Thanks to the ability of neutrons to penetrate deep into matter, experiments can be performed in situ in real conditions. The development of dedicated instruments on high flux neutron sources also enables fast data acquisition. As a consequence, it is now possible to investigate not only in situ but also time resolved physical or chemical processes over several time scales ranging from hours to a few milliseconds. Several recent examples are taken in different fields of research: physics, magnetism, chemistry, metallurgy, electrochemistry, polymers and archeometry. Among the scattering techniques that can be used to perform in situ or time resolved experiments we present results of powder neutron diffraction, small angle neutron scattering, and neutron radiography.
La forte pénétration des neutrons dans la matière permet d'effectuer des expériences in situ, dans des conditions réelles. Sur les sources à haut flux de neutrons, le développement d'instruments spécialisés, dédiés à ces études, rend possible des acquisitions très rapides. Ainsi, il est désormais possible d'effectuer non seulement des études in situ mais aussi résolues en temps afin d'étudier des processus physique ou chimique sur plusieurs échelles de temps s'étalant de quelques millisecondes à l'heure. De nombreux exemples récents seront présentés, pris dans divers domaines de recherche : physique, chimie, métallurgie, magnétisme, électrochimie, polymères et archéologie. Parmi le large éventail de techniques neutroniques qui peuvent être effectuées in situ ou en temps réels, nous présenterons ici des résultats de diffraction neutronique sur poudre, de diffusion des neutrons aux petits angles et de radiographie neutronique.
Mots-clés : Études in situ, Diffraction neutronique sur poudre, Expériences en temps réels, Diffusion des neutrons aux petits angles
Olivier Isnard 1, 2, 3
@article{CRPHYS_2007__8_7-8_789_0, author = {Olivier Isnard}, title = {A review of in situ and/or time resolved neutron scattering}, journal = {Comptes Rendus. Physique}, pages = {789--805}, publisher = {Elsevier}, volume = {8}, number = {7-8}, year = {2007}, doi = {10.1016/j.crhy.2007.10.002}, language = {en}, }
Olivier Isnard. A review of in situ and/or time resolved neutron scattering. Comptes Rendus. Physique, Neutron scattering: a comprehensive tool for condensed matter research, Volume 8 (2007) no. 7-8, pp. 789-805. doi : 10.1016/j.crhy.2007.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.002/
[1] Chemica Scripta, 26 (1986), p. 131
[2] J. Optoelectron. Adv. Mater., 8 (2006), pp. 411-417
[3] J. de Phys. IV, 103 (2003), pp. 133-171
[4] J. Mater. Chem., 10 (2000), pp. 2617-2626
[5] O. Isnard, Usefulness of neutron scattering investigation in materials science, J. Optoelectron. Adv. Mater. (2007), in press
[6] Neutron and Synchrotron Radiation for Condensed Matter (J. Baruchel; J.L. Hodeau; M. Lehmann; J.R. Regnard; C. Schlenker, eds.), EDP-Sciences Publisher, 1993, p. 425
[7] P.J. Withers, C.R. Physique (2007); DOI:, in this issue | DOI
[8] J. de Phys. IV, 89 (2001), p. 1
[9] Neutron Diffraction and Magnetic Materials, Plenum Publishing Corp., 1991
[10] et al. Neutron diffraction studies of the magnetic phase transitions in Ce2Fe17 compound under pressure, J. Appl. Phys., Volume 92 (2002) no. 1, pp. 385-391
[11] et al. Helimagnetic order in the re-entrant ferromagnet Ce2Fe15.3Mn1.7, J. Appl. Phys., Volume 97 (2005) (113909-1 to 8)
