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Abstract. We review the latest theoretical advances in the application of the framework of Transformation
Optics for the analytical description of deeply sub-wavelength electromagnetic phenomena. First, we present
a general description of the technique, together with its usual exploitation for metamaterial conception
and optimization in different areas of wave physics. Next, we discuss in detail the design of plasmonic
metasurfaces, including the description of singular geometries which allow for broadband absorption in
ultrathin platforms. Finally, we discuss the quasi-analytical treatment of plasmon–exciton strong coupling
in nanocavities at the single emitter level.

Résumé. Nous passons en revue les dernières avancées dans l’application du cadre de l’optique transfor-
mationnelle pour la description analytique des phénomènes électromagnétiques en régime fortement sub-
longueur d’onde. En premier lieu, nous présentons une description générale de la technique, ainsi que son
exploitation usuelle dans la conception et l’optimisation des métamatériaux dans différentes disciplines de
la physique des ondes. En second lieu, nous discutons en détail de la conception de métasurfaces plasmo-
niques, y compris la description de géométries singulières qui permettent une absorption sur une large plage
de fréquences dans les plates-formes ultra-minces. Enfin, nous discutons du traitement quasi-analytique du
couplage fort plasmon–exciton dans les nanocavités au niveau d’un seul émetteur.
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1. Introduction

The development of Transformation Optics [1, 2] (TO) has been instrumental in the fast growth
that metamaterial science has experienced during the last years [3]. This theoretical tool exploits
the invariance of macroscopic Maxwell’s equations under coordinate transformations to estab-
lish a link between an electromagnetic (EM) phenomenon, described by the transformation, and
the material response required for its realization. Thus, TO determines the way in which the EM
constitutive relations, and therefore the permittivity and permeability tensors, must be tailored
in space in order to obtain a desired effect.

TO theory states that, under a general spatial transformation, r′ = r′(r) like the one sketched in
Figure 1(a), EM fields are modified exactly in the same way as they do for the following spatially-
dependent electric permittivity and magnetic permittivity tensors

ε′(r′) = Λ(r′)ε(r(r′))[Λ(r′)]T

det[Λ(r′)]
, µ′(r′) = Λ(r′)µ(r(r′))[Λ(r′)]T

det[Λ(r′)]
(1)

where ε(r) [µ(r)] and ε′(r′) [µ′(r′)] are the permittivity [permeability] tensors in the original and
final frames, respectively, and Λ(r′) = ∂r′/∂r is the Jacobian matrix for the transformation. Note
that (x, y) and (u, v) denote original and transformed coordinates in Figure 1(a).

From a metamaterial perspective, Equations (1) establish the link between material character-
istics and the EM effect resulting from the spatial operation. Thus, TO provides a recipe for the
design of metamaterials with at-will functionalities. A recent review on the use of transformation
optics for the design of cloaks, illusion devices and other elements such as rotators and concen-
trators can be found in Ref. [4]. In parallel to the development of optical metamaterials for such
applications, there has been a wide variety of advances in different areas of wave physics. For in-
stance, TO has been extended into the spatiotemporal domain to devise spacetime cloaks [5, 6]
as well as analogues of other phenomena emerging from the link between electromagnetism in
media and general relativity [7–10]. Another degree of design flexibility in the form of media with
gain and loss can be obtained by analytic continuation of the mapping coordinates into the com-
plex plane [11,12]. This way, TO can be connected with PT symmetric media [13], and reflection-
less devices can be designed [14]. TO has also been adapted for the control of surface waves [15],
as well as guided waves on integrated optical circuits [16], and for antenna engineering [17].

Furthermore, it is possible to apply TO to other wave systems beyond electromagnetics. The
cornerstone proposal of the invisibility cloak [18] has been reproduced in different fields, which
initiated the expansion of metamaterials for different physical domains. Applications of TO
include the cloaking of acoustic pressure waves [19–21], matter waves [22] or heat conduction
[23]. Particularly interesting is the fact that while the elastodynamic equations are not form
invariant under coordinate transformations [24], it has been shown that TO can still be a powerful
tool in the design of mechanical metamaterials [25–27] and even of seismic cloaks [28, 29].

Much the development of transformation optics has gone hand in hand with that of plas-
monics. In its most general form, TO accounts for the vectorial and undulatory nature of EM
fields, which makes it exact at sub- and supra-wavelength scales. Taking advantage of this, TO
has made possible the at-will moulding the flow of surface plasmons (SPs) that propagate along
metal/dielectric interfaces with subwavelength confinement [30–34]. Although the SP field ex-
tends both into the dielectric and metallic sides of the interface, it has been shown that it is
enough to act on the dielectric side by placing the metamaterial designed with (1) on top of
the metal surface [35]. This way, plasmonic invisibility cloaks, such as shown in Figure 1 (b),
beam benders and shifters operating at nearly subwavelength scales and in the visible regime
have been devised. Experimental realizations of these ideas include a broadband carpet cloak
which suppresses scattering from a bump on a metal surface [36], as well as Luneburg and Eaton
lenses [37, 38].
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From a purely computational electrodynamics perspective, Equations (1) provide the pre-
scription to interchange geometric and material characteristics of an EM system. This was, in
fact, the original motivation that led to the development of this theoretical framework. It was
devised as a strategy to ease the numerical solution of Maxwell’s Equations, using the TO map-
ping of complex and acute geometries into much simpler ones [1]. Frequently, this advantage
comes at the expense of non-uniform and anisotropic permittivity and permeability distribu-
tions. Importantly, when the transformation chosen is conformal, the permittivity and perme-
ability in the plane of the transformation are left unchanged, as well as the electrostatic potential.
Conformal transformations are 2D analytical maps, (x ′, y ′) = [x ′(x, y), y ′(x, y)], that conserve the
angle between coordinate lines and leave z ′ = z. They satisfy the Cauchy–Riemann equations,
∂x ′/∂x = ∂ y ′/∂y , ∂x ′/∂y = −∂ y ′/∂x, which directly imply that conformal transformations leave
isotropic permittivities and permeabilities unchanged in the plane of the transformation, as we
now show. Starting from a frame where ε(r) is isotropic, we have from (1),

