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Abstract. This Note describes various analytical and computational results concerning the calculation of
Dirac eigenvalues, or more generally, of operators with gaps. An algorithm based on an abstract theorem
characterizing the eigenvalues in gaps was found years ago, but it is only recently that a delicate analysis
to identify and study the domains of those operators has allowed to put that algorithm on a firm basis
concerning the choice of approximation basis sets, and this both for light and for heavy atoms. The works
described here concern joint papers with several collaborators: J. Dolbeault, M. Lewin, M. Loss, E. Séré and
M. Vanbreugel.

Résumé. Cette Note présente divers résultats analytiques et numériques concernant le calcul des valeurs
propres de l’opérateur de Dirac, ou plus généralement, des opérateurs avec des “gaps” spectraux. Un algo-
rithme basé sur un théorème abstrait caractérisant les valeurs propres dans les écarts a été trouvé il y a des
années, mais ce n’est que récemment qu’une analyse délicate pour identifier et étudier les domaines de ces
opérateurs a permis de mettre cet algorithme sur une base ferme concernant le choix des approximations,
et ceci aussi bien pour les atomes légers que pour les atomes lourds. Les travaux décrits ici concernent des
travaux réalisés avec plusieurs collaborateurs : J. Dolbeault, M. Lewin, M. Loss, E. Séré et M. Vanbreugel.
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Version française abrégée

Depuis 1997, en collaborant avec un groupe de chercheurs (J. Dolbeault, M. Lewin, M. Loss, E.
Séré and M. Vanbreugel), nous nous sommes intéressés à l’étude des propriétés et des valeurs du
spectre ponctuel d’opérateurs à gaps, et en particulier, d’opérateurs de Dirac. Nous cherchions
également à proposer un algorithme de calcul libre des problèmes liés à la pollution spectrale.
En effet, il est bien connu que selon le choix des bases de calcul et selon les méthodes utilisées,
des états spurieux peuvent apparaître dans les calculs. Pour des références dans la littérature
physique et chimique voir par exemple [1–7]. Des analyses et propositions intéressantes peuvent
être trouvées dans [8–15].

Après avoir analysé le problème de manière abstraite, nous avons obtenu des applications
particulièrement intéressantes pour l’opérateur de Dirac perturbé par un potentiel extérieur
électromagnétique. Utilisant une décomposition de l’espace des spineurs proposée par Talman
[16], l’application du théorème abstrait nous a permis de trouver un algorithme qui est très
performant pour le calcul des valeurs propres d’opérateurs de Dirac, et ceci sans avoir à faire
face à l’apparition de valeurs spurieuses. De nombreux résultats dans la littérature proposent des
choix de bases finies particulières pour éviter la pollution spectrale. Dans un des derniers travaux
présentés dans cette Note, nous montrons que dans notre approche il y a une énorme liberté
dans le choix des bases finies, et que dans tous les cas, il n’y aura pas de valeur spurieuse, et
que l’algorithme convergera vers les valeurs propres. Des résultats récents s’intéressant à l’étude
détaillée des domaines des opérateurs nous ont donc permis de donner une base solide à cet
algorithme pas seulement pour les calculs impliquant des atomes légers, mais aussi, et surtout,
dans le cas des atomes lourds, qui sont les plus intéressants dans une théorie relativiste.

1. Introduction

In 1928 [17] Paul Dirac derived an operator for quantum electrodynamics, starting from the usual
classical expression of the energy of a free relativistic particle of momentum p ∈R3 and mass m,

E 2 = c2|p|2 +m2c4. (1)

His aim was to propose a local differential operator of first order with respect to p =−iħ∇:

Dm,c,ħ =−icħα ·∇+mc2β=−icħ
3∑

k=1
αk∂k +mc2β, (2)

where α1, α2, α3 and β are Hermitian matrices which have to satisfy the following anticommuta-
tion relations: 

αkα`+α`αk = 2δk`I4,
αkβ+βαk = 0,
β2 = I4.