[12] Phys. A, 74 (2002), p. S1025
[13] Physica B, 276–278 (2004), p. 905
[14] et al. Crystallisation and polymorphic transformations in Fe–Zr amorphous alloys obtained by high energy-ball milling, Physica B, Volume 350 (2004), p. e1075-e1077
[15] J. Mater. Sci. Lett., 8 (1989), pp. 827-830
[16] Eur. Phys. J. B, 17 (2000), pp. 615-622
[17] J. Appl. Cryst., 18 (1985), pp. 170-172
[18] et al. Composition and microstructure changes of cement pastes upon heating as studied by neutron diffraction, Cement Concrete Res., Volume 34 (2004), pp. 1633-1644
[19] J. Sol. State Chem., 177 (2004), pp. 1944-1951
[20] et al. Ordering of nanocrystalline Fe–Pt alloys studied by in situ powder neutron diffraction, J. Appl. Phys., Volume 100 (2006), p. 094308
[21] et al. Influence of composition and order on the magnetism of Fe–Pt alloys: Neutron powder diffraction and theory, Appl. Phys. Lett., Volume 89 (2006), p. 032506
[22] et al. Effect of pressure and Mn substitution on the magnetic ordering of Ce2Fe17−xMnx, Appl. Phys. A, Volume 74 (2002), p. S610-S612
[23] et al. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet, J. Phys.: Condens. Matter, Volume 16 (2004), pp. 7837-7852
[24] et al. Bicriticallity in FexCo1−xTa2O6, Phys. Rev. Lett., Volume 91 (2003) (197208-1)
[25] Physica B, 241–243 (1998), pp. 234-236
[26] Nuclear Instrum. Methods Phys. Res. A, 551 (2005), pp. 88-107
[27] S.H. Kilcoyne, P. Manuel, C. Ritter, P. Radaelli, in: ILL Millenium Symposium Proceedings, 2001, pp. 170–171
[28] Physica B: Condens. Matter, 350 (2004), pp. 91-97
[29] et al. GEM: The General Materials diffractometer at ISIS—multibank capabilities for studying crystalline and disordered materials, Neutron News, Volume 15 (2004), pp. 19-23
[30] Rep. Prog. Phys., 69 (2006), pp. 233-299
[31] et al. Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx ternary compounds (R = Ce, Nd, Ho), J. Less-Common Met., Volume 162 (1990), pp. 273-284
[32] et al. Neutron powder diffraction study of Pr2Fe17 and Pr2Fe17N3, Phys. Rev. B, Volume 45 (1992), pp. 2920-2926
[33] et al. R2Fe17 and RM12 carbide and carbonitride synthesis from heavy hydrocarbon compounds, J. Alloys Comp., Volume 203 (1994), pp. 157-163
[34] et al. Neutron powder diffraction study of the desorption of deuterium in Nd2Fe17Dx=5, Physica B, Volume 180–181 (1992), pp. 629-631
[35] et al. Magnetic circular X-ray dichroism study of the Ce2Fe17Hx compounds, Phys. Rev. B, Volume 49 (1994), pp. 15692-15701
[36] et al. Neutron scattering study of hydrogen dynamics in Pr2Fe17H5, Phys. Rev. B, Volume 70 (2004), p. 214305
[37] et al. Neutron vibrational spectroscopy of the Pr2Fe17 based hydrides, J. Alloys Comp., Volume 446–447 (2007), pp. 504-507
[38] et al. Neutron powder diffraction study of the reaction of Nd2Fe17 compound with nitrogen gas, Physica B, Volume 180–181 (1992), pp. 624-626
[39] et al. In situ neutron diffraction study of the reaction of the compounds NdFe10.75V1.25 and NdFe11Ti with nitrogen, J. Alloys Comp., Volume 298 (2000), pp. 220-225
[40] et al. Structural investigation of oxygen insertion within the Ce2Sn2O7 and Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments, J. Mater. Chem., Volume 12 (1999), pp. 3131-3136
[41] et al. The chemistry of YBa2Cu3O7: a neutron powder thermodiffractometry study, Physica C, Volume 153–155 (1988), pp. 1671-1672