ε′ = ε
ΛΛT

det[Λ]
= ε

det[Λ]


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=


ε 0 0
0 ε 0

0 0
ε

det[Λ]

 (3)

where the last step follows from straightforward application of the Cauchy–Riemann equations,
which yield det[Λ] = (∂x ′/∂x)2 + (∂x ′/∂y)2 = (∂y ′/∂y)2 + (∂y ′/∂x)2. Doing the same derivation for
the magnetic permeability, one has that conformal transformations preserve isotropic electro-
magnetic properties in the plane of the transformation. This has been used in recent years as a
means to shed analytical, instead of numerical, insight into plasmonic phenomena taking place
in deeply subwavelength metallic devices, thereby recovering the initial purpose of TO of aid-
ing in solving Maxwell’s equations. In an early work, conformal transformations were employed
to transform the canonical perfect lens formed by a flat slab with negative refractive index into
other two dimensional perfect lenses of various shapes [39].

Figure 1(c) shows an instance of two cascaded conformal transformation which first transform
vertical (blue) and horizontal (orange) slabs into a concentric annulus and a knife edge, respec-
tively, and next into an off-centered annulus and a lenticular shape. For instance, in the first step,
the transformation is z ′ = exp(z). Writing it explicitly as x ′ = ex cos(y), y ′ = ex sin(y), it can be
easily verified that it verifies the Cauchy–Riemann equations, and that its Jacobian matrix in the
plane, Λ = [(ex cos(y),−ex sin(y)), (ex sin(y),ex cos(y))], satisfies ΛΛT ∝ 12×2. Hence it conserves
the permittivity in the plane of the transformation. If we take the blue area in the left panel to
represent a metal slab embedded in dielectric surroundings, then the annulus shaded in blue in
the middle or right panel represent a cross-section of 2D core-shell nanoparticles, and similarly
for the areas shaded in orange. Transformation optics relates the spectrum of all these structures,
and allows us to derive analytically the optical response of a plasmonic nanostructure of complex
shape in terms of the analytical solution of the more symmetric one.

At visible frequencies and (sub-)nanometric length scales, spatial derivatives in Maxwell’s curl
Equations are much larger than temporal ones. Therefore, the latter can be neglected, which
translates into the decoupling of magnetic and electric fields. This is the so-called quasistatic

C. R. Physique, 2020, 21, n 4-5, 389-408



392 Paloma A. Huidobro and Antonio I. Fernández-Domínguez

Figure 1. (a) EM fields propagation in free space (sketched as a single field line) with the
background cartesian grid (left), and their distortion under an arbitrary geometric transfor-
mation, with the corresponding distorted coordinates in the background (right). Adapted
with permission [2]. (b) A bump on a metal surface can be cloaked so that a SP propagating
along the metal/dielectric interface propagates smoothly without being scattered as would
occur without the cloak (right panel). Powerflow streamlines are depicted as with lines with
arrows. Reproduced with permission from Ref. [30]. (c) Illustration of a cascade of two con-
formal transformations. An exponential map, ez , transforms a blue slab (left panel) into a
concentric annulus. Through an inversion, 1/z, the annulus is off-centered (right panel).
On the other hand, the orange slab transforms into a knife edge and subsequently into a
lenticular shape.

approximation for metallic nanostructures [40], in which the spatial dependence of electric fields
can be described in terms of an electrostatic potential, E(r) =−∇Φ(r), satisfying Gauss law

∇[ε(r)∇Φ(r)] = 0, (4)

where, in general, the permittivity is an inhomogeneous, anisotropic tensor. Importantly, al-
though the quasistatic approximation only holds for sub-wavelength systems, the validity of (4)
can be pushed to dimensions up to ∼100 nm by introducing radiation losses through the so-
called radiative reaction concept [40, 41]. Using these ideas [42–44], a set of analytical and quasi-
analytical TO approaches have been devised to investigate the harvesting of light by a wide range
of 2D and 3D geometries: touching nanoparticles [45, 46], nanocrescents [47, 48], nanorods [49],
nanosphere dimers [50, 51]. Moreover, other EM phenomena have been explored theoretically
using TO ideas, such as spatial nonlocality in metallic junctions [52, 53], electron energy loss in
metal nanostructures [54], second harmonic generation in plasmonic dimers [55], near-field van
der Waals interactions between nanoparticles [56, 57], or plasmon hybridization in collections of
several touching nanoparticles [58].

In the following, we discuss the recent exploitation of TO framework in two areas of great
interest in plasmonics in recent years. On the one hand, the design of conventional and singular
plasmonic metasurfaces, which can be metallic or based on graphene. On the other hand,
the description of strong-coupling phenomena between quantum emitters and the plasmonic
spectrum supported by metallic nanocavities.
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2. Plasmonic metasurfaces

Metasurfaces, the planar counterpart of bulk metamaterials, consist of resonant subwavelength
units arranged in a two-dimensional (2D) array [59–64]. The geometry and materials of the
subwavelength building blocks, as well as their arrangement, are appropriately designed and
manufactured to provide an ultra-thin platform for manipulating EM waves. Metasurfaces have
enabled effects such as broadband light bending and anomalous reflection and refraction in
ultrathin platforms [65, 66]. While dielectric nanoantennas have been suggested for the design
of metamaterials due to their lower loss compared to plasmonic nanoparticles [67], absorption
losses are a less stringent constrain when considering metasurfaces. For that reason, plasmonic
metasurfaces have been a particularly fruitful platform to control optical fields [68]. They are
formed of subwavelength metallic elements with resonant electric or magnetic polarizabilities,
enabling light confinement at the subwavelength scale, accompannied by large enhancements
of the EM fields. On the other hand, the high electron mobility in graphene has also motivated
the use of this 2D material for plasmonic metasurfaces at lower frequencies, making use of the
unrivalled field enhancements provided by its THz plasmons [69–73].

