Comptes Rendus
Neutron scattering/Diffusion de neutrons
Structural and dynamical studies from bio-mimetic systems: an overview
Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 865-883.

Membranes are ubiquitous in living materials and carry out highly specialised functions. They surround both cells (plasma membranes) and organelles within cells and represent the surface through which interaction occurs with the outside world. Cell membranes consist mostly of lipids and proteins. Scientists have been well aware for a long time of the importance of lipid structural properties for understanding functional mechanisms at membrane surfaces. Neutron scattering techniques are powerful tools for the characterization of the structure and dynamics of bio-mimetic systems and much progress has been done in recent years since they give the unique access to microscopic structure and dynamics at length scales of intermolecular or atomic distances. The optimization of instrumentation and sample preparation techniques, as well as the new possibilities offered by protein deuteration, have opened the way to studies of lipid/protein interactions that were impossible in the past. It is now possible to engineer systems that allow one to look at the insertion of biomolecules into membranes and to determine very accurately the structure as well as the dynamics of the interaction.

Les membranes existent partout dans les matériaux vivants et portent des fonctions hautement spécialisées. Elles entourent à la fois les cellules (membranes cellulaires) et les organites intra-cellulaires. Elles correspondent à la surface à travers laquelle se fait l'interaction avec le monde extérieur. Les membranes des cellules consistent essentiellement de lipides en protéines. Les scientifiques ont réalisé depuis longtemps l'importance des propriétés structurales des lipides pour la compréhension des mécanismes fonctionnels à la surface de la membrane. Les techniques de diffusion de neutrons sont un outil puissant pour caractériser à la fois la structure et la dynamique des systèmes bio-mimétiques. Ces dernières années, beaucoup de progrès ont été réalisés grâce à cet accès unique à la structure microscopique ainsi qu'à la dynamique sur des échelles de longueurs interatomiques et intermoléculaires. L'optimisation de l'instrumentation et les techniques de préparation de l'échantillon ainsi que les nouvelles possibilités offertes par la deutériation des protéines ont ouvert la voie aux études des interactions lipides/protéines, interdites jusqu'ici. Il est maintenant possible de créer des systèmes qui permettent de regarder l'insertion des biomolécules dans les membranes et de déterminer précisément leur structure et la dynamique associée aux interactions.

Published online:
DOI: 10.1016/j.crhy.2007.09.003
Keywords: Bio-mimetic systems, Neutron scattering
Mot clés : Système bio-mimétique, Diffusion de neutrons

Giovanna Fragneto 1; Maikel Rheinstädter 2

1 Institut Laue-Langevin, 6, rue Jules Horowitz, B.P. 156, 38042 Grenoble cedex 9, France
2 Department of Physics and Astronomy, 223 Physics Building, University of Missouri-Columbia, Columbia, MO 65211, USA
@article{CRPHYS_2007__8_7-8_865_0,
     author = {Giovanna Fragneto and Maikel Rheinst\"adter},
     title = {Structural and dynamical studies from bio-mimetic systems: an overview},
     journal = {Comptes Rendus. Physique},
     pages = {865--883},
     publisher = {Elsevier},
     volume = {8},
     number = {7-8},
     year = {2007},
     doi = {10.1016/j.crhy.2007.09.003},
     language = {en},
}
TY  - JOUR
AU  - Giovanna Fragneto
AU  - Maikel Rheinstädter
TI  - Structural and dynamical studies from bio-mimetic systems: an overview
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 865
EP  - 883
VL  - 8
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.09.003
LA  - en
ID  - CRPHYS_2007__8_7-8_865_0
ER  - 
%0 Journal Article
%A Giovanna Fragneto
%A Maikel Rheinstädter
%T Structural and dynamical studies from bio-mimetic systems: an overview
%J Comptes Rendus. Physique
%D 2007
%P 865-883
%V 8
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2007.09.003
%G en
%F CRPHYS_2007__8_7-8_865_0
Giovanna Fragneto; Maikel Rheinstädter. Structural and dynamical studies from bio-mimetic systems: an overview. Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 865-883. doi : 10.1016/j.crhy.2007.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.003/