(3)

It can be proved [18] that the smallest dimension in which (3) can take place is 4 (i.e. α1, α2, α3

and β should be 4×4 Hermitian matrices), meaning that Dc has to act on L2(R3,C4). The usual
representation in 2×2 blocks is given by

β=
(

I2 0
0 −I2

)
, αk =

(
0 σk

σk 0

)
(k = 1,2,3),

where the Pauli matrices are defined as

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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In which follows we will always work in the framework of atomic units, where we can assume
that the constants ħ,c and m are equal to 1. For this particular choice of units, the unperturbed
Dirac operator will be denoted by H0:

H0 :=−iα ·∇+β.

It is well known that the Dirac operator is essentially self-adjoint and that its spectrum is all
continuous spectrum and equal to

(−∞,−1]∪ [1,+∞).

Of course the main interesting situation for atomic or molecular physics is to consider the Dirac
operator perturbed by an external electromagnetic potential, corresponding to the interaction
of the electron(s) with other charged particles and its evolution under the action of an external
magnetic field. Without magnetic field, one is thus interested in looking at operators of the form
H0+V , and with magnetic field, one has to replace the usual gradient operator ∇ by the magnetic
gradient ∇A = ∇+ iA, where A is a potential related to the magnetic field B by B = curl A. In this
case, the magnetic Dirac operator is denoted by HA:

HA :=−iα ·∇A +β.

If now we consider the perturbed operator HA+V and the potential V is for instance Coulomb-
like, eigenvalues of HA +V appear in the gap of the essential spectrum and those eigenvalues
correspond to discrete electronic states in the atom or the molecule. Computing eigenvalues
of operators in gaps is notoriously difficult. For instance, the ground state, or better said, the
minimal electronic eigenvalue, cannot be found by a simple minimization procedure.

Another serious issue is that depending on the choice of the approximating basis sets and on
the computing algorithm, spurious eigenvalues not converging towards exact eigenvalues can
appear. For examples and discussions on this issue see for instance [1–7] in the Physics and
Chemistry literature. Interesting analysis and propositions to deal with this issue can be found
in [8–15].

In [19–22], under adequate assumptions, variational min–max formulas were provided for the
eigenvalues in gaps of self-adjoint operators A. These formulas are based on a decomposition
H =Λ+H ⊕Λ−H given by two orthogonal projectors Λ± of the ambient Hilbert space H , and
take the general form

λ(k) = inf
W ⊂F+

dim(W )=k

sup
ψ∈W ⊕F−

〈ψ, Aψ〉
‖ψ‖2 . (4)

Here, F± = Λ±F , with F a dense subspace of the domain of H , such that the quadratic form
〈ψ, Aψ〉 is well-defined on F+⊕F−. See also the recent articles [23–25]. Based on a simple and
very useful orthogonal decomposition proposed by Talman [16], it was proved by Dolbeault,
Esteban and Séré in [22] for the case without magnetic field, and later in [26, 27] by Dolbeault,
Esteban and Loss for the case of an external constant magnetic field, that the above abstract result
implies that for electrostatic potentials having at worst singularities of the Coulomb type, −ν/|x|,
with 0 < ν≤ 1, the eigenvalues of the operator HA +V can be found by the following simple and
computable procedure: for functions ϕ ∈ L2(R3,C2), consider the quadratic form

QA,V ,λ(ϕ) :=
∫
R3

( |σ ·∇Aϕ|2 dx

1+λ−V
+ (1−λ+V )|ϕ|2

)
dx

which is decreasing in λ. If the electrostatic potential is not very large, and in particular, if the
singularities of V are not worse than −ν/|x|, with 0 < ν≤ 1, condition which is necessary to prove
that the operator HA +V can be defined as a self-adjoint operator in a physically meaningful
manner (see Esteban–Loss [26, 28]), then, the quadratic form QA,V ,λ is positive for λ in some
interval [−∞,b), b ∈ (−1,1). Moreover the first (smallest) eigenvalue of HA+V will be the smallest
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λ for which there is a function ϕ satisfying QA,V ,λ(ϕ) = 0. More concretely, and equivalently, let
T (λ) be the operator defined via the quadratic form which acts on 2-spinors:

