Comptes Rendus
Progress on the optical lattice clock
Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 499-505.

Optical lattice clocks have made significant leaps forward in recent years, demonstrating the ability to measure time/frequency at unprecedented levels. Here we highlight this progress, with a particular focus on research efforts at NIST and JILA. We discuss advances in frequency instability and the characterization of key systematic effects, with a brief outlook to the future.

Les horloges optiques en réseau ont fait des progrès significatifs ces dernières années, en démontrant la possibilité de mesurer le temps et les fréquences à un niveau jamais atteint auparavant. Dans cet article, nous illustrons ces progrès en nous focalisant sur les efforts de recherches au NIST et au JILA. Nous discutons les avancées au niveau de l'instabilité de fréquence et de la caractérisation des effets systématiques clés, et nous donnons un bref aperçu des perspectives futures.

Published online:
DOI: 10.1016/j.crhy.2015.03.008
Keywords: Optical clock, Optical lattice, Strontium, Ytterbium, Blackbody Stark, Cold collision, Quantum metrology
Mot clés : Horloge optique, Réseaux optiques, Strontium, Ytterbium, Effet corps noir Stark, Collisions froids, Métrologie quantique

Andrew D. Ludlow 1; Jun Ye 2

1 National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
2 JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, 440 UCB, Boulder, CO 80309, USA
     author = {Andrew D. Ludlow and Jun Ye},
     title = {Progress on the optical lattice clock},
     journal = {Comptes Rendus. Physique},
     pages = {499--505},
     publisher = {Elsevier},
     volume = {16},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.008},
     language = {en},
AU  - Andrew D. Ludlow
AU  - Jun Ye
TI  - Progress on the optical lattice clock
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 499
EP  - 505
VL  - 16
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.008
LA  - en
ID  - CRPHYS_2015__16_5_499_0
ER  - 
%0 Journal Article
%A Andrew D. Ludlow
%A Jun Ye
%T Progress on the optical lattice clock
%J Comptes Rendus. Physique
%D 2015
%P 499-505
%V 16
%N 5
%I Elsevier
%R 10.1016/j.crhy.2015.03.008
%G en
%F CRPHYS_2015__16_5_499_0
Andrew D. Ludlow; Jun Ye. Progress on the optical lattice clock. Comptes Rendus. Physique, Volume 16 (2015) no. 5, pp. 499-505. doi : 10.1016/j.crhy.2015.03.008.

[1] M.M. Boyd; T. Zelevinsky; A.D. Ludlow; S.M. Foreman; S. Blatt; T. Ido; J. Ye Optical atomic coherence at the one second time scale, Science, Volume 314 (2006), pp. 1430-1433

[2] J. Ye; H.J. Kimble; H. Katori Quantum state engineering and precision metrology using state-insensitive light traps, Science, Volume 320 (2008), pp. 1734-1738

[3] H. Katori; M. Takamoto; V.G. Pal'chikov; V.D. Ovsiannikov Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003), p. 173005

[4] A.D. Ludlow; T. Zelevinsky; G.K. Campbell; S. Blatt; M.M. Boyd; M.H.G. de Miranda; M.J. Martin; J.W. Thomsen; S.M. Foreman; J. Ye; T. Fortier; J.E. Stalnaker; S.A. Diddams; Y.L. Coq; Z.W. Barber; N. Poli; N.D. Lemke; K.M. Beck; C.W. Oates Sr lattice clock at 1×1016 fractional uncertainty by remote optical evaluation with a Ca clock, Science, Volume 319 (2008), pp. 1805-1808

[5] N.D. Lemke; A.D. Ludlow; Z.W. Barber; T.M. Fortier; S.A. Diddams; Y. Jiang; S.R. Jefferts; T.P. Heavner; T.E. Parker; C.W. Oates Spin-1/2 optical lattice clock, Phys. Rev. Lett., Volume 103 (2009), p. 063001

[6] B.J. Bloom; T.L. Nicholson; J.R. Williams; S. Campbell; M. Bishof; X. Zhang; W. Zhang; S.L. Bromley; J. Ye An optical lattice clock with accuracy and stability at the 1018 level, Nature, Volume 506 (2014), pp. 71-75

[7] T.L. Nicholson; S.L. Campbell; R.B. Hutson; G.E. Marti; B.J. Bloom; R.L. McNally; W. Zhang; M.D. Barrett; M.S. Safronova; G.F. Strouse; W.L. Tew; J. Ye 2×1018 total uncertainty in an atomic clock, Nat. Commun., Volume 6 (2015), p. 6896

[8] G.J. Dick Local oscillator induced instabilities in trapped ion frequency standards, Proceedings Precise Time and Time Interval Meeting, 1987, pp. 133-147

