Comptes Rendus
Computational metallurgy and changes of scale / Métallurgie numérique et changements d'échelle
Advances in cleavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects
Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 316-325.

Brittle cleavage fracture remains one of the major concerns for structural integrity assessment. The main characteristics of this mode of failure in relation to the stress field ahead of a crack, tip are described in the introduction. The emphasis is laid on the physical origins of scatter and the size effect observed in ferritic steels. It is shown that cleavage fracture is controlled by physical events occurring at different scales: initiation at (sub)micrometric particles, propagation across grain boundaries (10–50 microns) and final fracture at centimetric scale. The two first scales are detailed in this paper. The statistical origin of cleavage is described quantitatively from both microstructural defects and stress–strain heterogeneities due to crystalline plasticity at the grain scale. Existing models are applied to the prediction of the variation of Charpy fracture toughness with temperature.

La ruine par rupture fragile reste une des préoccupations majeures pour l'évaluation de l'intégrité mécanique des structures. Les principaux traits de l'amorçage de ce mode de rupture à la pointe d'une fissure macroscopique sont tout d'abord rappelés dans l'introduction. On met l'accent sur la dispersion inhérente à ce mode de rupture en relation avec l'origine diverse des sites d'amorçage ainsi que sur l'effet de taille. On montre que la rupture par clivage est contrôlée par des mécanismes physiques agissant à différentes échelles, celle des particules de seconde phase micrométriques et celle des grains. L'origine statistique du clivage est modélisée en prenant en compte à la fois la distribution spatiale des défauts microstructuraux et la distribution intragranulaire des contraintes et déformations. Les modèles développés sont utilisés pour prévoir la variation de la résilience avec la température.

Published online:
DOI: 10.1016/j.crhy.2010.07.013
Keywords: Cleavage fracture, Micromechanisms, Ferritic steels, Statistics, Scatter, Multiscale modelling
Mot clés : Rupture par clivage, Micromécanismes, Aciers ferritiques, Aspects statistiques, Dispersion, Modélisation multi-échelle

André Pineau 1; Benoît Tanguy 2

1 Centre des matériaux, UMR CNRS 7633, Mines-ParisTech, 91003 Evry cedex, France
2 Département des matériaux pour le nucléaire, CEA Saclay, 91191 Gif-sur-Yvette, France
@article{CRPHYS_2010__11_3-4_316_0,
     author = {Andr\'e Pineau and Beno{\^\i}t Tanguy},
     title = {Advances in cleavage fracture modelling in steels: {Micromechanical,} numerical and multiscale aspects},
     journal = {Comptes Rendus. Physique},
     pages = {316--325},
     publisher = {Elsevier},
     volume = {11},
     number = {3-4},
     year = {2010},
     doi = {10.1016/j.crhy.2010.07.013},
     language = {en},
}
TY  - JOUR
AU  - André Pineau
AU  - Benoît Tanguy
TI  - Advances in cleavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects
JO  - Comptes Rendus. Physique
PY  - 2010
SP  - 316
EP  - 325
VL  - 11
IS  - 3-4
PB  - Elsevier
DO  - 10.1016/j.crhy.2010.07.013
LA  - en
ID  - CRPHYS_2010__11_3-4_316_0
ER  - 
%0 Journal Article
%A André Pineau
%A Benoît Tanguy
%T Advances in cleavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects
%J Comptes Rendus. Physique
%D 2010
%P 316-325
%V 11
%N 3-4
%I Elsevier
%R 10.1016/j.crhy.2010.07.013
%G en
%F CRPHYS_2010__11_3-4_316_0
André Pineau; Benoît Tanguy. Advances in cleavage fracture modelling in steels: Micromechanical, numerical and multiscale aspects. Comptes Rendus. Physique, Volume 11 (2010) no. 3-4, pp. 316-325. doi : 10.1016/j.crhy.2010.07.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2010.07.013/

[1] A. Pineau Development of the local approach to fracture over the past 25 years: Theory and applications, Int. J. Fracture, Volume 138 (2006), pp. 139-166

[2] B. Tanguy, C. Bouchet, S. Bordet, J. Besson, A. Pineau, Towards a better understanding of the cleavage in RPV steels: Local mechanical conditions and evaluation of a nucleation enriched Weibull model and of the Beremin model over a large temperature range, in: 9th European Mechanics of Materials Conference, Moret-sur-Loing, France, 2006.

