Resonant frequencies of the two-dimensional plasma in field effect transistors (FETs) increase with the reduction of the channel dimensions and can reach the THz range for nanometer size devices. Nonlinear properties of the electron plasma in the transistor channel can lead to the detection and emission of THz radiation. The excitation of plasma waves by sub-THz and THz radiation was experimentally demonstrated at cryogenic as well as at room temperatures. We present an overview of experimental results on THz detection by FETs discussing possibilities of improvement of their performance and application for THz room temperature imaging. We present also recent results on THz emission from GaN/AlGaN-based FETs.
Les fréquences de résonance de plasma bidimensionnel dans les transistors à effet de champ (FET) augmentent quand la taille du canal du transistor diminue, et ainsi peuvent atteindre le domaine térahertz pour des canaux nanométriques. Les propriétés non linéaires du plasma électronique dans le canal du FET permettent la génération et la détection du rayonnement THz. L'excitation de ces ondes plasma par un rayonnement sub-THz et THz a été démontrée expérimentalement à des températures cryogéniques mais aussi ambiantes. Nous présentons une revue des résultats expérimentaux de détection des ondes THz à l'aide de FET et nous discutons des possibilités d'amélioration de leurs performances en vue d'application pour l'imagerie THz à température ambiante. Nous présentons aussi des résultats récents de l'émission THz par des FET à base de GaN/AlGaN.
Mots-clés : Transistor à effet de champ, Térahertz
W. Knap 1; D. Coquillat 1; N. Dyakonova 1; F. Teppe 1; O. Klimenko 1; H. Videlier 1; S. Nadar 1; J. Łusakowski 2; G. Valusis 3; F. Schuster 1, 4; B. Giffard 4; T. Skotnicki 5; C. Gaquière 6; A. El Fatimy 7
@article{CRPHYS_2010__11_7-8_433_0, author = {W. Knap and D. Coquillat and N. Dyakonova and F. Teppe and O. Klimenko and H. Videlier and S. Nadar and J. {\L}usakowski and G. Valusis and F. Schuster and B. Giffard and T. Skotnicki and C. Gaqui\`ere and A. El Fatimy}, title = {Plasma excitations in field effect transistors for terahertz detection and emission}, journal = {Comptes Rendus. Physique}, pages = {433--443}, publisher = {Elsevier}, volume = {11}, number = {7-8}, year = {2010}, doi = {10.1016/j.crhy.2010.06.010}, language = {en}, }
TY - JOUR AU - W. Knap AU - D. Coquillat AU - N. Dyakonova AU - F. Teppe AU - O. Klimenko AU - H. Videlier AU - S. Nadar AU - J. Łusakowski AU - G. Valusis AU - F. Schuster AU - B. Giffard AU - T. Skotnicki AU - C. Gaquière AU - A. El Fatimy TI - Plasma excitations in field effect transistors for terahertz detection and emission JO - Comptes Rendus. Physique PY - 2010 SP - 433 EP - 443 VL - 11 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2010.06.010 LA - en ID - CRPHYS_2010__11_7-8_433_0 ER -
%0 Journal Article %A W. Knap %A D. Coquillat %A N. Dyakonova %A F. Teppe %A O. Klimenko %A H. Videlier %A S. Nadar %A J. Łusakowski %A G. Valusis %A F. Schuster %A B. Giffard %A T. Skotnicki %A C. Gaquière %A A. El Fatimy %T Plasma excitations in field effect transistors for terahertz detection and emission %J Comptes Rendus. Physique %D 2010 %P 433-443 %V 11 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2010.06.010 %G en %F CRPHYS_2010__11_7-8_433_0
W. Knap; D. Coquillat; N. Dyakonova; F. Teppe; O. Klimenko; H. Videlier; S. Nadar; J. Łusakowski; G. Valusis; F. Schuster; B. Giffard; T. Skotnicki; C. Gaquière; A. El Fatimy. Plasma excitations in field effect transistors for terahertz detection and emission. Comptes Rendus. Physique, Terahertz electronic and optoelectronic components and systems, Volume 11 (2010) no. 7-8, pp. 433-443. doi : 10.1016/j.crhy.2010.06.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.010/
[1] Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett., Volume 71 (1993), p. 2465
[2] Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid, IEEE Trans. Electron Devices, Volume 43 (1996), p. 380
[3] Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors, Appl. Phys. Lett., Volume 84 (2004), p. 3523
[4] Magnetic field effect on the terahertz emission from nanometer InGaAs/AlInAs high electron mobility transistors, J. Appl. Phys., Volume 97 (2005), p. 4313
[5] Room temperature terahertz emission from nanometer field-effect transistors, Appl. Phys. Lett., Volume 88 (2006), p. 141906
[6] Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission, J. Phys.: Condens. Matter, Volume 20 (2008), p. 384205
[7] Field effect transistors for terahertz detection: Physics and first imaging applications, J. Infrared Milli Terahz Waves, Volume 30 (2009), p. 1319
[8] Generation and detection of terahertz radiation by field effect transistors, C. R. Physique, Volume 11 (2010) no. 7–8, pp. 413-420 ( this issue )
[9] S. Nadar, H. Videlier, D. Coquillat, F. Teppe, M. Sakowicz, N. Dyakonova, W. Knap, D. Seliuta, I. Kašalynas, G. Valušis, Room temperature imaging at 1.63 and 2.54 terahertz with field effect transistor detectors, J. Appl. Phys. (2010), in press.