The analytical power of TO has been instrumental in the design of plasmonic metasurfaces
with unconventional properties, as we review in the following. In Section 2.1, we discuss in detail
the TO insights into both subwavelength metallic gratings and graphene metasurfaces, as well as
their applications. Next, in Section 2.2 we move on to present the so-called singular metasurfaces,
their fundamental properties and their understanding in terms of hidden dimensions.

2.1. Designing plasmonic gratings with transformation optics

Here we review the theoretical framework for the design of metasurfaces by means of TO. While
the use of coordinate transformations to facilitate diffraction calculations in gratings precedes
the birth of transformation optics [74, 75], conformal transformations in particular have been
recently used to design plasmonic metasurfaces. We concentrate on the most simple form of
metasurface, that is, a thin film of a plasmonic material one of whose surfaces is periodically
corrugated forming a subwavelength grating. Such plasmonic grating can be generated from a
thin metallic slab (where analytical solutions of Laplace’s equation are available) by means of a
conformal transformation [76],

z = d ′

2π
ln

(
1

ew − iw0
+ iy0

)
. (5)

Here, z = x + iy refers to the transformed coordinates in the frame of the grating, and w =
u + iv to the Cartesian coordinates in the frame of the slab. In addition, d ′ sets the length
scale of the structure by determining the grating period, w0 is a free parameter that sets the
grating modulation strength, and y0 is fixed by w0, the slab thickness, δ, and its position, u0,
as y0 = w0/(exp[2(u0 +δ)]−w2

0 ). A map of one period of the conformal transformation is shown
in Figure 2(a). The space between the blue lines represents a silver slab with one periodically
modulated surface, which maps through the transformation to a flat silver slab. The cascaded
transformation first involves an exponential, which transforms the infinite slab into a closed
annulus geometry, then an inversion that off-centers the annulus (see Figure 1(c)), and finally
a logarithmic that restores the infinite length of the starting structure, but with periodic wiggles
(Figure 2(a)).

As we have mentioned in Section 1, conformal transformations applied to Maxwell’s equations
conserve the electromagnetic parameres, and, furthermore, preserve the electrostatic potential.
Hence, in the electrostatic limit (period d ′ ¿ λ), the spectral properties of a subwavelength
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Figure 2. Realising plasmonic metasurfaces by means of conformal transformations. (a)
One period of the conformal map used to generate gratings. (b) Dispersion relation of a
silver grating modes above and below the SP frequency (dashed line). The grating inherits
the mode spectrum of the flat slab (thin gray line). (c) Optical response of the subwave-
length silver grating at normal incidence, and field distribution for the lowest and high-
est energy modes. (d) Graphene metasurfaces with spatially varying conductivity,σ(x), and
tunable modulation strength (e). (f) Dispersion relation of a graphene metasurface reveal-
ing the underlying homogeneous graphene layer (thin gray line). (g) Absorption can reach
50% at the dipolar SP resonance by tuning the modulation strenght (top). Absorption, re-
flection and transmission for w0 = 2.5 (bottom). Panels (b,f) are adapted from Ref. [77], (c)
from [76], (d,e) from [78].

plasmonic grating are equivalent to that of the thin plasmonic slab, whose dispersion relation
is given by

exp(|k|δ) =±(εm(ω)−εd )/(εm(ω)+εd ), (6)

with εm = 1−ω2
p /(ω(ω+ iγD )) being the metal permittivity (ωp is the plasma frequency and γD

is the Drude damping) and εd the one of the surrounding dielectric space. As a consequence,
the dispersion relation of the grating can be accurately predicted from the simple analytical
expression corresponding to the plasmonic slab.

Figure 2(b) shows the dispersion relation of a vacuum-embedded silver slab folded in the
first Brillouin zone of the corresponding set of gratings (periodicity 2π×5 nm), plotted as a thin
gray line. The modes of a grating with modulation strength fixed by w0 = 1.5 calculated from a
numerical finite element solver [79] are plotted with dots, presenting an excellent agreement with
the analytical prediction. The relationship between both systems ensures the quasi-degeneracies
observed at the zone center, which are only slightly lifted due to magnetic effects (the magnetic
field sees the periodicity of the grating through variations in the out-of-plane component of the
permeability). On the other hand, band gaps open at the zone edge. This reflects the periodic
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character of the grating structure, since the slab is translationally invariant and only the modes
at k = 0 share exactly the same symmetry. Mathematically this is captured by the branch cuts
of the transformation, which act as sinks and drains for the waves, effectively swapping them
to opposite sides of the slab when incident and reflected waves on the grating are transformed.
By taking this into account, band structures for the whole Brillouin zone, exact in the quasistatic
limit, can be obtained [77] (plotted as thick red and blue lines). Furthermore, by going beyond the
quasistatic approximation in a perturbative approach and including the radiative contribution
of the grating, the optical spectrum at normal incidence can be obtained analytically (shown
in Figure 2(c)). Finally, we remark that the general scope of TO has enabled to fully take into
account retardation effects by transforming the full set of Maxwell’s equations. This enables
the semi-analytical calculation of optical spectra for gratings of periods not limited to the very
subwavelength regime, for arbitrary polarization states, and is exact at the level of Maxwell’s
equations [80].

