In this article, the important role of neutron spectroscopy techniques for the study of the dynamics of molecules hosted inside cavities at the nanometer scale is described. Three different complex systems are highlighted: alkanes with variable length inside zeolitic matrices, C60 fullerene chains inside single wall carbon nanotubes, and inert gas (N2, Xe) molecules inside water clathrates.
Cet article illustre le rôle majeur de la spectroscopie neutronique dans l'étude de la dynamique des molécules insérées dans des cavités de taille nanométrique, à travers l'étude de trois systèmes complexes : des alkanes de taille variable confinés à l'intérieur de matrices zéolitiques, des chaînes unidimensionnelles de C60 dans des nanotubes monofeuillets de carbone et des gaz inertes (N2, Xe) dans les clathrates d'eau.
Mots-clés : Diffusion neutronique, Spectroscopie neutronique, Zeolites, Nanotubes, Fullerènes, Clathrates, Diffusion, Vibrations, Confinement
Stéphane Rols 1, 2; Hervé Jobic 3; Helmut Schober 1
@article{CRPHYS_2007__8_7-8_777_0, author = {St\'ephane Rols and Herv\'e Jobic and Helmut Schober}, title = {Monitoring molecular motion in nano-porous solids}, journal = {Comptes Rendus. Physique}, pages = {777--788}, publisher = {Elsevier}, volume = {8}, number = {7-8}, year = {2007}, doi = {10.1016/j.crhy.2007.07.007}, language = {en}, }
Stéphane Rols; Hervé Jobic; Helmut Schober. Monitoring molecular motion in nano-porous solids. Comptes Rendus. Physique, Neutron scattering: a comprehensive tool for condensed matter research, Volume 8 (2007) no. 7-8, pp. 777-788. doi : 10.1016/j.crhy.2007.07.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.07.007/
[1] Diffusion in Zeolites and Other Microporous Solids, Wiley, New York, 1992
[2] Phys. Rev. Lett., 82 (1999), p. 4260
[3] J. Chem. Phys., 113 (2000), p. 6875
[4] J. Phys. Chem., 100 (1996), p. 7155
[5] J. Mol. Catal. A, 158 (2000), p. 135
[6] Micropor. Mesopor. Mater., 90 (2006), p. 299
[7] J. Phys. Chem., 110 (2006), p. 1964
[8] Angew. Chem. Int. Ed., 43 (2004), p. 364
[9] J. Catal., 31 (1973), p. 13
[10] Understanding Carbon Nanotubes (A. Loiseau; P. Launois; P. Petit; S. Roche; J.-P. Salvetat, eds.), Lect. Notes in Phys., vol. 667, Springer, Berlin/Heidelberg, 2007
[11] Phys. Rev. Lett., 85 (2000), p. 5222
[12] Phys. Rev. Lett., 93 (2004), p. 035503
[13] Phys. Rev. B, 69 (2004), p. 035404
[14] J. Phys. Chem. Solids, 53 (1992), p. 1353
[15] Rep. Prog. Phys., 59 (1996), p. 473
[16] J. Phys. Chem. Solids, 53 (1992), p. 1333
[17] Z. Phys. B, 92 (1993), p. 451
[18] Phys. Rev. B, 70 (2004), p. 104302
[19] Phys. Rev. B, 71 (2005), p. R041403
[20] Phys. Rev. B, 74 (2006), p. 205425
[21] S. Rols, R. Almairac, E. Bretsztajn, V.A. Agafonov, A.V. Rakhmanina, V.A. Davydov, in preparation
[22] Phys. Rev. B, 45 (1992), p. 6923
[23] J. Cambedouzou, Ph.D. Thesis, University of Montpellier, 2004
[24] Clathrate Hydrate of Natural Gases, Dekker, New York, 1998
[25] Natural Gas Hydrate in Oceanic and Permafrost Environments, Kluwer, Dordrecht, 2000
[26] Gas Hydrates—Relevance to World Margin Stability and Climatic Change, Geolog. Soc., London, 1998
[27] Nature, 420 (2002), p. 656
[28] Science, 150 (1965), p. 1713
[29] J. Phys. C: Solid State Phys., 16 (1983), p. 1423
[30] J. Phys. Chem., 92 (1988), p. 5006
[31] Phys. Rev. Lett., 82 (1999), p. 779
[32] Phys. Rev. B, 56 (1997), p. 5937
[33] Europhys. Lett., 54 (2001), p. 354
[34] J. Chem. Phys., 116 (2002), p. 3795
[35] Phys. Rev B, 68 (2003), p. 174301
[36] J. Phys. IV, 103 (2003), p. 173
Cited by Sources:
Comments - Policy