This paper aims at presenting the main processing routes that are used to produce foams in their general definition and the typical structure that can be obtained according to the process. We first describe the main classification of the foam according to the level of porosity (open cells, closed cells, partially open cells and mixed cells). We present briefly the main processes to obtain such structures (non-removable space holder stacking and impregnation, removable space holder, foaming from gas or from precursor and shortly additive manufacturing) with a specific focus on the metal foam processing. We finally indicate the main structure that can be obtained with these types of processes and the main characteristics that are necessary to quantify at the various scale of the structure.
L'objectif de cet article est de présenter les principales voies de synthèse des mousses dans leur définition générale et la structure typique qui peut être obtenue en fonction de chacune d'entre elles. Nous décrivons d'abord la classification principale de la mousse selon son niveau de porosité (cellules ouvertes, fermées, partiellement ouvertes et mixtes). Nous présentons brièvement les principaux procédés permettant d'obtenir de telles structures (imprégnation ou empilement de particules poreuses, élimination de particules, bullage par injection de gaz ou à partir d'un précurseur et fabrication additive), en mettant plus spécifiquement l'accent sur la réalisation de mousses métalliques. Nous indiquons finalement la structure principale qui peut être obtenue par ces types de procédés et les caractéristiques principales qu'il est nécessaire de quantifier aux différentes échelles de la structure.
Mot clés : Polymère, Céramique, Métal, Mousse, Elaboration, Structure
Luc Salvo 1; Guilhem Martin 1; Mathieu Suard 1; Ariane Marmottant 2; Rémy Dendievel 1; Jean-Jacques Blandin 1
@article{CRPHYS_2014__15_8-9_662_0, author = {Luc Salvo and Guilhem Martin and Mathieu Suard and Ariane Marmottant and R\'emy Dendievel and Jean-Jacques Blandin}, title = {Processing and structures of solids foams}, journal = {Comptes Rendus. Physique}, pages = {662--673}, publisher = {Elsevier}, volume = {15}, number = {8-9}, year = {2014}, doi = {10.1016/j.crhy.2014.10.006}, language = {en}, }
TY - JOUR AU - Luc Salvo AU - Guilhem Martin AU - Mathieu Suard AU - Ariane Marmottant AU - Rémy Dendievel AU - Jean-Jacques Blandin TI - Processing and structures of solids foams JO - Comptes Rendus. Physique PY - 2014 SP - 662 EP - 673 VL - 15 IS - 8-9 PB - Elsevier DO - 10.1016/j.crhy.2014.10.006 LA - en ID - CRPHYS_2014__15_8-9_662_0 ER -
%0 Journal Article %A Luc Salvo %A Guilhem Martin %A Mathieu Suard %A Ariane Marmottant %A Rémy Dendievel %A Jean-Jacques Blandin %T Processing and structures of solids foams %J Comptes Rendus. Physique %D 2014 %P 662-673 %V 15 %N 8-9 %I Elsevier %R 10.1016/j.crhy.2014.10.006 %G en %F CRPHYS_2014__15_8-9_662_0
Luc Salvo; Guilhem Martin; Mathieu Suard; Ariane Marmottant; Rémy Dendievel; Jean-Jacques Blandin. Processing and structures of solids foams. Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 662-673. doi : 10.1016/j.crhy.2014.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.006/
[1]
, Cambridge University Press (1997), p. 510[2] Multifunctional Metallic Hollow Sphere Structures, Springer, 2009 (251 pages)
[3] http://www.ifam.fraunhofer.de/en/Dresden/Cellular_metallic_materials/Hohlkugelstrukturen.html (last access October 2014)
[4] http://hollomet.com/en/home.html (last access October 2014)
[5] K. Stöbener, D. Lehmhus, N. Zimmer, J. Baumeister, German Patent, DE 103 28 047, 2005 (2005).