The conformal map shown in Figure 2(a) can also be used to devise graphene metasurfaces,
see panel (d). We consider the limit of an infinitely thin plasmonic slab with conductivity σ(ω) =
−i(ε(ω)− 1)ωε0δ and δ→ 0. In the grating frame, the slab of modulated thickness equivalently
represents an infinitely thin layer, i.e., graphene, with modulated conductivity [81]. Metasurfaces
consisting of graphene with periodically modulated conductivity [82–84] can be designed this
way [78], and a periodic doping modulation can be realized by optical [85] or electrostatic [86]
means, or by patterning the graphene [87, 88] or its environment [89, 90].

The dispersion relation of a graphene metasurface is shown in panel (b), displaying the
quasi-degeneracies at the zone center inherited from the dispersion relation of homogenously
doped graphene (thin gray line). The modulation period is 2.5 µm, the modulation strength is
given by ω0 = 1.5, see panel (e), and graphene’s conductivity is taken from the random phase
approximation with chemical potential µ= 0.1 eV and scattering loss τ= 10 ps. A close up of the
absorption spectrum around the dipolar resonance, lower energy mode in panel (f), is presented
in panel (g). Here the chemical potential was changed to µ = 0.65 eV, which accounts for the
frequency shift with respect to the resonance in panel (f) and a typical experimental mobility
of 104 cm2/(V·s) was used. The insensitivity of the absorption peak in the contour plot to the
modulation strength, w0, is due to the fact that gratings of different w0 map into homogeneous
graphene with the same conductivity, as this is a free parameter in the transformation. Hence,
by tuning the modulation depth, absorption in the graphene metasurface can be switched,
and, remarkably, up to 50% of the power of incident radiation can be absorbed by a single
graphene layer owing to the excitation of deeply subwavelength SPs. While 50% absorption is
the theoretical maximum for a thin layer of material, absorption can be further increased up to
100% by employing a Salisbury screen scheme and placing the metasurface close to a perfect
reflector, such that a Fabry–Perot cavity is formed. Due to the strong EM confinement enabled by
SPs, this idea allows for an ultrathin perfect absorber of deeply subwavelength thickness for THz
frequencies [91].

2.2. Singular plasmonic metasurfaces

As discussed in Section 1, TO provided a successful understanding of the harvesting of light by
plasmonic nanoparticles with singular geometries such as touching points [45, 46]. In particu-
lar, TO highlighted the geometrical origin of the broadband absorption spectra characteristic of
these systems by mapping them to infinitely extended geometries where the singularites map
into points at infinity. The infinite extension in the transformed frame removes the quantization
(discretization) condition and yields a broadband spectrum, while the large absorption efficien-
cies are caused by the SP fields travelling towards infinity with reducing group velocities. This
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Figure 3. Optical response of singular metal (a) and graphene (b) metasurfaces. (a) Reflec-
tivity spectrum of a silver surface with a periodic array of sharp grooves. As β is decreased
from the realistic value towards zero (left to right), the spectrum approaches the continuum
predicted by a local calculation. (b) Absorption spectrum for graphene metasurfaces as the
singular case is approached by reducing σ(ω) at the grating valleys (w0 increasing, left to
right). In both panels TO analytical results are plotted as solid lines and EM simulations are
plotted with dots. Adapted from Refs. [94] (a) and [95] (b).

effect has also been referred to as anomalous absorption as it is present even in the absence of
material loss [92, 93].

The physics of SPs propagating towards geometrical singularities can also play a fundamental
role in plasmonic metasurfaces. For instance, subwavelength arrays of ultra sharp grooves in
a metal surface can turn good reflectors such as gold or silver into almost perfect broadband
absorbers, usually referred to as plasmonic black metals [96]. These surfaces can be viewed
as singular plasmonic metasurfaces [97] and here we review two instances of them, sheding
light onto their continuous absorption spectra and highlighting how these can be interpreted
by means of an extra compacted dimension. In the first case the singular metasurface consists
of a periodic array of grooves with sharp edges carved on a metal surface [94, 98], see inset
of Figure 3(a). In the second case, the singularities are achieved by strongly supressing the
conductivity of graphene at the grating valleys [95, 99], see inset of Figure 3(b).

Plasmonic black metals [96] can be analytically modelled using TO by means of the periodic
surface with sharp grooves shown in the inset of Figure 3(a) [97]. The sketch shows one period of
the structure, which is generated by the same cascaded transformation as in (5), but by changing
iw0 → −a and iy0 → −1/(2a), where a is a parameter that determines the inversion point. By
now taking a periodically arranged set of slabs like the orange one shown in Figure 1(c), the
transformation first maps the periodic array into a knife edge, compressing −∞ to a point at
the origin. Then +∞ is compressed into another point, giving rise to a finite lenticular shape with
two sharp edges as shown in Figure 1(c). Finally, a logarithmic transformation is used to generate
a semi-infinite surface decorated with a periodic array of grooves (see Figure 3(a)), which inherit
the sharp edges owing to the conformal character of the transformations. The final structure
is thus a surface where SPs can be excited, and which are localized at the surface and decay
evanescently away into the metal and dielectric half-spaces. Hence, it may seem at first sight that
these modes are two-dimensional, that is, characterized by two wave-vectors parallel to the metal
surface (one in the plane of the sketch in Figure 3(a), the other out of the page). However, due to
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the conformal character of the transformations, the singular metasurface inherits the spectral
properties of the slab array, which supports three-dimensional modes, characterized by the two
wave-vectors in the planes where the slabs extend to infinity (one in the plane of the sketch in
Figure 1(c, left), and one out of the page) and by a third one along the direction where they are
periodic (the vertical direction in Figure 1(c, left)). As a consequence, the modes supported by the
singular surface are also characterized by three wave-vectors, with the third one being inherited
from the transformed structure and associated to an extra dimension that is compacted into
the singularities [97]. This has remarkable consequences in the optical spectrum of the singular
metasurface: the extra wave-vector is not subject to a selection rule, and therefore there is a mode
available at every frequency, which results in a broadband absorption spectrum. In other words,
these gratings are black (or gray) while conventional gratings, which have discrete absorption
lines, are coloured.

