Magnetic resonance imaging (MRI) and fast field-cycling (FFC) NMR are both well-developed methods. The combination of these techniques, namely fast field-cycling magnetic resonance imaging (FFC-MRI) is much less well-known. Nevertheless, FFC-MRI has a number of significant applications and advantages over conventional techniques, and is being pursued in a number of laboratories. This article reviews the progress in FFC-MRI over the last two decades, particularly in the areas of Earth's field and pre-polarised MRI, as well as free radical imaging using field-cycling Overhauser MRI. Different approaches to magnet design for FFC-MRI are also described. The paper then goes on to discuss recent techniques and applications of FFC-MRI, including protein measurement via quadrupolar cross-relaxation, contrast agent studies, localised relaxometry and FFC-MRI with magnetisation-transfer contrast.
L'imagerie par Résonance Magnétique (IRM, ou MRI en anglais) et la RMN avec cyclage de champ rapide ( « fast field cycling », FFC) sont toutes deux des méthodes bien développées. La combinaison de ces techniques, c'est-à-dire l'imagerie par résonance magnétique avec cyclage de champ rapide (FFC-MRI en anglais) est beaucoup moins bien connue. Cependant, la FFC-MRI a un nombre d'applications et d'avantages significatifs par rapport aux techniques conventionnelles, et son étude est poursuivie dans un certain nombre de laboratoires. Cet article passe en revue les progrès de la FFC-MRI au cours des deux dernières décennies, en particulier dans les domaines de l'imagerie en champ terrestre avec pré-polarisation, de même que l'imagerie des radicaux libres en utilisant la FFC-MRI avec effet Overhauser. Diverses approches à la conception des aimants pour FFC-MRI sont également décrites. L'article continue en discutant des techniques et applications récentes de la FFC-MRI, telles que la mesure des protéines par relaxation croisée quadrupolaire, les études d'agents de contraste, la relaxométrie localisée et la FFC-MRI avec contraste par transfert d'aimantation.
Mots-clés : IRM en champ cyclé, FFC-IRM, IRM en champ magnétique terrestre, IRM prépolarisée, Imagerie par radicaux libres, Contraste par transfert de magnetisation
David J. Lurie 1; Silvio Aime 2; Simona Baroni 3; Nuala A. Booth 4; Lionel M. Broche 1; Chang-Hoon Choi 1; Gareth R. Davies 1; Saadiya Ismail 1, 4; Dara Ó hÓgáin 1; Kerrin J. Pine 1
@article{CRPHYS_2010__11_2_136_0, author = {David J. Lurie and Silvio Aime and Simona Baroni and Nuala A. Booth and Lionel M. Broche and Chang-Hoon Choi and Gareth R. Davies and Saadiya Ismail and Dara \'O h\'Og\'ain and Kerrin J. Pine}, title = {Fast field-cycling magnetic resonance imaging}, journal = {Comptes Rendus. Physique}, pages = {136--148}, publisher = {Elsevier}, volume = {11}, number = {2}, year = {2010}, doi = {10.1016/j.crhy.2010.06.012}, language = {en}, }
TY - JOUR AU - David J. Lurie AU - Silvio Aime AU - Simona Baroni AU - Nuala A. Booth AU - Lionel M. Broche AU - Chang-Hoon Choi AU - Gareth R. Davies AU - Saadiya Ismail AU - Dara Ó hÓgáin AU - Kerrin J. Pine TI - Fast field-cycling magnetic resonance imaging JO - Comptes Rendus. Physique PY - 2010 SP - 136 EP - 148 VL - 11 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2010.06.012 LA - en ID - CRPHYS_2010__11_2_136_0 ER -
%0 Journal Article %A David J. Lurie %A Silvio Aime %A Simona Baroni %A Nuala A. Booth %A Lionel M. Broche %A Chang-Hoon Choi %A Gareth R. Davies %A Saadiya Ismail %A Dara Ó hÓgáin %A Kerrin J. Pine %T Fast field-cycling magnetic resonance imaging %J Comptes Rendus. Physique %D 2010 %P 136-148 %V 11 %N 2 %I Elsevier %R 10.1016/j.crhy.2010.06.012 %G en %F CRPHYS_2010__11_2_136_0
David J. Lurie; Silvio Aime; Simona Baroni; Nuala A. Booth; Lionel M. Broche; Chang-Hoon Choi; Gareth R. Davies; Saadiya Ismail; Dara Ó hÓgáin; Kerrin J. Pine. Fast field-cycling magnetic resonance imaging. Comptes Rendus. Physique, Multiscale NMR and relaxation, Volume 11 (2010) no. 2, pp. 136-148. doi : 10.1016/j.crhy.2010.06.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.012/
[1] NMR field-cycling spectroscopy: principles and applications, Prog. Nucl. Magn. Reson. Spectrosc., Volume 18 (1986), pp. 171-276
