Nuclear magnetic spin-lattice relaxation rate constants measured as a function of the magnetic field strength over wide ranges of Larmor frequency map the noise spectrum that drives spin relaxation. For water in and around protein systems, the spin relaxation reports on the average local translational mobility at the interface which is reduced by approximately factor of three from the bulk and there is anisotropy induced in the motions caused by the excluded volume created by the presence of the protein. Water also penetrates the protein and relatively few bound water sites provide a strong coupling between the protein dynamics and the water-proton-spin relaxation.
Les vitesses de relaxation magnétique spin-réseau mesurées en fonction de l'intensité du champ magnétique sur de grandes plages de fréquences de Larmor permettent de suivre la densité spectrale du bruit qui induit la relaxation. Pour les mouvements de l'eau à l'intérieur et autour des systèmes de protéines, la relaxation de spin mesure la dynamique de translation moyenne à l'interface protéine/eau qui est réduit d'un facteur trois par rapport à celle de la solution. Il y a de plus un effet d'anisotropie induit par les mouvements moléculaires venant du volume exclu par la présence de la protéine. L'eau pénètre la protéine également et un très petit nombre de sites d'eau liée qui engendre un fort couplage entre la dynamique de la protéine et la relaxation des protons de l'eau.
Mots-clés : Eau, Protéine, Relaxation spin-réseau, Diffusion, Dispersion de relaxation, Dynamique des protéines
Robert G. Bryant 1
@article{CRPHYS_2010__11_2_128_0, author = {Robert G. Bryant}, title = {Dynamics of water in and around proteins characterized by {\protect\textsuperscript{1}H-spin-lattice} relaxometry}, journal = {Comptes Rendus. Physique}, pages = {128--135}, publisher = {Elsevier}, volume = {11}, number = {2}, year = {2010}, doi = {10.1016/j.crhy.2010.06.013}, language = {en}, }
Robert G. Bryant. Dynamics of water in and around proteins characterized by 1H-spin-lattice relaxometry. Comptes Rendus. Physique, Multiscale NMR and relaxation, Volume 11 (2010) no. 2, pp. 128-135. doi : 10.1016/j.crhy.2010.06.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.06.013/
[1] Protein dynamics and hydration, Methods Enzymol., Volume 127 (1986), pp. 207-216
[2] Dynamics and function of proteins: The search for general concepts, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 4795-4797
[3] The role of structure, energy landscape, dynamics and allostery in the enzymatic function of myoglobin, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 2370-2374
[4] Protein–water interactions in a dynamic world, Trends Biochem. Sci., Volume 27 (2002), pp. 203-208
[5] Dynamics of water in biological recognition, Chem. Rev., Volume 104 (2004), pp. 2099-2123
[6] The Principles of Nuclear Magnetism, The Clarendon Press, Oxford, 1961 (chapter viii)
[7] Quantum Description of High-Resolution NMR in Liquids, Clarendon Press, Oxford, 1988
[8] The dynamics of water–protein interactions, Annu. Rev. Biophys. Biomol. Struct., Volume 25 (1996), pp. 29-53
[9] Multinuclear relaxation dispersion studies of protein hydration (L.J.B.N.R. Krishna, ed.), Biological Magnetic Resonance, Kluwer Academic/Plenum, New York, 1999, pp. 419-484
[10] Biomolecular hydration: From water dynamics to hydrodynamics, Proc. Natl. Acad. Sci. USA, Volume 100 (2003), pp. 12135-12140
[11] A unified view of relaxation in protein solutions and tissue, including hydration and magnetization transfer, Magn. Reson. Med., Volume 29 (1993), pp. 77-83
[12] Protein hydration dynamics in aqueous solution, Faraday Discuss., Volume 103 (1996), pp. 227-244
[13] Using buried water molecules to explore the energy landscape of proteins, Nat. Struct. Biol., Volume 3 (1996), pp. 505-509
[14] A new view of water dynamics in immobilized proteins, Biophys. J., Volume 69 (1995), pp. 242-249
[15] Protein hydration dynamics in solution: A critical survey, Philos. Trans. Royal Soc. London B, Volume 359 (2004), pp. 1207-1224