(ϕ,T (λ)ϕ) :=
∫
R3

( |σ ·∇Aϕ|2
λ+1−V

+ (1−λ+V )|ϕ|2
)

dx

and consider its first eigenvalue, µ1(λ). Since T (λ) is monotone decreasing with respect to λ,
there exists a unique λ1 such that µ1(λ1) = 0. Then λ1 is the smallest eigenvalue of HA +V in
the gap (−1,1). Furthermore, for every positive integer k, if λk is the unique root of the equation
µk (λ) = 0, then λk is the k-th eigenvalue of HA+V in the gap (−1,1), counted with multiplicity. All
these results were proved in [22] in all cases where the operator HA +V is self-adjoint and when
A corresponds to a constant magnetic field and when V is not too large (the concrete conditions
are stated in the theorems contained in [22]).

It is quite simple to propose now an algorithm to compute the eigenvalues of HA +V . For
that purpose let us choose an n-dimensional space of functions from R3 to C2 and generated by
{ϕ1,ϕ2, . . . ,ϕn}. Let Tn(λ) be the n ×n matrix whose elements are given by

T i , j
n (λ) =

∫
R3

(
(σ ·∇Aϕi ,σ ·∇Aϕ j )

λ+1−V
+ (1−λ+V )(ϕi ,ϕ j )

)
dx.

Let µn
1 (λ) the smallest eigenvalue of An(λ). Then, the unique zero of the map λ 7→µn

1 (λ), λn
1 , is

an approximation of the first eigenvalue of HA +V in the gap (−1,1) if the set {ϕ1,ϕ2, . . . ,ϕn , . . .}
generates a space F like the one present in the above abstract theorem about eigenvalues in gaps.
Or more generally, if the set {ϕ1,ϕ2, . . . ,ϕn , . . .} generates the domain of the operator HA+V . Using
this algorithm, in [29], in collaboration with Dolbeault, Séré and Vanbreugel, we computed the
ground state and the ground state energy for an electron in the electrostatic field created by light
and heavy nuclei (H, He+, Cr23+ and Th89+). The algorithm converged beautifully, without the
presence of spurious eigenvalues that are often present in Dirac eigenvalues computations. In
this case we chose the functions ϕn as Hermite polynomials. In [30], with Dolbeault and Séré
we performed the same kind of computations for a diatomic configuration, with both light and
heavy atoms in two separate locations (H+

2 and Th179+
2 ). These computations were done choosing

B-spline functions for the functions ϕn and in cylindrical coordinates. Again the computations
ran perfectly, and the values obtained in these computations fitted perfectly experimental data
and data obtained by using other algorithms. In [27], with Dolbeault and Loss we also made
computations for the magnetic case, again for light and heavy nuclei, and once again the results
fitted extremely well existing results obtained by other means. In particular we were able to
produce new eigenvalue approximations for heavy atoms in cases that had not been dealt with
before.

But, even if the above computations were excellent and the algorithm was robust and very
efficient, there was a deep problem behind them. Indeed, for electrostatic potentials involving
Coulomb-like singularities −ν/|x|, with 0 < ν<p

3/2, the domain of the Dirac–Coulomb operator
H0 − ν/|x| is equal to the Sobolev space H 1(R3,C4) defined as the 4-spinors which are square
integrable and such that all their first derivatives are also square integrable. But when ν >p