The broadband spectral response of a singular silver metasurface of period 10 nm is shown
in Figure 3(a), where the normal incidence reflectivity spectrum is plotted as a solid grey line.
A continuous band of low reflectivity (high absorption) can be seen, which corresponds to
the excitation of the antisymmetric mode between a cut-off frequency and the SP frequency
(ωsp = ωp /

p
2). This is in striking difference with the results discussed in Section 2.1 for a non-

singular plasmonic grating, which features a discrete series of resonant modes (see Figure 2 (c)).
The optical response of the singular structure was calculated analytically by representing a plane
wave incident on the metasurface as an array of magnetic line currents located at infinity [98].
These sources are mapped to a periodic array of sources in the slab array frame, where the power
flow carried by the excited SPs as they travel towards ±∞ is calculated. Next, the singular periodic
surface is represented by a flat surface with an effective conductivity, which can be determined
through conservation of energy, and from which the reflectivity of the singular metasurface is
calculated. We note that numerical calculations of this system are not possible due to the singular
character of the geometry.

In practice, perfect singularities are not possible to realize. Even if recent advances in nanofab-
rication enable the experimental realization of plasmonic structures with high precision [100],
achieving a perfectly singular point will always be limited by the discrete nature of the electron
gas, which prevents the existence of a perfect singularity where the electron density would di-
verge. The finite screening length of metals (∼0.1 nm in noble metals) limits the size where elec-
trons can accumulate in the singularity, and prevents the density from blowing up. These non-
local effects effectively blunt the singularities which has a strong impact on the optical response
of singular metasurfaces [94, 101]. This can be seen in Figure 3 (a), which presents the reflec-
tivity for the singular metasurface using a nonlocal dielectric permittivity as solid blue lines,
with red dashed lines obtained from numerical simulations also shown for comparison. In the
calculation, which makes use of the previously introduced coordinate transformation that de-
fines the singular metasurface, the properties of the metal are taken from the hydrodynamic
model. According to it, the metal hosts transverse modes described by the usual Drude permi-
tivity, conserved under the conformal transformation, and longitudinal modes with a permit-
tivity, εL(ω,~k) = 1−ω2

p /(ω(ω+ iγD ))−β2|~k|2, which changes under the mapping due to the ~k-
dependence. The value of β, the parameter that determines the screening length and hence the
extent of the singularity, was tuned down artificially from a realistic value for silver (left panel) to
a very low value (right panel). Nonlocality blunts the singularities, which map to slabs of finite
length in the transformed frame (we refer the reader to Ref. [94] for more details on the calcula-
tions). These are cavities for the SPs, which discretizes the spectrum and a set of reflectivity dips
are observed (left). As the local regime is approached, the singularity is effectively sharper and in
the transformed frame the cavities are longer, such that the structure supports more and more
resonances (middle), tending towards the continuum obtained in the local approximation when
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nonlocality is very small (right). The remarkable influence of nonlocality in the optical spectrum
of the singular metasurface indicates that they could be used as a platform to probe nonlocality
in metals.

A second instance of singular metasurfaces that can be smoothly approached can be realized
in graphene as proposed in Ref. [97], or in ultrathin metal slabs [101]. In this case, the conformal
transformation introduced in Section 2.1 was adapted to generate a surface with singularities in
the form of touching points rather than sharp edges. This is done by first renormalising the whole
structure through the introduction of a new length scale in the slab frame, d (the period of slab
that maps into the length between two branch points in the transformed geometry). With this,
the transformation reads as,

z = d ′

2π
ln

(
1

e2πw/d − iw0
+ iy0

)
, (7)

with y0 now defined as y0 = w0/(exp[4π(u0 +δ)d ]). Then the origin of the inversion is taken at
a point very close to one of the surfaces (w0 → 1), which generates a grating with vanishing
thickness at the valley points (see inset of Figure 3(b)). Similar to the non-singular grating, the
free parameter in the transformation, w0, determines the shape of the grating, and the singular
behaviour, with w0 → 1 representing the singularity where the two surfaces touch, or where the
doping approaches zero in the case of graphene.

Figure 3(b) presents the absorption spectrum of singular metasurfaces realized on graphene.
The singularity is approached by keeping the same maximum conductivity value while reducing
the minimum value, which is suppressed from the left to the right panels. When the grating is far
from singular, the spectrum shows a discrete set of peaks corresponding to plasmonic resonances
of increasing order (left). As the singularity is approached, more and more resonances appear
in the spectrum (medium), and when the system is very close to being singular, the spectrum
tends to a broadband of continuous absorption. These results assume a realistic value of the
loss (mobility m = 104 cm2/(V·s)), and we stress that increasing the loss (m = 3×103 cm2/(V·s))
further merges the peaks into the broadband. This system has been suggested as a tunable
ultra-thin broadband absorber for THz waves [95]. Similar to the singular silver surface, the
broadband absorption spectrum can be explained by means of an extra dimension compacted
in the singularity. This additional dimension is inherited from the periodicity introduced in the
slab frame, which tends to infinity (d → ∞), while the dimension of the slab along its length is
itself infinite. This results in a hidden dimension in the singularity in the grating frame, where
incident radiation can satisfy the dispersion relation over a continuous frequency band. In fact,
as the period in the slab frame increases, the modes are discretized in a smaller Brillouin zone.
As a consequence, SP modes at larger wavevectors are available at lower and lower frequencies.
The large confinement characteristic of these modes is responsible for the large absorptions seen
in the singular metasurfaces [99]. Finally, we remark that these singular graphene metasurfaces
provide a platform for the study of nonlocality in graphene, which is stronger when the doping
is lower. The SPs propagating towards the singularity are a sensitive probe of nonlocal effects in
graphene, which would become observable in far field measurements [102].