[3] A.N. Stroh The formation of cracks as a result of plastic flow, Proc. R. Soc. Lond. A, Volume 223 (1954), pp. 404-414

[4] A.H. Cottrell Theory of brittle fracture in steel and similar metals, Trans. AIME, Volume 212 (1958), pp. 192-203

[5] D. Hull Twinning and fracture of single crystals of 3% silicon iron, Acta Met., Volume 8 (1960), pp. 11-18

[6] J.F. Knott Fundamentals of Fracture Mechanics, Butterworth, London, 1973

[7] E. Smith, The nucleation and growth of cleavage microcracks in mild steel, in: Physical basis of yield and fracture, Oxford, 1966.

[8] T.C. Lindley; G. Oates; C.E. Richards A critical appraisal of carbide cracking mechanisms in ferrite/carbide aggregates, Acta Metall., Volume 18 (1970), pp. 1127-1136

[9] E. Bouyne; H. Flower; T. Lindley; A. Pineau Use of EBSD technique to examine microstructure and cracking in bainitic steel, Scripta Materialia, Volume 39 (1998) no. 3, pp. 295-300

[10] B. Tanguy, Modélisation de l'essai Charpy par l'approche locale de la rupture. Application au cas de l'acier 16MND5 dans le domaine de la transition, PhD thesis, Ecole des Mines de Paris, 2001.

[11] J.W. Hutchinson Plastic stress and strain fields at a crack tip, J. Mech. Phys. Solids, Volume 16 (1968), pp. 337-347

[12] J. Rice; G. Rosengren Plane strain deformation near a crack tip in a power-law hardening material, J. Mech. Phys. Solids, Volume 16 (1968), pp. 1-12

[13] F. Beremin Cavity formation from inclusions in ductile fracture of A508 steel, Met. Trans. A, Volume 12 (1981), pp. 723-731

[14] B.Z. Margolin; A.G. Gulenko; V. Shvetsova Improved probabilistic model for fracture toughness prediction for nuclear pressure vessel steels, Int. J. Pressure Vessels and Piping, Volume 75 (1998), pp. 843-855

[15] S. Bordet; B. Tanguy; J. Besson; D. Moinereau; A. Pineau Cleavage fracture of a RPV steel following warm pre-stressing: Microstructural analysis and interpretation through a new model, Fatigue Fract. Eng. Mater. Struct., Volume 29 (2006) no. 9/10, pp. 799-816

[16] S.R. Yu; Z.G. Yan; R. Cao; J.H. Chen On the change of fracture mechanism with test temperature, Eng. Frac. Mech., Volume 73 (2006), pp. 331-347

[17] A. Lambert-Perlade; A.-F. Gourgues; J. Besson; T. Sturel; A. Pineau Mechanisms and modelling of cleavage fracture in simulated heat-affected zone microstructure of a high strength low alloy steel, Metall. Mater. Trans. A, Volume 35 (2004), pp. 1039-1053

[18] A.A. Griffith The phenomena of rupture and flow in solids, Phil. Trans. A, Volume 221 (1920), pp. 163-198

[19] F. Beremin A local criterion for cleavage fracture of a nuclear pressure vessel steel, Met. Trans. A, Volume 14 (1983), pp. 2277-2287

[20] K. Wallin; T. Saario; K. Törrönen Statistical model for carbides induced brittle fracture in steel, Metal Science, Volume 18 (1984), pp. 13-16