[6] Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicle, Proc. Mater. Sci., Volume 4 (2014), pp. 301-305
[7] http://www.plasticstoday.com/sites/default/files/Web_D_TPO_3M_IM%20Guidelines_glass_bubbles.pdf (last access October 2014)
[8] http://www.envirospheres.com/products.asp (last access October 2014)
[9] http://www.ceminerals.com/scopi/group/ceminerals/ceminerals.nsf/pagesref/LONL-942J2N/$file/KKWBUBBLE.pdf (last access October 2014)
[10] http://www.palmerholland.com/Assets/CE/Documents/data-sheets/S60%20Glass%20Bubbles.pdf (last access October 2014)
[11] A review of the feasibility of lightening structural polymeric composites with voids without compromising mechanical properties, Adv. Colloid Interface Sci., Volume 160 (2010), pp. 56-75
[12] Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380–Al2O3 syntactic foams, J. Mater. Sci., Volume 49 (2014), pp. 1267-1278
[13] Metal matrix syntactic foams produced by pressure infiltration, the effect of infiltration parameters, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. (2013), pp. 11-19
[14] Study of production route for titanium parts combining very high porosity and complex shape, Powder Metall., Volume 47 (2004) no. 1, pp. 85-92
[15] Green strength of powder compacts provided for production of highly porous titanium parts, Powder Metall., Volume 48 (2005) no. 4, pp. 358-364
[16] Powder Metall., 48 (2005) no. 3, pp. 237-240
[17] Investigation of p/m parameters' effect on architecture of titanium foams using X-ray microtomography, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 530 (2011), pp. 633-642
[18] High-porosity titanium, stainless steel and superalloy parts, Adv. Eng. Mater., Volume 2 (2000), p. 196
[19] A novel sintering-dissolution process for manufacturing Al foams, Scr. Mater., Volume 44 (2001), p. 341
[20] Cellular materials: new concepts provide unique possibilities—feature article, The Iron Age, February 8 (1962), pp. 119–121.
[21] Uniaxial deformation of open-cell aluminum foam: the role of internal damage, Acta Mater., Volume 49 (2001), p. 3959
[22] Spherical pore replicated microcellular aluminium: processing and influence on properties, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 465 (2007), pp. 124-135
[23] Spherical pore replicated microcellular aluminium: processing and influence on properties, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process., Volume 465 (2007) no. 1–2, p. 124
[24] http://www.innovationcells.ch/en/projects/aluminium-foam/just-mix-salt-flour-water-and-aluminium.html (last access October 2014)
[25] Parts containing open-celled metal foam manufactured by the foundry route: processes, performances and applications, Adv. Eng. Mater., Volume 13 (2011), pp. 1066-1071
[26] http://www.alveotec.fr (last access October 2014)
[27] Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., Volume 46 (2001), pp. 559-632
[28] http://www.ergaerospace.com/Aluminum-properties.htm (last access October 2014)
[29] Processing of an open-cellular AZ91 magnesium alloy with a low density of 0.05 g/cm3, J. Mater. Sci. Lett., Volume 18 (1999), pp. 1477-1480
[30] Synthesis of open-cell metal foams by templated directed vapor deposition, J. Mater. Res., Volume 16 (2000), pp. 1028-1036
[31] http://www.dunlop-equipment.com/prod_retimet.htm (last access October 2014)
[32] http://www.nickelfoam.cn/info/Nickel-foam-130-1.htm (last access October 2014)
[33] http://www.novametcorp.com/products/incofoam/ (last access October 2014)
[34] http://www.ultramet.com/refractoryopencells.html (last access October 2014)
[35] http://www.recemat.nl/eng (last access October 2014)
[36] Generation of microcellular polymeric foams using supercritical carbon dioxide. I. Effect of pressure and temperature on nucleation, Polym. Eng. Sci., Volume 34 (1994), pp. 1137-1147
[37] Preparation and characterization of microcellular polystyrene foams in supercritical carbon dioxide, Macromolecules, Volume 31 (1998), pp. 4614-4620
[38] Production of controlled polymeric foams by supercritical CO2, J. Supercrit. Fluids, Volume 40 (2007), pp. 144-152
[39] Foaming of polymers with supercritical CO2: an experimental and theoretical study, Polymer, Volume 48 (2007), pp. 5928-5939
[40] Macro porous ceramics: processing and properties, Int. Mater. Rev., Volume 57 (2012), pp. 115-131
[41] Processing routes to macroporous ceramics: a review, J. Am. Ceram. Soc., Volume 89 (2006) no. 6, pp. 1771-1789
[42] Preparation of alumina foams by the thermo-foaming of powder dispersions in molten sucrose, J. Eur. Ceram. Soc., Volume 34 (2014), pp. 425-433
[43] Light-metal foams—history of innovation and technological challenges, Adv. Eng. Mater., Volume 15 (2013) no. 3, pp. 82-111 (special issue)
[44] M.A. De Meller, French Patent 615,147, 1926.