[10] Terahertz detection by field effect transistor in high magnetic fields: influence of Shubnikov–de Haas and cyclotron resonance effects, Appl. Phys. Lett., Volume 95 (2009), p. 072106
[11] Terahertz detection by two dimensional plasma field effect transistors in quantizing magnetic fields, Appl. Phys. Lett., Volume 92 (2008), p. 203509
[12] O.A. Klimenko, Yu.A. Mityagin, H. Videlier, F. Teppe, N.V. Dyakonova, C. Consejo, S. Bollaert, V.N. Murzin, W. Knap, Terahertz response of InGaAs field effect transistors in quantizing magnetic fields, Appl. Phys. Lett. May (2010), in press.
[13] H. Videlier, S. Nadar, M. Sakowicz, T. Trinhvandam, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, T. Skotnicki, Terahertz broadband detection using silicon MOSFET, in: 16th International Conference on Electron Dynamics in Semiconductors Optoelectronics and Nanostructures (EDISON 16), 24–28 August 2009, Montpellier, France, J. Phys.: Conf. Ser. (2009), in press.
[14] Appl. Phys. Lett., 89 (2006), p. 253511
[15] AlGaN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources, J. Appl. Phys., Volume 107 (2010), p. 024504
[16] Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors, J. Appl. Phys., Volume 104 (2008), p. 024519
[17] D.B. Veksler, A.V. Muraviev, T.A. Elkhatib, K.N. Salama, M.S. Shur, in: Semiconductor Device Research Symposium, 2007 International, 12–14 December 2007, p. 1.
[18] J. Appl. Phys., 91 (2002), pp. 9346-9353
[19] Device loading effects on nonresonant detection of terahertz radiation by silicon MOSFETs, Electron. Lett., Volume 43 (2007), p. 422
[20] Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors, Appl. Phys. Lett., Volume 81 (2002), p. 4637
[21] Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor, Appl. Phys. Lett., Volume 80 (2002), p. 3434
[22] Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors, Appl. Phys. Lett., Volume 89 (2006), p. 131926
[23] Boundary instability of a two-dimensional electron fluid, Semiconductors, Volume 42 (2008), p. 984
[24] Broadening of the plasmon resonance due to plasmon–plasmon intermode scattering in terahertz high-electron-mobility transistors, Appl. Phys. Lett., Volume 93 (2008), p. 263503
[25] Plasma oscillations in high-electron-mobility transistors with recessed gate, J. Appl. Phys., Volume 99 (2006), p. 084507
[26] Analysis of plasma oscillations in high-electron mobility transistor-like structures: Distributed circuit approach, Appl. Phys. Lett., Volume 91 (2007), p. 143515
[27] Oblique modes effect on terahertz plasma wave resonant detection in InGaAs/InAlAs multichannel transistors, Appl. Phys. Lett., Volume 92 (2008), p. 242105
[28] Current driven resonant plasma wave detection of terahertz radiation: Toward the Dyakonov–Shur instability, Appl. Phys. Lett., Volume 92 (2008), p. 212101
[29] Grating-bicoupled plasmon-resonant terahertz emitter fabricated with GaAs-based heterostructure material systems, Appl. Phys. Lett., Volume 14 (2006), p. 4815
[30] Room temperature detection of sub-terahertz radiation in double-grating-gate transistors, Opt. Express, Volume 18 (2010), p. 6024
[31] Appl. Phys. Lett., 85 (2004), p. 675
[32] Terahertz imaging with GaAs field-effect transistors, Electron. Lett., Volume 44 (2008), p. 408
[33] Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors, J. Appl. Phys., Volume 105 (2009), p. 114511
[34] Plasma wave field effect transistor as a resonant detector for 1 terahertz imaging applications, Optics Commun., Volume 282 (2009), p. 3055
[35] Photovoltaic effect in a gated two-dimensional electron gas in magnetic field, Phys. Rev. B, Volume 80 (2009), p. 121304
[36] F. Schuster, H. Videlier, D. Coquillat, M. Sakowicz, F. Teppe, B. Dupont, B. Giffard, W. Knap, Imaging above 1 THz limit with Si-MOSFET detectors, in: IRMWW Conference Rome, 2010, in press.
Cited by Sources:
Comments - Policy