Optical lattice clocks have made significant leaps forward in recent years, demonstrating the ability to measure time/frequency at unprecedented levels. Here we highlight this progress, with a particular focus on research efforts at NIST and JILA. We discuss advances in frequency instability and the characterization of key systematic effects, with a brief outlook to the future.
Les horloges optiques en réseau ont fait des progrès significatifs ces dernières années, en démontrant la possibilité de mesurer le temps et les fréquences à un niveau jamais atteint auparavant. Dans cet article, nous illustrons ces progrès en nous focalisant sur les efforts de recherches au NIST et au JILA. Nous discutons les avancées au niveau de l'instabilité de fréquence et de la caractérisation des effets systématiques clés, et nous donnons un bref aperçu des perspectives futures.
Mots-clés : Horloge optique, Réseaux optiques, Strontium, Ytterbium, Effet corps noir Stark, Collisions froids, Métrologie quantique
Andrew D. Ludlow 1; Jun Ye 2
@article{CRPHYS_2015__16_5_499_0, author = {Andrew D. Ludlow and Jun Ye}, title = {Progress on the optical lattice clock}, journal = {Comptes Rendus. Physique}, pages = {499--505}, publisher = {Elsevier}, volume = {16}, number = {5}, year = {2015}, doi = {10.1016/j.crhy.2015.03.008}, language = {en}, }
Andrew D. Ludlow; Jun Ye. Progress on the optical lattice clock. Comptes Rendus. Physique, The measurement of time / La mesure du temps, Volume 16 (2015) no. 5, pp. 499-505. doi : 10.1016/j.crhy.2015.03.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.008/
[1] Optical atomic coherence at the one second time scale, Science, Volume 314 (2006), pp. 1430-1433
[2] Quantum state engineering and precision metrology using state-insensitive light traps, Science, Volume 320 (2008), pp. 1734-1738
[3] Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003), p. 173005
[4] Sr lattice clock at fractional uncertainty by remote optical evaluation with a Ca clock, Science, Volume 319 (2008), pp. 1805-1808
[5] Spin-1/2 optical lattice clock, Phys. Rev. Lett., Volume 103 (2009), p. 063001
[6] An optical lattice clock with accuracy and stability at the level, Nature, Volume 506 (2014), pp. 71-75
[7] total uncertainty in an atomic clock, Nat. Commun., Volume 6 (2015), p. 6896
[8] Local oscillator induced instabilities in trapped ion frequency standards, Proceedings Precise Time and Time Interval Meeting, 1987, pp. 133-147
[9] Thermal-noise limit in the frequency stabilization of lasers with rigid cavities, Phys. Rev. Lett., Volume 93 (2004), p. 250602
[10] Making optical atomic clocks more stable with -level laser stabilization, Nat. Photonics, Volume 5 (2011), pp. 158-161
[11] Comparison of two independent Sr optical clocks with 1 times stability at , Phys. Rev. Lett., Volume 109 (2012), p. 230801
[12] Optical spectrum analyzer at the atomic quantum projection noise limit, Phys. Rev. Lett., Volume 111 (2013), p. 093604
[13] A quantum many-body spin system in an optical lattice clock, Science, Volume 341 (2013), pp. 632-636
[14] An atomic clock with instability, Science, Volume 341 (2013), pp. 1215-1218
[15] A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012), pp. 687-692
[16] Tenfold reduction of Brownian noise in high-reflectivity optical coatings, Nat. Photonics, Volume 7 (2013), pp. 644-650
[17] Reducing the effect of thermal noise in optical cavities, Appl. Phys. B, Volume 113 (2013), pp. 233-242
[18] High-accuracy measurement of atomic polarizability in an optical lattice clock, Phys. Rev. Lett., Volume 108 (2012), p. 153002
[19] High accuracy correction of blackbody radiation shift in an optical lattice clock, Phys. Rev. Lett., Volume 109 (2012), p. 263004
[20] An atomic clock with room-temperature blackbody stark uncertainty, Phys. Rev. Lett., Volume 113 (2014), p. 260801
[21] Determination of the state lifetime and blackbody-radiation clock shift in Yb, Phys. Rev. A, Volume 86 (2012), p. 051404
[22] Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts, Phys. Rev. Lett., Volume 109 (2012), p. 230802
[23] Blackbody-radiation shift in the Sr optical atomic clock, Phys. Rev. A, Volume 87 (2013), p. 012509
[24] Tackling the blackbody shift in a strontium optical lattice clock, IEEE Trans. Instrum. Meas., Volume 60 (2011), pp. 2550-2557
[25] Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), pp. 185-189
[26] lattice clock with inaccuracy below , Phys. Rev. Lett., Volume 98 (2007), p. 083002
[27] Probing interactions between ultracold fermions, Science, Volume 324 (2009), pp. 360-363
[28] Many-body treatment of the collisional frequency shift in fermionic atoms, Phys. Rev. Lett., Volume 103 (2009), p. 260402
[29] Decoherence and collisional frequency shifts of trapped bosons and fermions, Phys. Rev. Lett., Volume 103 (2009), p. 113202
[30] p-Wave cold collisions in an optical lattice clock, Phys. Rev. Lett., Volume 107 (2011), p. 103902
[31] Inelastic collisions and density-dependent excitation suppression in a optical lattice clock, Phys. Rev. A, Volume 84 (2011), p. 052716
[32] Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock, Phys. Rev. A, Volume 84 (2011), p. 052724
[33] Suppression of collisional shifts in a strongly interacting lattice clock, Science, Volume 331 (2011), pp. 1043-1046
[34] Resolved atomic interaction sidebands in an optical clock transition, Phys. Rev. Lett., Volume 106 (2011), p. 250801
[35] Probing many-body interactions in an optical lattice clock, Ann. Phys., Volume 340 (2014), pp. 311-351
[36] Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, Nat. Phys., Volume 6 (2010), pp. 289-295
[37] Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism, Science, Volume 345 (2014), pp. 1467-1473
[38] et al. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys., Volume 10 (2014), pp. 779-784
[39] et al. Direct observation of coherent interorbital spin-exchange dynamics, Phys. Rev. Lett., Volume 113 (2014), p. 120402
[40] Frequency comparison of two high-accuracy optical clocks, Phys. Rev. Lett., Volume 104 (2010), p. 070802
[41] Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012), pp. 411-415
[42] A quantum network of clock, Nat. Phys., Volume 10 (2014), pp. 582-587
[43] Frequency ratio of and single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008), pp. 1808-1812
[44] Frequency ratio of two optical clock transitions in and constraints on the time variation of fundamental constants, Phys. Rev. Lett., Volume 113 (2014), p. 210801
[45] Improved limit on a temporal variation of from comparisons of and Cs atomic clocks, Phys. Rev. Lett., Volume 113 (2014), p. 210802
[46] Hunting for topological dark matter with atomic clocks, Nat. Phys., Volume 10 (2014), pp. 933-936
Cited by Sources:
Comments - Policy