[45] J.C. Elliott, Method of producing metal foam, USA Patent 2,751,289, 1956 (1951).
[46] B.C. Alen, Method of making foamed metal, United States Patent No. 3,087,807, filed 4th Dec 1959.
[47] W.S. Fiedler, Method of making metal foam bodies, USA Patent 3,214,265, 1965 (1963).
[48] I. Jin, L.D. Kenny, H. Sang, Method of producing lightweight foamed metal, USA Patent 4,973,358, 1990 (1989).
[49] W.W. Ruch, B. Kirkevag, A process of manufacturing particle reinforced metal foam and product thereof, European Patent 0 483 184, 1994 (1990).
[50] http://www.cymat.com/ (last access October 2014)
[51] S. Akiyama, H. Ueno, K. Imagawa, A. Kitahara, S. Nagata, K. Morimoto, T. Nishikawa, M. Itoh, Foamed metal and method of producing same, European Patent 0 210 803, 1989 (1986).
[52] J.D. Bryant, J.A. Kallivayalil, M.D. Crowley, J.R. Genito, L.F. Wieserman, D.M. Wilhelmy, W.E. Boren, Method for producing foamed aluminum products by use of selected carbonate decomposition products, USA Patent 7,452,402, 2008 (2005).
[53] J. Baumeister, J. Banhart, M. Weber, Verfahren zur Herstellung eines metallischen Verbundwerkstoffs [Process for manufacturing metallic composite materials], German Patent 44 26 627, 1994.
[54] Adv. Eng. Mater., 4 (2002), p. 814
[55] The effect of oxide layers on gas-generating hydride particles during production of aluminium foams (D.S. Schwartz; D.S. Shih; A.G. Evans; H.N.G. Wadley, eds.), Porous and Cellular Materials for Structure Applications, Materials Research Society, Warrendale, 1998, p. 139
[56] Production of metallic foams having open porosity using a powder metallurgy approach, Mater. Manuf. Process., Volume 19 (2004) no. 5, pp. 793-811
[57] http://www.metalfoam.net/companies.html
[58] Porous metals (David E. Laughlin; Kazuhiro Hono, eds.), Physical Metallurgy, vol. 24, Elsevier, 2014
[59] A review of additive manofacturing, ISRN Mech. Eng., Volume 2012 (2012), p. 208760 (pp. 10)
[60] Metal additive manufacturing: a review, J. Mater. Eng. Perform. (2014), pp. 1917-1928
[61] Metallic additive manufacturing: state-of-the-art review and prospects, Mech. Ind., Volume 13 (2012), pp. 89-96
[62] Metal fabrication by additive manufacturing using laser and electron beam melting technologies, J. Mater. Sci. Technol., Volume 28 (2012), pp. 1-14
[63] Next-generation biomedical implants using additive manufacturing of complex cellular and functional mesh arrays, Philos. Trans. R. Soc. A, Volume 368 (2010), pp. 1999-2032
[64] Microstructure and mechanical properties of open cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., Volume 4 (2011), pp. 1396-1411
[65] Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting, Acta Biomater., Volume 4 (2008), pp. 1538-1544
[66] Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium, J. Mech. Behav. Biomed. Mater., Volume 3 (2010), pp. 373-381
[67] Towards stiffness prediction of cellular structures made by electron beam melting (EBM), Powder Metall., Volume 57 (2014) no. 3, pp. 190-195
[68] Additive manufacturing: state-of-the-art, capabilities, and sample applications with cost analysis, Department of Industrial Production, KTH University, 2012 (Master thesis)
[69] Microstructure texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications, Department of Materials Engineering, University of Manchester, 2012 (Thesis)
[70] As fabricated and heat-treated microstructures of the Ti6Al4V alloy processed by selective laser melting, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 39A (2008), pp. 3190-3199
[71] The laser additive manufacturing of Ti–6Al–4V, JOM, Volume 53 (2011), pp. 40-43