3/2
it is known that the domain is contained in H 1/2(R3,C4) and contains H 1(R3,C4), but it is not
equal to any of these two spaces. In the concrete case of Coulomb potentials, the domain could
be computed explicitly, but not for other potentials having the same singularities, but not being
exactly Coulomb-like. It was therefore delicate to use the above abstract theorem to derive the
algorithm and use it with basis sets that maybe were not generating the domain of the operator.
This is why recently in [31–33]), with Lewin and Séré we have addressed this issue, describing in
full detail the domains of the Dirac–Coulomb-like operators for large ν, that is, for

p
3/2 ≤ ν ≤ 1

and trying to see which properties are necessary for the basis sets for the above algorithm to
converge to the eigenvalues, and not to some numbers above them.
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In [31] we described the domains of Dirac–Coulomb-like operators for 0 < ν ≤ 1. In various
papers written in the 70’s and 80’s we can find proposals of physically meaningful definitions of
Dirac–Coulomb operators as self-adjoint operators for 0 < ν< 1 and in all cases the domain was
shown to be a strict subspace of H 1/2(R3,C4). In the end, all those proposals were shown to be
equivalent, of course. For full details on all those developments see [18, 34–42]. The limit case
ν = 1 is harder, and this was dealt with by Esteban and Loss in [28] by using a novel method
to prove self-adjointness for operators with gaps. This was later extended by Arrizabalaga et al.
in [43, 44]. In the case ν = 1 the domain is not a subspace of H 1/2(R3,C4) anymore. This full
description of the domain of Dirac–Coulomb-like operators was the first step towards the full
understanding of how to interpret the results of the numerical computations done by the above
algorithm. In [31] we found an additional result proving that the space C∞

c (R3 \{0},C2) (compactly
supported functions which are infinitely derivable in all points except at the origin) is dense in the
space of the upper components (2-spinors) of the elements of the domain. This density argument
is key in the proof of our main result which states that in the min–max characterization of the
eigenvalues (4) of the operator H0−ν/|x], 0 < ν≤ 1, the space F can be any among those satisfying

C∞
c (R3 \ {0},C4) ⊂ F ⊂ H 1/2(R3,C4)

The immediate consequence of this result is that when running the above algorithm we can
take basis sets that span any space between C∞

c (R3 \ {0},C4) and H 1/2(R3,C4)! This creates an
impressive flexibility in the choice of the basis sets, ensuring that whichever basis set we take in
this class, will lead towards the eigenvalues of H0 −ν/|x].

Of course, the above results would not be very useful if they were only applicable to Dirac–
Coulomb operators. In [31] we describe the class of electrostatic potentials V to which the above
results also apply, the main condition being that they are not too positive, so that they are mainly
attractive, and also that if they are singular at some point, the singularity cannot exceed −ν/|x]
for 0 < ν≤ 1.

The above recent results settle the question of when and how we can run the above algorithm
with guarantee that what we will find in the end will be good approximations of the eigenvalues
of perturbed Dirac operators.

More recently, with Lewin and Séré we have gone further and consider the case of several
singularities, case that is important in molecular computations. In [32,33], we have extended the
results of [31] to this case. And not only to this case, but to the much more general case of Dirac
operators perturbed by general singular measures. In this case, which goes beyond Coulomb
singularities, more technically refined arguments are needed to describe the domains and prove
the validity of the min–max arguments used to find the corresponding eigenvalues. In the above
papers, we have also considered other interesting questions that we have not been able to answer
completely concerning, for instance, the dependence of the eigenvalues on the geometric shape
of the nuclear distribution. A very simple question is: if we consider two identical nuclei of charge
ν ∈ (0,1/2), at a distance R > 0, would the energy of an electron be above the energy of an electron
in the electrostatic field created by a single nucleus of charge 2ν? In the non-relativistic case the
answer is yes. And not only that, actually the ground state energy grows with the distance R. For
Dirac operators such results do not exist. Only numerical results have been obtained for instance
by Artemyev et al. [45] showing that the dependence of the ground state energy with respect to
the distance between the two nuclei follows the same pattern in the relativistic and in the non-
relativistic cases.
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