[2] Fast-field-cycling NMR: Applications and instrumentation, Appl. Magn. Reson., Volume 20 (2001), pp. 365-404
[3] Field-cycling NMR relaxometry, Prog. Nucl. Magn. Reson. Spectrosc., Volume 44 (2004), pp. 257-320
[4] Technical aspects of fast field cycling, Adv. Inorg. Chem., Volume 57 (2006), pp. 405-470
[5] Free nuclear induction in the Earth's magnetic field, Phys. Rev. A, Volume 93 (1954), p. 941
[6] Novel approaches to low-cost MRI, Magn. Reson. Med., Volume 30 (1993), pp. 221-230
[7] Rapid polarizing field cycling in magnetic resonance imaging, IEEE Trans. Med. Imaging, Volume 25 (2006), pp. 84-93
[8] Prepolarized magnetic resonance imaging around metal orthopedic implants, Magn. Reson. Med., Volume 56 (2006), pp. 177-186
[9] Design of field-cycled magnetic resonance systems for small animal imaging, Phys. Med. Biol., Volume 51 (2006), pp. 2825-2841
[10] Proof-of-principle study of a small animal PET/field-cycled MRI combined system using conventional PMT technology, Nucl. Instrum. Methods Phys. Res. Sect. A, Volume 612 (2010), pp. 412-420
[11] NMR imaging in the Earth's magnetic field, Magn. Reson. Med., Volume 15 (1990), pp. 386-391
[12] Magnetic resonance imaging system based on Earth's magnetic field, Instrum. Sci. Technol., Volume 32 (2004), pp. 655-667
[13] A practical and flexible implementation of 3D MRI in the Earth's magnetic field, J. Magn. Reson., Volume 182 (2006), pp. 75-83
[14] Distortion-free magnetic resonance imaging in the zero-field limit, J. Magn. Reson., Volume 200 (2009), pp. 285-290
[15] Switched-field magnetic resonance imaging, SPIE Medical Imaging VI: Instrumentation, Volume 1651 (1992), pp. 22-27
[16] MR relaxometry imaging. Work in progress, Radiology, Volume 184 (1992), pp. 635-639
[17] Proton–electron double magnetic resonance imaging of free radical solutions, J. Magn. Reson., Volume 76 (1988), pp. 366-370
[18] Proton–electron double-resonance imaging (PEDRI) (L.J. Berliner, ed.), In Vivo EPR (ESR): Theory and Applications, vol. 18, Kluwer Academic/Plenum Publishers, New York, 2003, pp. 547-578
[19] Free-radicals imaged in vivo in the rat by using proton electron double-resonance imaging, Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci., Volume 333 (1990), pp. 453-456
[20] Development of a PEDRI free-radical imager using a 0.38 T clinical MRI system, Magn. Reson. Med., Volume 47 (2002), pp. 181-186
[21] Field-cycled proton electron double-resonance imaging of free radicals in large aqueous samples, J. Magn. Reson., Volume 84 (1989), pp. 431-437
[22] Design, construction and use of a large-sample field-cycled PEDRI imager, Phys. Med. Biol., Volume 43 (1998), pp. 1877-1886
[23] Field-cycled PEDRI imaging of free radicals with detection at 450 mT, Magn. Reson. Imaging, Volume 23 (2005), pp. 175-181
[24] Evaluation of a positron emission tomography (PET)-compatible field-cycled MRI (FCMRI) scanner, Magn. Reson. Med., Volume 62 (2009), pp. 1017-1025
[25] Design of permanent multipole magnets with oriented rare earth cobalt material, Nucl. Instrum. Methods, Volume 169 (1980), pp. 1-10
[26] 14N quadrupole resonance of some liquid crystalline compounds in the solid, J. Chem. Phys., Volume 65 (1976), pp. 2887-2891
[27] Quadrupolar dip in proton relaxation dispersion of poly(vinyl chloride), J. Magn. Reson., Volume 24 (1976), pp. 149-154
[28] Nuclear magnetic relaxation in the presence of quadrupole nuclei, Z. Naturforsch., Volume 32a (1977), pp. 544-554
[29] Field cycling in NMR relaxation spectroscopy: Applications in biological chemical and polymer physics, Bull. Magn. Reson., Volume 1 (1980), p. 195
[30] In vivo NMR field-cycling relaxation spectroscopy reveals 14N1H relaxation sinks in the backbones of proteins, Phys. Med. Biol., Volume 29 (1984), pp. 593-596
[31] Interactions and fluctuations deduced from proton field-cycling relaxation spectroscopy of polypeptides, DNA, muscles, and algae, J. Magn. Reson., Volume 68 (1986), pp. 263-282
[32] Field-cycling relaxometry: Medical applications, Radiology, Volume 168 (1988), pp. 843-849
[33] D.J. Lurie, Quadrupole-dip measurement in humans by whole-body field-cycling NMR relaxometry and imaging, in: Proc. 29th Ampere and 13th ISMAR Conference, Berlin, Germany, 1998, p. 254.
