP  - 684
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.19
LA  - en
ID  - CRMECA_2020__348_6-7_679_0
ER  - 
%0 Journal Article
%A Jan Traas
%A Olivier Hamant
%T Yves Couder: Putting mechanics back into the shoot apical meristem
%J Comptes Rendus. Mécanique
%D 2020
%P 679-684
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.19
%G en
%F CRMECA_2020__348_6-7_679_0
Jan Traas; Olivier Hamant. Yves Couder: Putting mechanics back into the shoot apical meristem. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 679-684. doi : 10.5802/crmeca.19. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.19/

[1] O. Hamant; M. G. Heisler; H. Jonsson; P. Krupinski; M. Uyttewaal; P. Bokov; F. Corson; P. Sahlin; A. Boudaoud; E. M. Meyerowitz et al. Developmental patterning by mechanical signals in Arabidopsis, Science, Volume 322 (2008), pp. 1650-1655 | DOI

[2] S. Douady; Y. Couder Phyllotaxis as a physical self-organized growth process, Phys. Rev. Lett., Volume 68 (1992), pp. 2098-2101 | DOI

[3] L. F. Hernandez; P. B. Green Transductions for the expression of structural pattern: analysis in sunflower, Plant Cell, Volume 5 (1993), pp. 1725-1738 | DOI

[4] A. J. Fleming Induction of leaf primordia by the cell wall protein expansin, Science, Volume 276 (1997), pp. 1415-1418 | DOI

[5] P. B. de Reuille; I. Bohn-Courseau; C. Godin; J. Traas A protocol to analyse cellular dynamics during plant development, Plant J. Cell Mol. Biol., Volume 44 (2005), pp. 1045-1053 | DOI

[6] D. J. Nicholson Is the cell really a machine?, J. Theor. Biol., Volume 477 (2019), pp. 108-126 | DOI | MR

[7] Y. Couder; L. Pauchard; C. Allain; M. Adda-Bedia; S. Douady The leaf venation as formed in a tensorial field, Eur. Phys. J. B, Volume 28 (2002), pp. 135-138 | DOI

[8] Branching in Nature: Dynamics and Morphogenesis of Branching Structures, from Cell to River Networks: Les Houches School, October 11–15, 1999 (V. Fleury; J.-F. Gouyet; M. Léonetti, eds.), Springer, EDP Sciences, Berlin, New York, Les Ulis, 2001

[9] S. Perrard; M. Labousse; M. Miskin; E. Fort; Y. Couder Self-organization into quantized eigenstates of a classical wave-driven particle, Nat. Commun., Volume 5 (2014), p. 3219 | DOI

[10] F. Corson; O. Hamant; S. Bohn; J. Traas; A. Boudaoud; Y. Couder Turning a plant tissue into a living cell froth through isotropic growth, Proc. Natl Acad. Sci. USA, Volume 106 (2009), pp. 8453-8458 | DOI

[11] M. G. Heisler; O. Hamant; P. Krupinski; M. Uyttewaal; C. Ohno; H. Jonsson; J. Traas; E. M. Meyerowitz Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport, PLoS Biol., Volume 8 (2010), e1000516 | DOI

[12] A. Sampathkumar; P. Krupinski; R. Wightman; P. Milani; A. Berquand; A. Boudaoud; O. Hamant; H. Jonsson; E. M. Meyerowitz Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells, eLife, Volume 3 (2014), e01967 | DOI

[13] N. Hervieux; M. Dumond; A. Sapala; A.-L. Routier-Kierzkowska; D. Kierzkowski; A. H. K. Roeder; R. S. Smith; A. Boudaoud; O. Hamant A mechanical feedback restricts sepal growth and shape in arabidopsis, Curr. Biol., Volume 26 (2016), pp. 1019-1028 | DOI

[14] S. Verger; Y. Long; A. Boudaoud; O. Hamant A tension-adhesion feedback loop in plant epidermis, eLife, Volume 7 (2018), e34460 | DOI

[15] S. Robinson; C. Kuhlemeier Global compression reorients cortical microtubules in arabidopsis hypocotyl epidermis and promotes growth, Curr. Biol., Volume 28 (2018) no. 11, p. 1794-1802.e2 | DOI

[16] E. Jacques; J.-P. Verbelen; K. Vissenberg Mechanical stress in Arabidopsis leaves orients microtubules in a “continuous” supracellular pattern, BMC Plant Biol., Volume 13 (2013), p. 163 | DOI