[21] B. Tanguy; J. Besson; A. Pineau Comment on effect of cardide distribution on the fracture toughness in the transition region of an SA 508 steel, Scripta Materialia, Volume 49 (2003), pp. 191-197

[22] R. Danzer; P. Supansic; J. Pascual; T. Lube Fracture statistic of ceramics – Weibull statistics and deviation from Weibull statistics, Eng. Frac. Mech., Volume 74 (2007), pp. 2919-2932

[23] T.L. Becker; R.M. Cannon; R.O. Ritchie Statistical fracture modeling: Crack path and fracture criteria with application to homogeneous and functionally graded materials, Eng. Frac. Mech., Volume 69 (2002), pp. 1521-1555

[24] B. Bezensek; J.W. Hancock The toughness of laser welded joints in the ductile–brittle transition, Eng. Fract. Mech., Volume 74 (2007), pp. 2395-2419

[25] ISO-27306, Method of constraint loss correction of CTOD fracture toughness assessments of steel components, 2009.

[26] A. Pineau Modelling ductile to brittle fracture transition in steels – Micromechanical and physical challenges, Int. J. Fracture, Volume 150 (2008), pp. 129-156

[27] A. Pineau, Statistics of brittle cleavage fracture in steels, in: CMDS 11, Mines Paris ParisTech, 2008, in press.

[28] S. Pommier Arching effect in elastic polycrystals: Implications for the variability of fatigue lives, Fatigue Fract. Eng. Mater. Struct., Volume 25 (2002), pp. 331-348

[29] B. Kotrechko; B. Strnadel; I. Dlouhy Fracture toughness of cast ferritic steel applying local approach, Theor. Appl. Fract. Mech., Volume 47 (2007), pp. 171-181

[30] A.V. Gurev; E.P. Bogdanov Effect of structural stresses on the strength of polycrystalline materials, Strength Mater., Volume 16 (1984), pp. 81-87

[31] F. Barbe; L. Decker; D. Jeulin; G. Cailletaud Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model, Int. J. Plasticity, Volume 17 (2001), pp. 513-536

[32] F. Barbe; L. Decker; D. Jeulin; G. Cailletaud Intergranular and intragranular behavior of polycrystalline aggregates. Part 2: Results, Int. J. Plasticity, Volume 17 (2001), pp. 537-563

[33] N. Osipov; A.-F. Gourgues-Lorenzon; B. Marini; V. Mounoury; F. Nguyen; G. Cailletaud FE modelling of bainitic steels using crystal plasticity, Philos. Mag., Volume 88 (2008), pp. 3757-3777

[34] W. Schmitt; D. Sun; W. Böhme; G. Nagel Evaluation of fracture toughness based on results of instrumented Charpy tests, Int. J. Pressure Vessels and Piping, Volume 59 (1994), pp. 21-29

[35] A. Rossoll, Détermination de la ténacité d'un acier faiblement allié à partir de l'essai Charpy instrumenté, PhD thesis, Ecole Centrale Paris, 1998.

[36] B. Tanguy; J. Besson; R. Piques; A. Pineau Ductile to brittle transition of an A508 steel characterized by the Charpy impact test. Part I: Experimental results, Eng. Frac. Mech., Volume 72 (2005) no. 1, pp. 49-72

[37] B. Tanguy; J. Besson; R. Piques; A. Pineau Ductile to brittle transition of an A508 steel characterized by the Charpy impact test. Part II: Modelling of the Charpy transition curve, Eng. Frac. Mech., Volume 73 (2005) no. 3, pp. 413-434

[38] J. Campbell; W. Ferguson The temperature and strain-rate dependence of the shear strength of mild steel, Philos. Mag., Volume 21 (1970), pp. 63-82

[39] J.B. Lean; J. Plateau; C. Crussard Etude des propriétés mécaniques et de la rupture fragile de l'acier doux, C. R. Acad. Sci., Volume 247 (1958), pp. 306-309

Cited by Sources:

Comments - Policy