In this Section we have reviewed the use of TO to design plasmonic metasurfaces, and the
proposal of singular plasmonic metasurfaces which hide an extra dimension in the singularity
and can be used as ultrathin broadband absorbers. In the following, we turn our attention into a
different area of nanophotonics, that of exctiton–plasmon interactions in nanocavities.

3. Exciton–plasmon strong coupling

In recent years, much theoretical efforts have focused on developing a general methodology for
the expansion of the Dyadic Green’s functions in open, lossy and dispersive systems in terms of
a discrete set of EM modes. However, although this is currently a topic of intense activity, there
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Figure 4. (a) Left: Sketch of a single QE with transition dipole moment µE and frequency
ωE placed within the gap between two nanospheres. Right: Spherically symmetric geometry
obtained from the inversion of the original system. (b) Quasistatic spectral density at three
different QE positions, see panel (c), along the z-axis and within the 8 nm gap between two
Ag spheres (R = 120 nm). (c) Population dynamics, n(t ) (n(0) = 1), for a QE at resonance
with the plasmonic pseudomode of the gap nanocavity, ωE = ωPS, for three zE values.
Adapted with permission [112, 113].

is not yet a consensus about the precise definition of these EM modes, their associated eigen-
functions and eigenvalues. As a consequence, various terms and definitions, such as resonant
states [103], generalized normal [104] or quasinormal [105–107] modes, have been coined lately
to refer to them. Indeed, the conception of a theoretical framework allowing for a general Green’s
function decomposition would mean a significant advance in multiple areas. The investigation of
quantum optical phenomena in plasmonic [108, 109] and metallodielectric [110] nanocavities is
among them. It would allow for a convenient quantization of subwavelength EM fields avoiding
the enormous number of degrees of freedom inherent to macroscopic quantum electrodynamics
calculations [111].

As discussed in Section 1, TO has been used in the past to obtain analytical descriptions of the
light collection and concentration by a wide range of nanoparticle geometries. In this section, we
discuss the application of similar methods to build 3D [112, 113] (Section 3.1) and 2D [114–117]
(Section 3.2) models of the response of similar structures to point-like EM sources, such as
quantum emitters (QEs), placed in their vicinity. This way, TO provides analytical insights into the
Dyadic Green’s function for these systems. Importantly, this approach also reveals its convenient
decomposition and the proper definition of modal eigenvalues and eigenfunctions. Specifically,
TO has been employed in the investigation of plasmon–exciton interactions in nanocavities,
accounting for the full richness of the EM spectrum in these devices and revealing the conditions
yielding strong coupling at the single QE level. Note that, contrary to nanoantennas, where
the objective is enhancing the near- to far-field transfer of EM energy, this must be reduced in
nanocavities for strong light-matter coupling. This means that the quasistatic approximation is
an optimum starting point for the analysis of these phenomena.

3.1. Three-dimensional model

We consider first a nanocavity composed by two identical metallic spheres of radius R1 = R2 = R,
with a Drude-like permittivity, separated by a nanometric gap, δ. As illustrated in Figure 4(a),
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they can be transformed into a metal-dielectric-metal spherically-symmetric geometry under an
inversion. This requires choosing judiciously the inversion point [112]

R0 = L

2
+ R2

2 −R2
1 −

√
δ(δ+2R1)(δ+2R2)(2L−δ)

2L
, (8)

where L = R1 + R2 + δ. As a result of the mapping, and differently from the 2D conformal
transformations discussed in Section 2, the scalar permittivity in the transformed frame acquires
a spatial dependence of the form ε′(ω,r′) = g 2ε(ω,r(r′))/|r′ − R′

0|2, where ε(ω,r) is the original
dielectric constant distribution. Note that the EM fields do not depend on the choice of g ,
a constant setting the length-scale of the mapping. It can be proven [46] that the quasistatic
potential in the inverted system can be written as Φ′(r′) = |r′−R′

0|φ′(r′) where φ′(r′) is a solution
of Laplace’s Equation in the primed frame. The potential in the transformed geometry can then
be obtained by expanding Φ′(r′) in terms of spherical solutions of Laplace’s Equation (labelled
with degree l and order m of spherical harmonics) and imposing continuity conditions on the
parallel component of the electric field and the normal component of the displacement field
at the concentric spherical boundaries. Once this is known, the potential in the original frame
is given by Φ(r) = Φ′(r′(r)). In general, this procedure requires the numerical solution of the
continuity equations, but in the limit δ¿ R analytical solutions can be obtained.

Using the TO approach briefly introduced above, the Dyadic Green’s function for the sys-
tem can be calculated by introducing a point-like dipole source, ΦE(r), modelling a QE as
the EM excitation in the original frame [113]. By imposing m = 0 in the potential expansion,
the calculations simplify significantly. With this restriction, only sources located along the z-
direction (the nanocavity axis) and oriented parallel to it can be treated. Note that the interac-
tion with the SPs supported by the spheres is maximum in these conditions. The component
of the scattering Dyadic Green’s function governing the QE–SP interaction is Gsc

zz (ω,zE,zE) =
(ε0/µE)(c/ω)2|∂zΦsc(ω,zE)|, where µE is the QE dipole moment, zE its position, and Φsc(ω,r) =
Φ(ω,r)−ΦE(r). Note that, for clarity, the spectral dependence of the scattered quasistatic poten-
tial is indicated, which originates from the presence of ε(ω,r) in the continuity equations.

