Comptes Rendus
General introduction: Liquid and solid (materials, main properties and applications …)
Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 653-661.

A general introduction about the diversity of foam structures is given with focus onto the structural, mechanical and dynamical properties at hand. Two classes of materials are addressed: liquid and semi-solid foams, on the one hand, solid foams, on the other hand. The latter can be subdivided into metallic, ceramic and organic foams, depending on the nature of the solid skeleton that supports the overall cell structure. Solid foams generally stem from the concept of mechanical light-weight structures, but they can just as well be employed for their large surface area as well as for their acoustic and thermal properties. Modern biomaterials use tailored ceramic or organo-ceramic foams as bone scaffolds, whereas hierarchically micro- and nanoporous structures are being used by chemistry to control catalytic reactions. Future materials design and development is going to rely increasingly on natural and synthetic foam structures and properties, be it food, thermal insulators or car frames, thus giving a promising outlook onto the foam research and development that is about to come.

Cet article constitue une introduction générale à la diversité des structures que peuvent épouser les mousses, avec un coup de projecteur sur les propriétés structurales, mécaniques et dynamiques correspondantes. Deux classes de matériaux sont envisagées : les mousses liquides et semi-solides, d'une part, les mousses solides, d'autre part. Ces dernières se subdivisent en mousses métalliques, céramiques et organiques, selon la nature du squelette solide qui supporte la structure cellulaire globale. Les mousses solides dérivent généralement du concept de structures métalliques légères, mais elles peuvent tout aussi bien être employées pour leur grande surface accessible ou pour leurs propriétés acoustiques et thermiques. Les biomatériaux modernes utilisent des mousses céramiques façonnées ou des mousses organocéramiques comme charpentes osseuses, tandis que des structures hiérarchiquement micro- and nanoporeuses sont utilisées en chimie pour contrôler les réactions catalytiques. La conception de futurs matériaux ainsi que leur développement va de manière croissante reposer sur des structures et des propriétés de mousses naturelles et synthétiques, qu'il s'agisse d'aliments, d'isolants thermiques ou de châssis d'automobiles, ce qui nous offre un aperçu prometteur de la recherche dans le domaine des mousses et des développements à venir dans un futur proche.

Published online:
DOI: 10.1016/j.crhy.2014.09.005
Keywords: Foams, Surfactants, Foam mechanics, Drainage, Coarsening, Metallic foams
Mot clés : Mousses, Mécanique des mousses, Drainage, Grossissement, Mousses métalliques

Simon Zabler 1

1 Chair of X-ray Microscopy, LRM, University of Würzburg, Germany
     author = {Simon Zabler},
     title = {General introduction: {Liquid} and solid (materials, main properties and applications\,{\textellipsis})},
     journal = {Comptes Rendus. Physique},
     pages = {653--661},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.09.005},
     language = {en},
AU  - Simon Zabler
TI  - General introduction: Liquid and solid (materials, main properties and applications …)
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 653
EP  - 661
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.09.005
LA  - en
ID  - CRPHYS_2014__15_8-9_653_0
ER  - 
%0 Journal Article
%A Simon Zabler
%T General introduction: Liquid and solid (materials, main properties and applications …)
%J Comptes Rendus. Physique
%D 2014
%P 653-661
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.09.005
%G en
%F CRPHYS_2014__15_8-9_653_0
Simon Zabler. General introduction: Liquid and solid (materials, main properties and applications …). Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 653-661. doi : 10.1016/j.crhy.2014.09.005.

[1] D. Weaire; S. Hutzler The Physics of Foams, Oxford University Press, Oxford, UK, 1999

[2] A. Eggert; M. Müller; F. Nachtrab; J. Dombrowski; A. Rack; S. Zabler High-speed in-situ tomography of liquid protein foams, Int. J. Mater. Res., Volume 105 (2014) no. 7, pp. 632-639

[3] J. Lambert Extraction of relevant physical parameters from 3D images of foams obtained by X-ray tomography, Colloids Surf. A, Volume 263 (2005), pp. 295-302

[4] R. Höhler; S. Cohen-Addad Rheology of liquid foams, J. Phys.: Condens. Matter, Volume 17 (2005), p. R1041-R1069