[72] Mechanical properties of AlSi10Mg produced by selective laser melting, Phys. Proc., Volume 39 (2012), pp. 439-446
[73] Fabrication and characterization of high strength Al-Cu alloys processed using laser beam melting in metal powder bed, Phys. Proc., Volume 56 (2014), pp. 135-146
[74] Microstructure study of direct laser fabricated Ti alloys using powder and wire, Appl. Surf. Sci., Volume 253 (2006), pp. 1424-1430
[75] Deposition of Ti6Al4V using laser and wire. Part I. Microstructural properties of single beads, Surf. Coat. Technol., Volume 206 (2011), pp. 1120-1129
[76] On the non-destructive testing of metal foams (J. Banhart; F. Ashby; N.A. Fleck, eds.), Metal Foams and Porous Metal Structures, Verlag MIT Publishing, 1999, pp. 213-220
[77] 2D and 3D characterisation of metal foams using X ray tomography, Adv. Eng. Mater., Volume 4 (2002) no. 10, p. 803
[78] The investigation of morphometric parameters of aluminium foams using micro-computed tomography, Mater. Sci. Eng. A, Volume 328 (2002), pp. 334-343
[79] Structural characterization of aluminium foams by means of microcomputed tomography, Optical Science and Technology, the SPIE 49th Annual Meeting International Society for Optics and Photonics, 2004, pp. 453-463
[80] Investigation on the influence of cell shape anisotropy on the mechanical performance of closed cell aluminium foams using micro-computed tomography, J. Mater. Sci., Volume 40 (2005) no. 22, pp. 5801-5811
[81] Open celled material structural properties measurement: from morphology to transport properties, Mater. Trans., Volume 47 (2006) no. 9, pp. 2195-2202
[82] Quantitative 3D characterization of cellular materials: segmentation and morphology of foam, Colloids Surf. A, Physicochem. Eng. Asp., Volume 415 (2012), pp. 230-238
[83] http://imorph.sourceforge.net/
[84] http://simap.grenoble-inp.fr/le-laboratoire/m-luc-salvo–430404.kjsp?RH=SIMAP_ANNUAIRE2
[85] 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag., Volume 85 (2005), p. 2147
[86] Additive manufactured porous titanium structures: through-process quantification of pore and strut networks, J. Mater. Process. Technol., Volume 214 (2014) no. 11, pp. 2706-2715
[87] Surface modification of Ti6Al4V open porous structures produced by additive manufacturing, Adv. Eng. Mater., Volume 14 (2012) no. 6, pp. 363-370
[88] PhD INPG, 2006.
[89] The effect of preform processing on replicated aluminium foam structure and mechanical properties, Scr. Mater., Volume 54 (2006) no. 12, p. 2069
[90] Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography, J. Eur. Ceram. Soc., Volume 27 (2007), pp. 1973-1981
[91] 3D Imaging in material science: application of X-ray tomography, C. R. Phys., Volume 11 (2010), pp. 641-649
[92] The influence of an increasing particle coordination on the densification of spherical powders, Acta Metall., Volume 30 (1982), pp. 1883-1890
[93] Coordination measurements in compacted NaCl irregular powders using X-ray microtomography, J. Eur. Ceram. Soc., Volume 28 (2008), pp. 2441-2449
[94] Measure of morphological and performance properties in polymeric silicone foams by X-ray tomography, J. Mater. Sci., Volume 48 (2013), pp. 1986-1996
[95] Permeability of open-pore microcellular materials, Acta Mater., Volume 53 (2005), pp. 1381-1388
[96] PhD INPG, 2009.
[97] Study of particle rearrangement during powder compaction by the discrete element method, J. Mech. Phys. Solids, Volume 51 (2003), pp. 667-693
[98] Multifunctional optimization of random hollow sphere stackings, Scr. Mater., Volume 68 (2013) no. 1, pp. 35-38
[99] Mechanical behaviour of metallic hollow spheres foam, Adv. Eng. Mater., Volume 10 ( September 2008 ) no. 9, p. 858
Cited by Sources:
Comments - Policy