Comptes Rendus
Implications of the Higgs boson discovery
Comptes Rendus. Physique, Volume 16 (2015) no. 4, pp. 394-406.

With the discovery of the Higgs boson by the LHC in 2012, a new era started in which we have direct experimental information on the physics behind the breaking of the electroweak (EW) symmetry. This breaking plays a fundamental role in our understanding of particle physics and sits at the high-energy frontier beyond which we expect new physics that supersedes the Standard Model (SM). In this review we summarize what we have learned so far from LHC data in this respect. In the absence of new particles having been discovered, we discuss how the scrutiny of the properties of the Higgs boson (in search for deviations from SM expectations) is crucial as it can point the way for physics beyond the SM. We also emphasize how the value of the Higgs mass could have far-reaching implications for the stability of the EW vacuum if there is no new physics up to extremely large energies.

La découverte du boson de Higgs par les expériences du GCH en 2012 a ouvert une nouvelle ère, avec un accès expérimental direct à la dynamique responsable de la brisure de la symétrie électrofaible. Cette brisure de symétrie joue un rôle fondamental dans notre compréhension de la physique des particules et se situe à la limite des nos connaissances dans un domaine d'énergie au-delà duquel le modèle standard de la physique des particules devrait montrer ses limites. Dans cet article, nous résumons ce que les données du LHC nous ont d'ores et déjà appris. En l'absence de découverte de nouvelles particules, nous expliquons en quoi une étude méticuleuse des propriétés du boson de Higgs, et en particulier la recherche de déviations par rapport aux prédictions standards, est primordiale, puisqu'elle peut en effet indiquer comment dépasser ce modèle standard. Nous discutons aussi les implications de la valeur de la masse du boson de Higgs sur la stabilité du vide électrofaible dans l'hypothèse où le modèle standard reste valide jusqu'à des énergies extrêmement élevées.

Published online:
DOI: 10.1016/j.crhy.2015.03.016
Keywords: Electroweak symmetry breaking, Higgs, Beyond the standard model, Compositeness, Vacuum stability
Mot clés : Brisure de symétrie électrofaible, Higgs, Physique au-delà du modèle standard, Higgs composite, Stabilité du vide

José R. Espinosa 1; Christophe Grojean 1, 2

1 ICREA at IFAE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
2 DESY, Notkestraße 85, 22607 Hamburg, Germany
@article{CRPHYS_2015__16_4_394_0,
     author = {Jos\'e R. Espinosa and Christophe Grojean},
     title = {Implications of the {Higgs} boson discovery},
     journal = {Comptes Rendus. Physique},
     pages = {394--406},
     publisher = {Elsevier},
     volume = {16},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crhy.2015.03.016},
     language = {en},
}
TY  - JOUR
AU  - José R. Espinosa
AU  - Christophe Grojean
TI  - Implications of the Higgs boson discovery
JO  - Comptes Rendus. Physique
PY  - 2015
SP  - 394
EP  - 406
VL  - 16
IS  - 4
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.03.016
LA  - en
ID  - CRPHYS_2015__16_4_394_0
ER  - 
%0 Journal Article
%A José R. Espinosa
%A Christophe Grojean
%T Implications of the Higgs boson discovery
%J Comptes Rendus. Physique
%D 2015
%P 394-406
%V 16
%N 4
%I Elsevier
%R 10.1016/j.crhy.2015.03.016
%G en
%F CRPHYS_2015__16_4_394_0
José R. Espinosa; Christophe Grojean. Implications of the Higgs boson discovery. Comptes Rendus. Physique, Volume 16 (2015) no. 4, pp. 394-406. doi : 10.1016/j.crhy.2015.03.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.03.016/

[1] François-Marie Arouet aka Voltaire, Œuvres complètes.

[2] M. Webb, The Amazing Spiderman, Columbia Pictures, 2012.

[3] G. Aad; et al.; ATLAS Collab; S. Chatrchyan; et al.; CMS Collab Phys. Lett. B, 716 (2012), p. 1 | arXiv

[4] F. Englert; R. Brout; P.W. Higgs; P.W. Higgs; G.S. Guralnik; C.R. Hagen; T.W.B. Kibble Phys. Rev. Lett., 13 (1964), p. 321

[5] V.F. Weisskopf Phys. Rev., 56 (1939), p. 72

[6] G. 't Hooft NATO ASI Ser., Ser. B: Phys., 59 (1980), p. 135

[7] M.J.G. Veltman Acta Phys. Pol. B, 12 (1981), p. 437

[8] R. Barbieri Phys. Scr. T, 158 (2013), p. 014006 | arXiv

[9] C. Grojean, in: Proc. International conference on 20 Years of SUGRA and search for SUSY and unification, SUGRA 20, Boston, Massachusetts, 17–20 March, 2003. | arXiv

[10] J. Goldstone; J. Goldstone; A. Salam; S. Weinberg Phys. Rev., 19 (1961), p. 154

[11] N. Arkani-Hamed; A.G. Cohen; E. Katz; A.E. Nelson J. High Energy Phys., 0207 (2002), p. 034 | arXiv