[9] K. Numata; A. Kemery; J. Camp Thermal-noise limit in the frequency stabilization of lasers with rigid cavities, Phys. Rev. Lett., Volume 93 (2004), p. 250602

[10] Y.Y. Jiang; A.D. Ludlow; N.D. Lemke; R.W. Fox; J.A. Sherman; L.-S. Ma; C.W. Oates Making optical atomic clocks more stable with 1016-level laser stabilization, Nat. Photonics, Volume 5 (2011), pp. 158-161

[11] T.L. Nicholson; M.J. Martin; J.R. Williams; B.J. Bloom; M. Bishof; M.D. Swallows; S. Campbell; J. Ye Comparison of two independent Sr optical clocks with 1 times 1017 stability at 103 s, Phys. Rev. Lett., Volume 109 (2012), p. 230801

[12] M. Bishof; X. Zhang; M.J. Martin; J. Ye Optical spectrum analyzer at the atomic quantum projection noise limit, Phys. Rev. Lett., Volume 111 (2013), p. 093604

[13] M.J. Martin; M. Bishof; M.D. Swallows; X. Zhang; C. Benko; J. von Stecher; A.V. Gorshkov; A.M. Rey; J. Ye A quantum many-body spin system in an optical lattice clock, Science, Volume 341 (2013), pp. 632-636

[14] N. Hinkley; J.A. Sherman; N.B. Phillips; M. Schioppo; N.D. Lemke; K. Beloy; M. Pizzocaro; C.W. Oates; A.D. Ludlow An atomic clock with 1018 instability, Science, Volume 341 (2013), pp. 1215-1218

[15] T. Kessler; C. Hagemann; C. Grebing; T. Legero; U. Sterr; F. Riehle; M.J. Martin; L. Chen; J. Ye A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012), pp. 687-692

[16] G.D. Cole; W. Zhang; M.J. Martin; J. Ye; M. Aspelmeyer Tenfold reduction of Brownian noise in high-reflectivity optical coatings, Nat. Photonics, Volume 7 (2013), pp. 644-650

[17] S. Amairi; T. Legero; T. Kessler; U. Sterr; J.B. Wübbena; O. Mandel; P.O. Schmidt Reducing the effect of thermal noise in optical cavities, Appl. Phys. B, Volume 113 (2013), pp. 233-242

[18] J.A. Sherman; N.D. Lemke; N. Hinkley; M. Pizzocaro; R.W. Fox; A.D. Ludlow; C.W. Oates High-accuracy measurement of atomic polarizability in an optical lattice clock, Phys. Rev. Lett., Volume 108 (2012), p. 153002

[19] T. Middelmann; S. Falke; C. Lisdat; U. Sterr High accuracy correction of blackbody radiation shift in an optical lattice clock, Phys. Rev. Lett., Volume 109 (2012), p. 263004

[20] K. Beloy; N. Hinkley; N.B. Phillips; J.A. Sherman; M. Schioppo; J. Lehman; A. Feldman; L.M. Hanssen; C.W. Oates; A.D. Ludlow An atomic clock with 1×1018 room-temperature blackbody stark uncertainty, Phys. Rev. Lett., Volume 113 (2014), p. 260801

[21] K. Beloy; J.A. Sherman; N.D. Lemke; N. Hinkley; C.W. Oates; A.D. Ludlow Determination of the 5d6sD13 state lifetime and blackbody-radiation clock shift in Yb, Phys. Rev. A, Volume 86 (2012), p. 051404

[22] M.S. Safronova; S.G. Porsev; C.W. Clark Ytterbium in quantum gases and atomic clocks: van der Waals interactions and blackbody shifts, Phys. Rev. Lett., Volume 109 (2012), p. 230802

[23] M.S. Safronova; S.G. Porsev; U.I. Safronova; M.G. Kozlov; C.W. Clark Blackbody-radiation shift in the Sr optical atomic clock, Phys. Rev. A, Volume 87 (2013), p. 012509

[24] T. Middelmann; C. Lisdat; S. Falke; J.S.R. Winfred; F. Riehle; U. Sterr Tackling the blackbody shift in a strontium optical lattice clock, IEEE Trans. Instrum. Meas., Volume 60 (2011), pp. 2550-2557

[25] I. Ushijima; M. Takamoto; M. Das; T. Ohkubo; H. Katori Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), pp. 185-189

[26] M.M. Boyd; A.D. Ludlow; S. Blatt; S.M. Foreman; T. Ido; T. Zelevinsky; J. Ye Sr87 lattice clock with inaccuracy below 1×1015, Phys. Rev. Lett., Volume 98 (2007), p. 083002