[34] D.J. Lurie, Field-cycled magnetic resonance imaging – Techniques and applications, in: Symposium on Field-Cycling NMR Relaxometry, Berlin, Germany, 1998, p. 5.
[35] D.J. Lurie, Quadrupole dips measured by whole-body field-cycling relaxometry and imaging, in: Proc. Int. Society of Magnetic Resonance in Medicine 7th Meeting, Philadelphia, USA, 1999, p. 653.
[36] Noninvasive measurement of protein concentration, Magn. Reson. Med., Volume 35 (1996), pp. 159-161
[37] G.R. Davies, D.J. Lurie, Quantitative field-cycling dispersion imaging, in: Proceedings of the ISMRM 13th Scientific Meeting, Miami Beach, USA, 2005, p. 2187.
[38] S. Ungersma, N. Matter, A. Macovski, S. Conolly, G. Scott, In vivo MR imaging with dispersion contrast, in: Proceedings of the ISMRM 13th Scientific Meeting, Miami Beach, USA, 2005, p. 414.
[39] Magnetic resonance imaging with dispersion contrast, Magn. Reson. Med., Volume 55 (2006), pp. 1362-1371
[40] S. Ungersma, N. Matter, A. Macovski, S. Conolly, G. Scott, MR imaging with dispersion contrast, in: Proceedings of the ISMRM 12th Scientific Meeting, Kyoto, Japan, 2004, p. 179.
[41] S. Ismail, L.M. Broche, N.A. Booth, D.J. Lurie, Detection of fibrin by fast field-cycling magnetic resonance techniques, in: 6th Conference on Field-Cycling NMR Relaxometry, Turin, Italy, 2009, p. 14.
[42] S. Ismail, L.M. Broche, N.A. Booth, D.J. Lurie, Non-invasive measurement of fibrin concentration by fast field-cycling NMR technique, in: Proceedings of the ISMRM 18th Scientific Meeting, Stockholm, Sweden, 2010, p. 915.
[43] Delta relaxation enhanced MR: Improving activation-specificity of molecular probes through R1 dispersion imaging, Magn. Reson. Med., Volume 61 (2009), pp. 796-802
[44] D. O Hogain, G.R. Davies, S. Baroni, G. Ferrante, S. Aime, D.J. Lurie, Use of contrast agents with fast field-cycling MRI, in: Italian Chapter of ISMRM, Milan, Italy, 2010, p. 56.
[45] Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods, Biomaterials, Volume 27 (2006), pp. 651-659
[46] K.J. Pine, G.R. Davies, D.J. Lurie, Localized in vivo field-cycling relaxometry, in: Proceedings of the ISMRM 17th Scientific Meeting, Honolulu, USA, 2009, p. 2743.
[47] Field-cycling NMR relaxometry with spatial selection, Magn. Reson. Med., Volume 63 (2010), pp. 1698-1702
[48] Spatial localization in NMR spectroscopy in vivo, Ann. New York Acad. Sci., Volume 508 (1987), pp. 333-348
[49] Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo, Magn. Reson. Med., Volume 10 (1989), pp. 135-144
[50] C.-H. Choi, G.R. Davies, D.J. Lurie, Off-resonance magnetisation transfer contrast MRI using fast field-cycling technique, in: Proceedings of the ISMRM 17th Scientific Meeting, Honolulu, USA, 2009, p. 2747.
[51] Off-resonance magnetisation transfer contrast (MTC) MRI using fast field-cycling (FFC), J. Magn. Reson., Volume 204 (2010), pp. 145-149
Cited by Sources:
Comments - Policy