[12] S.R. Coleman; J. Mandula; R. Haag; J.T. Lopuszanski; M. Sohnius Nucl. Phys. B, 159 (1967), p. 1251

[13] M. Dine | arXiv

[14] G. Aad; et al.; ATLAS Collab; V. Khachatryan; et al.; CMS Collab Phys. Rev. D, 90, 2014 no. 5, p. 052004 | arXiv

[15] M. Farina; M. Perelstein; B. Shakya J. High Energy Phys., 1404 (2014), p. 108 | arXiv

[16] D. Marzocca; M. Serone; J. Shu; A. Pomarol; F. Riva J. High Energy Phys., 1208 (2012), p. 013 | arXiv

[17] M. Carena; C. Grojean; M. Kado; V. Sharma Status of the Higgs physics, Chin. Phys. C, Volume 38 (2014), p. 090001

[18] J. Elias-Miro; J.R. Espinosa; E. Masso; A. Pomarol J. High Energy Phys., 1311 (2013), p. 066 | arXiv

[19] R.S. Gupta; A. Pomarol; F. Riva Phys. Rev. D, 91 (2015) no. 3, p. 035001 | arXiv

[20] A. David; et al.; LHC Higgs Cross Section Working Group Collab | arXiv

[21] S. Heinemeyer; et al.; LHC Higgs Cross Section Working Group Collab, 2013 (CERN yellow report CERN–2013–04) | arXiv

[22] J.R. Ellis; M.K. Gaillard; D.V. Nanopoulos; M.A. Shifman; A.I. Vainshtein; M.B. Voloshin; V.I. Zakharov; M.A. Shifman; A.I. Vainshtein; M.B. Voloshin; V.I. Zakharov Yad. Fiz., 106 (1976), p. 292

[23] R. Contino; M. Ghezzi; C. Grojean; M. Muhlleitner; M. Spira; R. Contino; M. Ghezzi; C. Grojean; M. Muhlleitner; M. Spira Comput. Phys. Commun., 1307 (2013), p. 035 | arXiv

[24] M. Ciuchini; E. Franco; S. Mishima; L. Silvestrini; C. Grojean; O. Matsedonskyi; G. Panico; J. Elias-Miro; C. Grojean; R.S. Gupta; D. Marzocca J. High Energy Phys., 1308 (2013), p. 106 | arXiv

[25] J. Brod; U. Haisch; J. Zupan J. High Energy Phys., 1311 (2013), p. 180 | arXiv

[26] A. Askew; P. Jaiswal; T. Okui; H.B. Prosper; N. Sato | arXiv

[27] F. Bishara; Y. Grossman; R. Harnik; D.J. Robinson; J. Shu; J. Zupan J. High Energy Phys., 1404 (2014), p. 084 | arXiv

[28] D. McKeen; M. Pospelov; A. Ritz Phys. Rev. D, 86 (2012), p. 113004 | arXiv

[29] H. Baer; T. Barklow; K. Fujii; Y. Gao; A. Hoang; S. Kanemura; J. List; H.E. Logan et al. | arXiv

[30] R. Contino; C. Grojean; D. Pappadopulo; R. Rattazzi; A. Thamm J. High Energy Phys., 1402 (2014), p. 006 | arXiv

[31] A. Azatov; R. Contino; G. Panico; M. Son | arXiv

[32] A. Falkowski; I. Low; A. Vichi; A. Azatov; J. Galloway; C. Delaunay; C. Grojean; G. Perez J. High Energy Phys., 77 (2008), p. 055018 | arXiv

[33] A. Azatov; A. Paul; C. Grojean; E. Salvioni; M. Schlaffer; A. Weiler J. High Energy Phys., 1401 (2014), p. 014 | arXiv

[34] R. Contino; M. Ghezzi; M. Moretti; G. Panico; F. Piccinini; A. Wulzer; M. Gillioz; R. Gröber; C. Grojean; M. Mühlleitner; E. Salvioni; F. Goertz; A. Papaefstathiou; L.L. Yang; J. Zurita J. High Energy Phys., 1208, 2012, p. 154 | arXiv

[35] J.S. Gainer; J. Lykken; K.T. Matchev; S. Mrenna; M. Park; A. Azatov; C. Grojean; A. Paul; E. Salvioni; M. Buschmann; D. Goncalves; S. Kuttimalai; M. Schonherr; F. Krauss; T. Plehn; C. Englert; Y. Soreq; M. Spannowsky J. Exp. Theor. Phys., 120, 2015, p. 354 | arXiv

[36] S. Dawson et al. Working group report: Higgs Boson, Snowmass 2013 | arXiv

[37] G. Isidori; A.V. Manohar; M. Trott; G. Isidori; M. Trott J. High Energy Phys., 728 (2014), p. 131 | arXiv

[38] A. Pomarol; F. Riva J. High Energy Phys., 1401 (2014), p. 151 | arXiv

[39] R. Godbole; D.J. Miller; K. Mohan; C.D. White Phys. Lett. B, 730 (2014), p. 275 | arXiv