[17] A. Creff; L. Brocard; G. Ingram A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat, Nat. Commun., Volume 6 (2015), p. 6382 | DOI

[18] Z. Hejnowicz; A. Rusin; T. Rusin Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl, J. Plant Growth Regul., Volume 19 (2000), pp. 31-44 | DOI

[19] P. Green; A. King A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture, Aust. J. Biol. Sci., Volume 19 (1966), pp. 421-437 | DOI

[20] M. Uyttewaal; A. Burian; K. Alim; B. Landrein; D. Borowska-Wykret; A. Dedieu; A. Peaucelle; M. Ludynia; J. Traas; A. Boudaoud et al. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis, Cell, Volume 149 (2012), pp. 439-451 | DOI

[21] N. Hervieux; S. Tsugawa; A. Fruleux; M. Dumond; A.-L. Routier-Kierzkowska; T. Komatsuzaki; A. Boudaoud; J. C. Larkin; R. S. Smith; C.-B. Li et al. Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility, Curr. Biol., Volume 27 (2017), p. 3468-3479.e4 | DOI

[22] D. Riveline; E. Zamir; N. Q. Balaban; U. S. Schwarz; T. Ishizaki; S. Narumiya; Z. Kam; B. Geiger; A. D. Bershadsky Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism, J. Cell Biol., Volume 153 (2001), pp. 1175-1186 | DOI

[23] V. I. Risca; E. B. Wang; O. Chaudhuri; J. J. Chia; P. L. Geissler; D. A. Fletcher Actin filament curvature biases branching direction, Proc. Natl Acad. Sci. USA, Volume 109 (2012), pp. 2913-2918 | DOI

[24] K. Hayakawa; H. Tatsumi; M. Sokabe Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament, J. Cell Biol., Volume 195 (2011), pp. 721-727 | DOI

[25] A. D. Franck; A. F. Powers; D. R. Gestaut; T. Gonen; T. N. Davis; C. L. Asbury Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis, Nat. Cell Biol., Volume 9 (2007), pp. 832-837 | DOI

[26] A. Trushko; E. Schäffer; J. Howard The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force, Proc. Natl Acad. Sci. USA, Volume 110 (2013), pp. 14670-14675 | DOI

[27] V. Mirabet; P. Krupinski; O. Hamant; E. M. Meyerowitz; H. Jönsson; A. Boudaoud The self-organization of plant microtubules inside the cell volume yields their cortical localization, stable alignment, and sensitivity to external cues, PLoS Comput. Biol., Volume 14 (2018), e1006011 | DOI

[28] J. D. Díaz-Valencia; M. M. Morelli; M. Bailey; D. Zhang; D. J. Sharp; J. L. Ross Drosophila Katanin-60 Depolymerizes and Severs at Microtubule Defects, Biophys. J., Volume 100 (2011), pp. 2440-2449 | DOI

[29] J. C. Ambrose; G. O. Wasteneys CLASP modulates microtubule-cortex interaction during self-organization of acentrosomal microtubules, Mol. Biol. Cell, Volume 19 (2008), pp. 4730-4737 | DOI

[30] Q. Zhang; W. Zhang Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells, Protein Cell, Volume 7 (2016), pp. 81-88 | DOI

[31] M. Bringmann; B. Landrein; C. Schudoma; O. Hamant; M.-T. Hauser; S. Persson Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled, Trends Plant Sci., Volume 17 (2012), pp. 666-674 | DOI

[32] C. Ambrose; J. F. Allard; E. N. Cytrynbaum; G. O. Wasteneys A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis, Nat. Commun., Volume 2 (2011), p. 430 | DOI

[33] C. Kirchhelle; D. Garcia-Gonzalez; N. G. Irani; A. Jérusalem; I. Moore Two mechanisms regulate directional cell growth in Arabidopsis lateral roots, eLife, Volume 8 (2019), e47988 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Exploring the relation between apical growth, organ formation and cell wall mechanics across land plant species

Alexis Peaucelle

C. R. Méca (2020)


The plasma membrane as a mechanotransducer in plants

Leia Colin; Olivier Hamant

C. R. Biol (2021)


From genes to shape: Understanding the control of morphogenesis at the shoot meristem in higher plants using systems biology

Jan Traas; Olivier Hamant

C. R. Biol (2009)