[16] The magnetic field dependence of proton spin relaxation in tissues, Magn. Reson. Med., Volume 21 (1991), pp. 117-126
[17] The physical basis for the magnetic field dependence of proton spin-lattice relaxation rates in proteins, J. Chem. Phys., Volume 115 (2001), pp. 10964-10974
[18] Magnetic field dependence of proton spin-lattice relaxation times, Magn. Reson. Med., Volume 48 (2002), pp. 21-26
[19] Noise and functional protein dynamics, Biophys. J., Volume 89 (2005), pp. 2685-2692
[20] Solvation. A molecular dynamics study of a dipeptide in water, J. Am. Chem. Soc., Volume 101 (1979), pp. 1913-1937
[21] Molecular reorientation in liquids. Experimental test of hydrodynamic models, J. Am. Chem. Soc., Volume 96 (1974), pp. 6840-6843
[22] Light scattering studies of molecular liquids, Annu. Rev. Phys. Chem., Volume 31 (1980), pp. 523-558
[23] Principles of Fluorescence Spectroscopy, Plenum Press, New York, London, 1983 (p. 143)
[24] Protein–bound water molecule counting by resolution of 1H spin-lattice relaxation mechanisms, Biophys. J., Volume 78 (2000), pp. 2163-2169
[25] Protein reorientation and bound water molecules measured by 1H magnetic spin-lattice relaxation, Biophys. J., Volume 84 (2003), pp. 558-563
[26] NMR relaxation studies of solute–solvent interactions, Ann. Rev. Phys. Chem., Volume 29 (1978), pp. 167-188
[27] Oxygen accessibility to ribonuclease a: Quantitative interpretation of nuclear spin relaxation induced by a freely diffusing paramagnet, J. Phys. Chem. A, Volume 110 (2006), pp. 580-588
[28] Theory of spin relaxation by translational diffusion in two-dimensional systems, J. Chem. Phys., Volume 80 (1984), pp. 1059-1068
[29] Dimensionality of diffusive exploration at the protein interface in solution, J. Phys. Chem. B, Volume 113 (2009), pp. 13347-13356
[30] Nitroxide radical induced solvent proton relaxation: Measurement of localized translational diffusion, J. Chem. Phys., Volume 81 (1984), pp. 4038-4045
[31] Interactions and fluctuations deduced from proton field-cycling relaxation spectroscopy of polypeptides, DNA, muscles, and algae, J. Magn. Reson., Volume 68 (1986), pp. 263-282
[32] Double-diffusive fluctuations and the -law of proton spin-lattice relaxation in biopolymers, Prog. Colloid Polym. Sci., Volume 71 (1985), pp. 66-70
[33] Water-proton nuclear magnetic relaxation in heterogeneous systems: Hydrated lysozyme results, Magn. Reson. Med., Volume 22 (1991), pp. 143-153
[34] Nuclear magnetic cross-relaxation spectroscopy, J. Magn. Reson., Volume 90 (1990), pp. 1-8
[35] Measurement of protein preferential solvation by z-spectroscopy, J. Phys. Chem. A, Volume 98 (1994), pp. 7939-7941
[36] 1h magnetic cross-relaxation between multiple solvent components and rotationally immobilized protein, Magn. Reson. Med., Volume 35 (1996), pp. 497-505
[37] Magnetic field dependence of proton spin-lattice relaxation of confined proteins, C. R. Physique, Volume 5 (2004), pp. 349-357
[38] The magnetic field and temperature dependences of proton spin-lattice relaxation in proteins, J. Chem. Phys., Volume 126 (2007) (175105/175101–175105/175105)
[39] Nuclear magnetic relaxation dispersion study of the dynamics in solid homopolypeptides, Biopolymers, Volume 86 (2007), pp. 148-154
[40] Relaxation of protons by radicals in rotationally immobilized proteins, J. Magn. Reson., Volume 186 (2007), pp. 176-181
[41] Water and backbone dynamics in a hydrated protein, Biophys. J., Volume 98 (2010), pp. 138-146
[42] Proton nuclear spin relaxation and molecular dynamics in the lysozyme–water system, J. Am. Chem. Soc., Volume 104 (1982), pp. 2910-2918
[43] Cross relaxation and spin diffusion in the proton NMR of hydrated collagen, Nature, Volume 265 (1977), pp. 521-523
[44] Molecular theory of field-dependent proton spin-lattice relaxation in tissue, Magn. Reson. Med., Volume 56 (2006), pp. 60-72
[45] Slow internal protein dynamics from water 1H magnetic relaxation dispersion, J. Am. Chem. Soc., Volume 131 (2009), pp. 18214-18215
Cited by Sources:
Comments - Policy