[42] et al. In situ neutron diffraction study of deuterium absorption in AB5 alloys used as negative electrode materials for Ni-MH battery, Physica B, Volume 350 (2004), p. E427-E430
[43] L. Schlapbach, Hydrogen in intermetallic compounds I, Topics in Applied Physics serie 63, Springer-Verlag, Berlin, 1988, p. 350
[44] L. Schlapbach, Hydrogen in intermetallic compounds II, Topics in Applied Physics serie 67, Springer-Verlag, Berlin, 1992, p. 328
[45] J. Alloys Comp., 293–295 (1999), p. 637
[46] et al. Influence of stoichiometry and composition on the structural and electrochemical properties of AB5+y-based alloys used as negative electrode materials in Ni-MH batteries, J. Alloys Comp., Volume 330–332 (2002), pp. 787-791
[47] et al. Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials, Physica B, Volume 362 (2005), pp. 199-207
[48] et al. In situ neutron diffraction study of deuterium desorption from LaNi5+x () alloy, Appl. Phys. A, Volume 74 (2002), p. S175-S177
[49] et al. In situ neutron powder diffraction of a nickel hydroxide electrode, Chem. Mater., Volume 16 (2004), pp. 3936-3948
[50] Chemical physics of intercalation II, NATO Series B, Volume 305 (1993), pp. 181-192
[51] Progress Solid State Chem., 23 (1995), pp. 1-130
[52] Mat. Res. Soc. Proc., 210 (1991), pp. 359-365
[53] et al. Bi4V2O11 polymorph crystal structures related to their electrical properties, Solid State Ionics, Volume 157 (2003), pp. 147-153
[54] et al. Time resolved in situ neutron diffraction investigation of the oxygen transfer in BIMEVOX membrane under operating conditions, Solid State Ionics, Volume 175 (2004), pp. 419-424
[55] J. Appl. Cryst., 11 (1978), pp. 376-404
[56] J. de Phys. IV, 60 (1999)
[57] et al. Equilibrium exchange kinetics in PEP-PEO block copolymer micelles. A time resolved SANS study, Physica B, Volume 385–386 (2006), pp. 735-737
[58] A critical crossover in metal–ammonia solutions (Na–ND3) as observed by small angle neutron scattering, J. Phys. Chem., Volume 88 (1984), pp. 3734-3740
[59] Macromolecules, 26 (1993), pp. 5897-5907
[60] Polymer, 33 (1992), pp. 3137-3144
[61] In situ small angle neutron scattering study of precipitates in AM1 supermalloy single crystals (S.D. Antolovich et al., eds.), Supermalloy, The Minerals, Metals & Materials Society, 1992, pp. 547-553
[62] Acta Mater., 45 (1997), p. 3277
[63] Rev. Metal. Paris, 93 (1996), p. 2
[64] et al. Characterization of residual stresses in turbine discs by neutron and high-energy X-ray diffraction and comparison to finite element modelling, Mater. Sci. Eng. A, Volume 437 (2006), pp. 75-82
[65] Nature, 409 (2001), pp. 167-170
[66] Phys. Rev. Lett., 84 (2000), pp. 2164-2167
[67] et al. Observation of hairpin defects in a nematic main chain polyester, Phys. Rev. Lett., Volume 70 (1993), pp. 2297-2300
[68] et al. Study of the chain conformation of thermotropic nematic main chain polyesters, J. Phys. II France (1994), pp. 1843-1863
[69] Practical Neutron Radiography (J.C. Domanus, ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992
[70] J. de Phys. IV, 130 (2005), pp. 231-241
[71] et al. High-speed neutron tomography of dynamic processes, Nucl. Instrum. Methods Phys. Res., Sect. A, Volume 542 (2005), pp. 296-301
[72] Neutrons News, 17 (2006), pp. 19-21
[73] et al. In situ neutron radiography of lithium-ion batteries during charge/discharge cycling, J. Power Sources, Volume 101 (2001), pp. 177-181