[27] G.K. Campbell; M.M. Boyd; J.W. Thomsen; M.J. Martin; S. Blatt; M.D. Swallows; T.L. Nicholson; T. Fortier; C.W. Oates; S.A. Diddams; N.D. Lemke; P. Naidon; P. Julienne; J. Ye; A.D. Ludlow Probing interactions between ultracold fermions, Science, Volume 324 (2009), pp. 360-363

[28] A.M. Rey; A.V. Gorshkov; C. Rubbo Many-body treatment of the collisional frequency shift in fermionic atoms, Phys. Rev. Lett., Volume 103 (2009), p. 260402

[29] K. Gibble Decoherence and collisional frequency shifts of trapped bosons and fermions, Phys. Rev. Lett., Volume 103 (2009), p. 113202

[30] N.D. Lemke; J. von Stecher; J.A. Sherman; A.M. Rey; C.W. Oates; A.D. Ludlow p-Wave cold collisions in an optical lattice clock, Phys. Rev. Lett., Volume 107 (2011), p. 103902

[31] M. Bishof; M.J. Martin; M.D. Swallows; C. Benko; Y. Lin; G. Quemener; A.M. Rey; J. Ye Inelastic collisions and density-dependent excitation suppression in a Sr87 optical lattice clock, Phys. Rev. A, Volume 84 (2011), p. 052716

[32] A.D. Ludlow; N.D. Lemke; J.A. Sherman; C.W. Oates; G. Quéméner; J. von Stecher; A.M. Rey Cold-collision-shift cancellation and inelastic scattering in a Yb optical lattice clock, Phys. Rev. A, Volume 84 (2011), p. 052724

[33] M.D. Swallows; M. Bishof; Y. Lin; S. Blatt; M.J. Martin; A.M. Rey; J. Ye Suppression of collisional shifts in a strongly interacting lattice clock, Science, Volume 331 (2011), pp. 1043-1046

[34] M. Bishof; Y. Lin; M.D. Swallows; A.V. Gorshkov; J. Ye; A.M. Rey Resolved atomic interaction sidebands in an optical clock transition, Phys. Rev. Lett., Volume 106 (2011), p. 250801

[35] A.M. Rey; A.V. Gorshkov; C.V. Kraus; M.J. Martin; M. Bishof; M.D. Swallows; X. Zhang; C. Benko; J. Ye; N.D. Lemke; A.D. Ludlow Probing many-body interactions in an optical lattice clock, Ann. Phys., Volume 340 (2014), pp. 311-351

[36] A.V. Gorshkov; M. Hermele; V. Gurarie; C. Xu; P.S. Julienne; J. Ye; P. Zoller; E. Demler; M.D. Lukin; A.M. Rey Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, Nat. Phys., Volume 6 (2010), pp. 289-295

[37] X. Zhang; M. Bishof; S.L. Bromley; C.V. Kraus; M. Safronova; P. Zoller; A.M. Rey; J. Ye Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism, Science, Volume 345 (2014), pp. 1467-1473

[38] F. Scazza et al. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys., Volume 10 (2014), pp. 779-784

[39] G. Cappellini et al. Direct observation of coherent interorbital spin-exchange dynamics, Phys. Rev. Lett., Volume 113 (2014), p. 120402

[40] C.W. Chou; D.B. Hume; J.C.J. Koelemeij; D.J. Wineland; T. Rosenband Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett., Volume 104 (2010), p. 070802

[41] J. Lodewyck; M. Zawada; L. Lorini; M. Gurov; P. Lemonde Observation and cancellation of a perturbing dc Stark shift in strontium optical lattice clocks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012), pp. 411-415

[42] P. Komar; E.M. Kessler; M. Bishof; L. Jiang; A.S. Sorensen; J. Ye; M.D. Lukin A quantum network of clock, Nat. Phys., Volume 10 (2014), pp. 582-587

[43] T. Rosenband; D.B. Hume; P.O. Schmidt; C.W. Chou; A. Brusch; L. Lorini; W.H. Oskay; R.E. Drullinger; T.M. Fortier; J.E. Stalnaker; S.A. Diddams; W.C. Swann; N.R. Newbury; W.M. Itano; D.J. Wineland; J.C. Bergquist Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008), pp. 1808-1812

[44] R.M. Godun; P.B.R. Nisbet-Jones; J.M. Jones; S.A. King; L.A.M. Johnson; H.S. Margolis; K. Szymaniec; S.N. Lea; K. Bongs; P. Gill Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants, Phys. Rev. Lett., Volume 113 (2014), p. 210801

[45] N. Huntemann; B. Lipphardt; Chr Tamm; V. Gerginov; S. Weyers; E. Peik Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks, Phys. Rev. Lett., Volume 113 (2014), p. 210802

[46] A. Derevianko; M. Pospelov Hunting for topological dark matter with atomic clocks, Nat. Phys., Volume 10 (2014), pp. 933-936

Cited by Sources:

Comments - Policy