[5] N.D. Denkov; S. Tcholakova; K. Golemanov; K.P. Ananthpadmanabha; A. Lips The role of surfactant type and bubble surface mobility in foam rheology, Soft Matter, Volume 5 (2009), pp. 3389-3408

[6] A. Saint-Jalmes Physical chemistry in foam drainage and coarsening, Soft Matter, Volume 2 (2006), pp. 836-849

[7] S. Hilgenfeldt; S.A. Koehler; H.A. Stone Dynamics of coarsening foams: accelerated and self-limiting drainage, Phys. Rev. Lett., Volume 86 (2001) no. 20, pp. 4704-4707

[8] A. Rack et al. On the possibilities of hard X-ray imaging with high spatio-temporal resolution using polychromatic synchrotron radiation, J. X-Ray Sci. Technol., Volume 18 (2010), pp. 429-441

[9] S. Zabler; C. Fella; A. Dietrich; F. Nachtrab; Michael Salamon; V. Voland; T. Ebensperger; S. Oeckl; R. Hanke; N. Uhlmann High-resolution and high-speed CT in industry and research, 17 October, 2012 (Proc. SPIE), Volume vol. 8506 (2012) (850617) | DOI

[10] J. Lambert; R. Mokso; I. Cantat; P. Cloetens; J.A. Glazier; F. Graner; R. Delannay Coarsening foams robustly reach a self-similar growth regime, Phys. Rev. Lett., Volume 104 (2010), p. 248304

[11] L. Radtke; P.W. Voorhees Growth and Coarsening, Springer, 2001

[12] D.J. Durian; D.A. Weitz; D.J. Pine Scaling behavior in shaving cream, Phys. Rev. A, Volume 44 (1991) no. 12, p. R7902-R7905

[13] C. Jimenez et al. Metal foaming studied in-situ by energy dispersive X-ray diffraction of synchrotron radiation, X-ray radioscopy and optical expandometry, Acta Mater., Volume 15 (2012) no. 3, pp. 141-148

[14] D.C. Dunand Processing of titanium foams, Adv. Eng. Mater., Volume 6 (2004) no. 6, pp. 369-376

[15] T. Dillard et al. 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag., Volume 85 (2005) no. 19, pp. 2147-2175

[16] N.G. Wadley Cellular metals manufacturing, Adv. Eng. Mater., Volume 4 (2002) no. 10, pp. 726-733

[17] M.-A. De Meller, Produit métallique pour l'obtention d'objets laminés, moulés ou autres, et procédés pour sa fabrication, French Patent No. 615,147, 1926 (1925).

[18] J. Banhart Light-metal foams—history of innovation and technological challenges, Adv. Eng. Mater., Volume 15 (2013) no. 3, pp. 82-111

[19] J. Banhart et al. Deformation characteristics of metal foams, J. Mater. Sci., Volume 33 (1998), pp. 1431-1440

[20] A.G. Evans et al. Multifunctionality of cellular metal systems, Prog. Mater. Sci., Volume 43 (1999), pp. 171-221

[21] P. Colombo; C. Vakifahmetoglu; S. Costacurta Fabrication of ceramic components with hierarchical porosity, J. Mater. Sci., Volume 45 (2010), pp. 5425-5455

[22] J. Grosse et al. Morphological characterization of ceramic sponges for applications in chemical engineering, Ind. Eng. Chem. Res., Volume 48 (2009), pp. 10395-10401

[23] A. Berthold et al. Biocompatible porous ceramics for the cultivation of hematopoietic cells, J. Mater. Sci., Volume 18 (2007) no. 7, pp. 1333-1338

[24] L. Montanaro et al. Ceramic foams by powder processing, J. Eur. Ceram. Soc., Volume 18 (1998), pp. 1339-1350

[25] J.R.G. Evans et al. Microstructure of ceramic foams, J. Eur. Ceram. Soc., Volume 20 (2000), pp. 807-813

[26] R. Zehbe et al. Three-dimensional visualization of in vitro cultivated chondrocytes inside porous gelatine scaffolds: a tomographic approach, Acta Biomater., Volume 6 (2010) no. 6, pp. 2097-2107

Cited by Sources:

Comments - Policy