[1] O. Mouritsen, O. Andersen, In search of a new biomembrane model, Biologiske, 1998

[2] Structure and Dynamics of Membranes (R. Lipowsky; E. Sackmann, eds.), Handbook of Biological Physics, vol. 1, Elsevier, Amsterdam, 1995

[3] L. Rilfors; G. Lindblom Colloids and Surfaces B: Biointerfaces, 26 (2002), pp. 112-124

[4] G.L. Gaines Insoluble Monolayers at Liquid–Gas Interface, Interscience Publishers, New York, 1966

[5] E. Sackmann Science, 271 (1996), pp. 43-48

[6] T.H. Watts; A.A. Brian; J.W. Kappler; P. Marrack; H.M. McConnell Proc. Nat. Acad. Sci. USA, 81 (1984), p. 7564

[7] L. Tamm; H. McConnell Biophys. J., 47 (1985), pp. 105-113

[8] M. Tanaka; E. Sackmann Nature, 437 (2005), pp. 656-663

[9] T. Charitat; E. Bellet-Amalric; G. Fragneto; F. Graner Eur. Phys. J. B, 8 (1999), pp. 583-593

[10] J. Daillant; E. Bellet-Amalric; A. Braslau; T. Charitat; G. Fragneto; F. Graner; S. Mora; F. Rieutord; B. Stidder Proc. Nat. Acad. Sci., 102 (2005) no. 33, pp. 11639-11644

[11] G. Fragneto; T. Charitat; E. Bellet-Amalric; R. Cubitt; F. Graner Langmuir, 19 (2003), pp. 7695-7702

[12] B. Stidder; G. Fragneto; S.J. Roser Langmuir, 21 (2005) no. 20, pp. 9187-9193

[13] B. Stidder; G. Fragneto; R. Cubitt; A.V. Hughes; S. Roser Langmuir, 21 (2005) no. 19, pp. 8703-8710

[14] S. Lecuyer; G. Fragneto; T. Charitat Eur. Phys. J. E, 21 (2006), pp. 153-159

[15] A. Tardieu; V. Luzzati; F.C. Reman J. Mol. Biol., 75 (1973), pp. 711-733

[16] J. Katsaras Biophys. J., 75 (1998) no. 5, pp. 2157-2162

[17] M. Vogel; C. Munster; W. Fenzl; T. Salditt Phys. Rev. Lett., 84 (2000) no. 2, pp. 390-393

[18] J. Pencer; T. Mills; V.N.P. Anghel; S. Krueger; R.M. Epand; J. Katsaras Eur. Phys. J. E, 18 (2005), pp. 447-458

[19] S.M. Fahsel; E.M. Pospiech; M. Zein; T.L. Hazlet; E. Gratton; R. Winter Biophys. J., 83 (2002), pp. 334-344

[20] (J. Katsaras; T. Gutberlet, eds.), Lipid Bilayers: Structure Interactions, Springer, 2000

[21] D. Uhíková; N. Kucerka; A. Islamov; V. Gordeliy; P. Balgavy Gen. Physiol. Biophys., 20 (2001), pp. 183-189

[22] N. Kucerka, M.-P. Nieh, J. Pencer, T. Harroun, J. Katsaras, Curr. Opin. Colloid Interface Sci. (2007), | DOI

[23] S.L. Veatch; S.L. Keller Biophys. J., 85 (2003), p. 3074

[24] J.R. Silvius Biophys. J., 85 (2003), p. 1034

[25] V.I. Gordeliy; N.I. Chernov Acta Cryst. D, 53 (1997), pp. 377-384

[26] G. Buldt; H.U. Gally; A. Seelig; J. Seelig; G. Zaccai Nature, 271 (1978), pp. 182-183