The spectral density [118], the physical magnitude that weights light-matter coupling in the
nanocavity, can be expressed as [119, 120]

J (ω) = γE(ω)

2π
P (ω) = µ2

Eω
2

πε0ħc2 Im{Gsc
zz (ω,rE,rE)}

=
∞∑

l=1

∑
σ=±1

g 2
l ,σ

π

γD/2

(ω−ωl ,σ)2 + (γD/2)2 (9)

where γE(ω) =ω3µ2
E/3πε0ħc3 is the spontaneous decay rate of the QE (ωE =ω) in free space and

P (ω) the Purcell enhancement induced by the nanocavity [40, 121]. Note that J (ω) is, except for
a factor, the QE decay rate in the plasmonic environment. The right-hand side in (9) results from
the Green’s function decomposition given by the TO approach. In the limit of small gap sizes,
ρ = δ/R ¿ 1, the SPs can be labelled in terms of their angular momentum l , and their even/odd
parity across the gap, σ [112]. This way, analytical expressions for the SP frequencies, ωl ,σ, and
SP–QE coupling constants, gl ,σ, are obtained. Note that γD in (9) is the absorption rate in the
metal Drude permittivity, the only damping mechanism in the quasistatic regime.

Figure 4(b) plots J (ω) at the 8 nm gap between two Ag spheres of radius 120 nm. Three different
QE positions are considered, zE: 4 nm (the gap center, in grey), 2.4 nm (green) and 1.2 nm
(orange). The QE dipole moment is set to µE = 1.5e·nm. The first three even (σ = 1) Lorentzian
terms in the expansion in (9) are plotted in blue dashed lines (they are the same for all zE). These
correspond to the lowest energy, most radiative SP modes which govern the absorption properties
of the sphere dimer under plane wave illumination [51,113]. The spectral density presents a much
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stronger feature at higher frequencies, this is the plasmonic pseudomode, which emerges as a
result of the spectral overlapping (within a frequency window γD) of SP modes with high angular
momentum (large l ) [120]. Note that ωPS lies in the vicinity of the quasistatic SP frequency for
the metal permittivity. Figure 4(b) shows that J (ωPS) increases as the QE is displaced away from
the gap center and approaches one of the sphere surfaces (it couples more efficiently to SPs with
shorter evanescent tails into the gap region), while the contribution due to low-frequency SPs do
not vary with zE.

Figure 4(c) renders the QE exciton population as a function of time, n(t ) in a spontaneous
emission configuration (n(0) = 1) for the three positions in panel (b) and for ωE = ωPS. The
popuplation dynamics are calculated using the Wigner–Weisskopf Equation [118],

d

dt
c(t ) =−

∫ t

0
dτ

∫ ∞

0
dω J (ω)ei(ωE−ω)(t−τ)c(τ) (10)

where the exciton population is n(t ) = |c(t )|2. Equation (10) was fed with the TO-calculated
spectral densities. The QE–SP interaction is in the weak-coupling regime at the gap center (grey)
and n(t ) decays monotonically. However, for QEs away from the gap center, Rabi oscillations
emerge in n(t ), and become stronger with smaller zE. These are the fingerprint of the onset of
strong coupling, and reveal that the population is transferred back and forth between the QE
and the nanocavity (the pseudomode it supports) several times before its decay due to metal
absorption. Figure 4(c) demonstrates that plasmon–exciton polaritons at the single QE level can
be formed in nanocavities with large (4 nm) gaps by displacing the emitter position away from
the gap center.

3.2. Two-dimensional model

The 3D model in the previous section presents several limitations. It yields analytical expressions
only for dipolar sources located along, and oriented parallel to, the symmetry axis of cavities with
small ρ = δ/R. Moreover, the description of microscopic sources of higher order than dipolar
ones cannot be handled analytically either. Finally, it is purely quasi-static and therefore does
not provide any insight into far-field magnitudes, which are instrumental for the experimental
probing of hybrid QE–SP systems. In the following, we show how these constraints can be
overcome by considering a 2D model of the nanocavity, in which translational invariance along
y-direction of the EM fields is assumed. Importantly, this approximation is justified by the
remarkable similarity between plasmon–exciton strong-coupling phenomenology in 2D and 3D
geometries [122].

Figure 5(a) shows how the 2D version of a nanoparticle-on-a-mirror (NPoM) geometry can
be transformed into a metal-dielectric-metal waveguide under a logarithmic conformal map
(%(′) = x(′) + iz(′)) with D = 2R and s = δ+D

p
ρ/(

√
2+ρ+p

ρ) [50]. The original EM point-like
source transforms into an array of coherent identical sources, which makes the transformed
system periodic. This periodicity provides again with appropriate indices for the SP modes:
the Bloch band index, l , and, similarly to the 3D case, the parity with respect to the waveg-
uide symmetry plane, σ [116]. The spectral densities can be calculated from the 2D model
by using the first equality in (9), fed with 2D calculations of the Purcell enhancement P (ω) =
(8ε0/µ2

E)(c/ω)2Im{µE∇ Φ(r,ω)|rE }, where r = (x, z) and rE is the position of the emitter in the xz-
plane. This simplified model makes it possible treating quadrupolar exciton transitions in QEs in
an analytical fashion as well [117]. Once 2D Purcell factors are known, they are combined with
3D free-space decay rates in (9).