[40] A. Pomarol, in: Proceedings of the 2014 School of High-Energy Physics, La Garderen, Netherlands, 18 June–1 July, 2014, . | arXiv

[41] G. Degrassi; S. Di Vita; J. Elias-Miró; J.R. Espinosa; G.F. Giudice; G. Isidori; A. Strumia J. High Energy Phys., 1208 (2012), p. 098 | arXiv

[42] I.V. Krive; A.D. Linde; N.V. Krasnikov; L. Maiani; G. Parisi; R. Petronzio; N. Cabibbo; L. Maiani; G. Parisi; R. Petronzio; H.D. Politzer; S. Wolfram; H.D. Politzer; S. Wolfram; P.Q. Hung; A.D. Linde Phys. Lett. B, 117 (1976), p. 265

[43] M. Lindner; M. Sher; H.W. Zaglauer; P.B. Arnold; M. Sher; M. Sher; M. Sher; G. Altarelli; G. Isidori; J.A. Casas; J.R. Espinosa; M. Quirós; J.A. Casas; J.R. Espinosa; M. Quirós; J.R. Espinosa; M. Quirós; C.P. Burgess; V. Di Clemente; J.R. Espinosa; J. Ellis; J.R. Espinosa; G.F. Giudice; A. Hoecker; A. Riotto Phys. Lett. B, 228 (1989), p. 139 (Addendum. Phys. Lett. B, 331, 1994, pp. 448) | arXiv

[44] J. Elias-Miró; J.R. Espinosa; G.F. Giudice; G. Isidori; A. Riotto; A. Strumia Phys. Lett. B, 709 (2012), p. 222 | arXiv

[45] M. Holthausen; K.S. Lim; M. Lindner J. High Energy Phys., 1202 (2012), p. 037 | arXiv

[46] F. Bezrukov; M.Y. Kalmykov; B.A. Kniehl; M. Shaposhnikov J. High Energy Phys., 1210 (2012), p. 140 | arXiv

[47] D. Buttazzo; G. Degrassi; P.P. Giardino; G.F. Giudice; F. Sala; A. Salvio; A. Strumia J. High Energy Phys., 1312 (2013), p. 089 | arXiv

[48] S.R. Coleman; S.R. Coleman Phys. Rev. D, 15 (1977), p. 2929 (Err. Phys. Rev. D, 16, 1977, pp. 1248)

[49] G. Isidori; G. Ridolfi; A. Strumia Nucl. Phys. B, 609 (2001), p. 387 | arXiv

[50] G. Isidori; V.S. Rychkov; A. Strumia; N. Tetradis Phys. Rev. D, 77 (2008), p. 025034 | arXiv

[51] ATLAS and CDF and CMS and D0 Collaborations | arXiv

[52] S. Bethke Nucl. Phys. Proc. Suppl., 234 (2013), p. 229 | arXiv

[53] S.R. Coleman; E.J. Weinberg; B.M. Kastening; C. Ford; D.R.T. Jones; P.W. Stephenson; M.B. Einhorn; M. Bando; T. Kugo; N. Maekawa; H. Nakano Phys. Lett. B, 7 (1973), p. 1888 | arXiv

[54] C. Ford; I. Jack; D.R.T. Jones; C. Ford; I. Jack; D.R.T. Jones Nucl. Phys. B, 387 (1992), p. 373 | arXiv

[55] K.G. Chetyrkin; M.F. Zoller; A.V. Bednyakov; A.F. Pikelner; V.N. Velizhanin; A.V. Bednyakov; A.F. Pikelner; V.N. Velizhanin Nucl. Phys. B, 1206 (2012), p. 033 | arXiv

[56] S. Alekhin; A. Djouadi; S. Moch; I. Masina Phys. Rev. D, 716 (2012) no. 5, p. 214 | arXiv

[57] A. Juste; S. Mantry; A. Mitov; A. Penin; P. Skands; E. Varnes; M. Vos; S. Wimpenny Eur. Phys. J. C, 74 (2014) no. 10, p. 3119 | arXiv

[58] A.H. Hoang | arXiv

[59] L.J. Hall; Y. Nomura; M.E. Cabrera; J.A. Casas; A. Delgado; G.F. Giudice; A. Strumia; L.E. Ibañez; I. Valenzuela; A. Hebecker; A.K. Knochel; T. Weigand Nucl. Phys. B, 1003 (2010), p. 076 | arXiv

[60] M. Shaposhnikov; C. Wetterich Phys. Lett. B, 683 (2010), p. 196 | arXiv

[61] C.D. Froggatt; H.B. Nielsen; C.D. Froggatt; H.B. Nielsen; Y. Takanishi Phys. Rev. D, 368 (1996), p. 96 | arXiv

[62] J.A. Casas; V. Di Clemente; A. Ibarra; M. Quirós Phys. Rev. D, 62 (2000), p. 053005 | arXiv

[63] J. Elias-Miró; J.R. Espinosa; G.F. Giudice; H.M. Lee; A. Strumia; O. Lebedev Eur. Phys. J. C, 1206 (2012), p. 031 | arXiv

Cited by Sources:

Comments - Policy