[74] et al. In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging, J. Power Sources, Volume 130 (2004), pp. 221-226
[75] Physica B, 385–386 (2006), pp. 921-923
[76] J. Non-Newtonian Fluid Mech., 112 (2003), pp. 203-215
[77] et al. Neutron imaging and neutron tomography as non destructive tools to study bulk rock samples, Europ. J. Mineralogy, Volume 14 (2002), pp. 349-354
[78] Neutrons News, 17 (2006), pp. 22-29
[79] Alt heydnisch Bildein von Ertz, Archeologie der Schweitz, Volume 27 (2004), p. 3
[80] et al. Molecular and Structural Archeology: Cosmetic and Therapeutic Chemical (G. Tsoucaris; J. Lipkowski, eds.), NATO Series, vol. 117, Kluwer Academic Press Publisher, 2003, p. 107
[81] Applications of TOF neutron diffraction in archaeometry, Appl. Phys. A: Mater. Sci. Process., Volume 83 (2006), pp. 175-182
[82] G. Artioli, et al., Early copper alpine metallurgy, in: Proceedings of the International Conference on Archeometallurgy in Europe, 2003
[83] et al. www.ill.fr (Institut Laue–Langevin experimental report)
[84] et al. Crystallographic texture analysis of the iceman and coeval copper axes by non invasive neutron powder diffraction (A. Fleckinger, ed.), Die Gletschermumie aus der Kupferzeit 2, Schriften des Südtiroler Archeologiemuseums and Südtiroler Archeologiemuseum, Folio Verlag, Bozen/Wien, 2003 (ISBN: 3-85256-249-X/88-86857-41-1)
[85] et al. Initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation, Chem. Comm. (2007), pp. 834-836
[86] J. Phys. IV France, 130 (2005), p. 75
[87] Langmuir, 19 (2003), pp. 4513-4581
[88] et al. How does ZrO2/surfactant mesophase nucleate? Formation mechanism, Langmuir, Volume 19 (2003), pp. 8503-8510
[89] Reaction kinetics in Ti3SiC2 synthesis studied by time resolved neutron diffraction, J. Europ. Ceram. Soc., Volume 25 (2005), pp. 3503-3508
[90] Self-propagating high temperature synthesis of Ti3SiC2: Ultra high speed neutron diffraction study of the reaction mechanism, J. Am. Ceram. Soc., Volume 85 (2002), pp. 2417-2424
[91] In situ neutron diffraction study of Ti3SiC2 synthesis, J. Am. Ceram. Soc., Volume 84 (2001), pp. 2281-2288
[92] Intermediate phases in Ti3SiC2 synthesis from Ti/SiC mixtures studied by time-resolved neutron diffraction, J. Am. Ceram. Soc., Volume 85 (2002), pp. 3084-3086
[93] et al. Time resolved diffraction study of solid combustions reactions using synchrotron reaction, Science, Volume 249 (1990), p. 1406
[94] TiC–NiAl composites obtained by SHS: a time resolved XRD study, J. Europ. Ceram. Soc., Volume 22 (2006), pp. 1039-1044
[95] et al. Time resolved XRD study if TiC–TiB2 composites obtained by SHS, Acta Mater., Volume 37 (2004), pp. 4783-4790
[96] A.W. Hewat, H.E. Fischer, B. Guerard, M. Thomas, Dracula and the H12 tube renewal, project in preparation
[97] H.E. Fischer, A.W. Hewat, DRACULA internal report, Institut Laue–Langevin, September 2006
[98] Nucl. Instrum. Meth. A, 238 (1990), pp. 221-230
[99] J. Phys. Condens. Matter, 13 (2001), pp. 217-220
[100] Sol. State Ionics, 177 (2006), pp. 2473-2479
[101] Physica B, 213–214 (1995), pp. 1012-1016
[102] Nucl. Instrum. Meth. B, 93 (1994), pp. 316-321
[103] et al. Magnetic relaxation studies on single-molecule magnet by time-resolved inelastic scattering, Appl. Phys. Lett., Volume 88 (2006), p. 042507
Cited by Sources:
Comments - Policy