Implementing radiation reaction corrections in the 2D model [41], the radiative decay rate
for the even (σ = +1) SPs supported by NPoM cavities, γr

l ,+1, can be calculated [122] (note that,
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Figure 5. (a) 2D mapping between a Ag NPoM geometry and a silver-dielectric-silver
waveguide. (b) Top: even SP dipole moment versus index l . Inset: even (orange) and
odd (blue) SP frequencies (D = 30 nm, δ = 0.9 nm). Bottom: coupling strength maps for
vertically oriented QES and the lower-order dipolar SP mode (left) and the plasmonic
pseudomode (right). (c) Scattering spectra aroundω1+1 =ωµ for three-level QEs (sustaining
one dipolar and one quadrupolar transition) with zE = δ/2 and ωQ = ω1,+1 (top) and
zE = 7δ/8 and ωQ =ωPS. Adapted with permission [116, 117].

by symmetry, γr
l ,−1 = 0). With this theory refinement, the spectral width of the Lorentzian terms

in (9) acquire the form γl ,σ = γD +γr
l ,+1δσ,+1. Moreover, using the method of images, the dipolar

moment of even SPs can be extracted out of γr
l ,+1 [117]. The top panel of Figure 5 renders the

SP dipolar moment versus index l for the NPoM cavity in panel (a). As expected, they decrease as
the mode order increases, and the SPs contributing to the plasmonic pseudomode are completely
dark. The inset plots the SP frequencies for even (orange) and odd (blue) parity, showing that both
branches overlap for large l . To illustrate the power of the TO approach, the bottom panels in
Figure 5(b) display the coupling strength maps for vertically oriented QEs and for the lowest even
SP mode (g1,+1, left) and the plasmonic pseudomode (gPS, right). The former is focused at the gap
region, where it becomes rather uniform, and decays away from it. The latter is tightly confined
to the metal boundaries, both at the particle and flat substrate, and presents little sensitivity to
plasmon hybridization effects across the gap of the cavity.

Using the TO-calculated SP frequencies, ωl ,σ, and the QE–SP coupling constants, gl ,σ, the
Jaynes–Cummings Hamiltonian [118] describing plasmon–exciton interactions in the NPoM
cavity can be parametrized

Ĥ =ωEσ̂
†σ̂+∑

l ,σ
ωl ,σâ†

l ,σâl ,σ+
∑
l ,σ

gl ,σ[σ̂†âl ,σ+ σ̂â†
l ,σ], (11)

where σ̂ and âl ,σ are the QE and SP annihilation operators. Equation (11) illustrates the exploita-
tion of TO as a tool for the quantization of the complex plasmonic spectrum supported by the
NPoM cavity. Moreover, through Lindblad terms weighted by the SP damping rates, γl ,σ, we can
account for plasmonic losses in a master equation description of the system [117].
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Figure 5(c) shows scattering spectra for the cavity in panel (a) coupled to a QE modelled
as a three-level system sustaining two, one dipolar and one quadrupolar, exciton transitions.
Note that the latter is dark and could not be accessed by propagating EM fields. By adding a
coherent driving term [123] to (11), we can describe the illumination of the system by a laser
field of frequency ωL around the lowest SP resonance, ω1,+1. The far-field scattering spectrum
can be computed as the square of the steady-state expectation value of the total dipole moment
operator, M̂ = ∑

l µl âl+1 +µEσ̂µ [124]. The bare nanocavity is shown in dashed black lines. The
QE is located at the center of the gap in the top panel and displaced along z-directon in the
bottom one. In both cases, the dipolar transition is set at resonance with ω1,+1. In absence of
the quadrupolar transition, a Rabi doublet [125] is apparent in the spectra of the hybrid system,
the fingerprint of the onset of QE–SP strong coupling (see violet lines) [126]. These two scattering
peaks emerge as a result of the formation of polaritons (hybrid plasmon–exciton states) in the
system. They are displaced from the natural frequencies of their constituents, as a result of
the coupling strength between them. Therefore, the upper (lower) polariton lies above (below)
ωµ = ω1,+1. By increasing the quadrupole moment of the dark QE transition (orange and green
lines), this spectral profile is modified in opposite ways. In the top panel, a third peak emerges at
the dip between the Rabi maxima, whereas a single peak (resembling the bare cavity) is observed
in the bottom panel. These spectra show how TO allows exploring the remarkable effect that dark
excitons can have in QE–SP interactions in the strong-coupling regime [116].

4. Conclusions

In this review we have discussed the theory of transformation optics and its applications. We
have first reviewed its impact in metamaterial science for the design of electromagnetic devices
and other aspects, such as the control of surface waves or its extension into other realms of
wave physics. Next, we have revised how transformation optics has provided a set of analytical
techniques for investigating complex problems in plasmonics. We have then focused on the
application of this theoretical framework to the analytical treatment of two open problems of
much relevance in current theoretical nanophotonics.

On the one hand, we have shown how transformation optics allows for the design of plas-
monic metasurfaces with predictable optical responses inherited from a transformed structure
with more symmetries. We have also reviewed the proposal of singular plasmonic metasurfaces
in the form of subwavelength metal gratings with sharp edges or graphene metasurfaces with
points of vanishing doping level. These singular structures are a realization of compacted dimen-
sions, provide macroscopic signatures of nonlocality, and could be used as ultrathin broadband
absorbers.

On the other hand, we have presented the description of plasmon–exciton coupling in
nanocavities by means of transformation optics calculations. We have discussed the insights
that this tool provides into both near- and far-field physical magnitudes, such as the exciton dy-
namics and the scattering spectrum. Finally, we have shown that this tool enables the analyti-
cal parametrization of the Jaynes–Cummings Hamiltonian describing light-matter interactions
in these hybrid nanometric systems.
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