[27] G. Buldt; J. Seelig Biochem., 19 (1980), pp. 6170-6175

[28] G. Büldt; H.U. Gally; J. Seelig; G. Zaccai Mol. Biol., 134 (1979), pp. 673-691

[29] R.P. Rand; V.A. Parsegian Biochim. Biophys. Acta, 998 (1989), pp. 351-376

[30] L. Ding; T.M. Weiss; G. Fragneto; W. Liu; L. Yang; H.W. Huang Langmuir, 21 (2005), pp. 203-210

[31] O.S. Heavens Optical Properties of Thin Films, Butterworth, London, 1955

[32] G. Fragneto; T. Charitat; P. Dubos; F. Graner; E. Bellet-Amalric Langmuir, 2 16 (2000), pp. 4581-4588

[33] J. Penfold; R.K. Thomas J. Phys. Condens. Matter, 2 (1990), pp. 1369-1412

[34] R. Pynn Phys. Rev. B, 45 (1992) no. 2, pp. 602-612

[35] M. Schalke; M. Losche Adv. Colloid Interface Sci., 88 (2000), pp. 243-274

[36] C.E. Miller; J. Majewski; T.L. Kuhl Colloids Surfaces A (2006), pp. 434-439

[37] E. Nováková; K. Griewekemeyer; T. Salditt Phys. Rev. E, 74 (2006) 051911 (9 pages)

[38] S. Krueger; C.W. Meuse; C.F. Majkrzak et al. Langmuir, 17 (2000), pp. 511-521

[39] H.P. Wacklin; F. Tiberg; G. Fragneto; R.K. Thomas BBA—Biomembranes, 1768 (2007), pp. 1036-1049

[40] S. Chen; C. Liao; H. Huang; T. Weiss; M. Bellissent-Funel; F. Sette Phys. Rev. Lett., 86 (2001), pp. 740-743

[41] M.C. Rheinstädter; C. Ollinger; G. Fragneto; F. Demmel; T. Salditt Phys. Rev. Lett., 93 (2004) 108107 (4 pages)

[42] M.C. Rheinstädter; T. Seydel; F. Demmel; T. Salditt Phys. Rev. E, 71 (2005) 061908 (8 pages)

[43] M.C. Rheinstädter; W. Häußler; T. Salditt Phys. Rev. Lett., 97 (2006) 048103 (4 pages)

[44] M.C. Rheinstädter; T. Seydel; T. Salditt Phys. Rev. E, 75 (2007) 011907 (5 pages)

[45] M.C. Rheinstädter; T. Seydel; W. Häußler; T. Salditt J. Vac. Soc. Technol. A, 24 (2006), pp. 1191-1196

[46] M. Tarek; D. Tobias; S.-H. Chen; M. Klein Phys. Rev. Lett., 87 (2001) 238101 (4 pages)

[47] I. de Schepper; P. Verkerk; A. van Well; L. de Graaf Phys. Rev. Lett., 50 (1983), pp. 974-977

[48] A. van Well; P. Verkerk; L. de Graaf; J.-B. Suck; J. Copley Phys. Rev. A, 31 (1985), pp. 3391-3414

[49] A. van Well; L. de Graaf Phys. Rev. A, 32 (1985), pp. 2396-2412

[50] H. Glyde Excitations in Liquid and Solid Helium, Oxford Series on Neutron Scattering in Condensed Matter, vol. 9, Clarendon Press, Oxford, 1994

[51] Neutron Spin Echo (F. Mezei, ed.), Springer, Berlin, 1980

[52] V. Romanov; S. Ul'yanov Phys. Rev. E, 63 (2001), p. 031706 (11 pages)

[53] V. Romanov; S. Ul'yanov Phys. Rev. E, 66 (2002), p. 061701 (9 pages)

[54] S. Krueger Curr. Opin. Colloid Interface Sci., 6 (2001), pp. 111-117

Cited by Sources:

Comments - Policy