To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. The present article proposes an overview of the present theoretical tools and of the experimental results in the field of strong and electroweak interactions.
À ce jour, l'ensemble de la physique du Grand collisionneur de hadrons LHC s'inscrit dans le cadre du modèle standard (MS) de la physique des particules. Ainsi la découverte récente du boson de Higgs avec une masse proche de 125 GeV confirme-t-elle une prédiction centrale du MS. L'une des missions principales du LHC, avec la recherche de manifestations directes de nouvelle physique au-delà du MS, consiste à soumettre le MS à des tests toujours plus contraignants. Cela requiert non seulement des outils théoriques toujours plus performants permettant des prédictions vérifiables et fournissant aux expériences des générateurs d'événements fiables, mais aussi des techniques d'analyse des données sophistiquées pour surmonter les conditions dantesques de l'environnement expérimental au LHC et permettre des mesures de précision. Cet article propose une vue d'ensemble des outils théoriques disponibles et des résultats expérimentaux récents dans le domaine des interactions fortes et électrofaibles.
Mots-clés : LHC, CERN, ATLAS, CMS, Modèle standard, Calculs perturbatifs
Matteo Cacciari 1; Gautier Hamel de Monchenault 2
@article{CRPHYS_2015__16_4_368_0, author = {Matteo Cacciari and Gautier Hamel de Monchenault}, title = {Standard {Model} theory calculations and experimental tests}, journal = {Comptes Rendus. Physique}, pages = {368--378}, publisher = {Elsevier}, volume = {16}, number = {4}, year = {2015}, doi = {10.1016/j.crhy.2015.04.004}, language = {en}, }
Matteo Cacciari; Gautier Hamel de Monchenault. Standard Model theory calculations and experimental tests. Comptes Rendus. Physique, Highlights of the LHC run 1 / Résultats marquants de la première période d'exploitation du GCH, Volume 16 (2015) no. 4, pp. 368-378. doi : 10.1016/j.crhy.2015.04.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.04.004/
[1] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B, Volume 716 (2012), p. 1 | arXiv
[2] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, Volume 716 (2012), p. 30 | arXiv
[3] Matching NLO QCD computations and parton shower simulations, J. High Energy Phys., Volume 0206 (2002), p. 029 | arXiv
[4] A new method for combining NLO QCD with shower Monte Carlo algorithms, J. High Energy Phys., Volume 0411 (2004), p. 040 | arXiv
[5] et al. Next-to-leading order -jet production at the LHC, Phys. Rev. D, Volume 88 (2013), p. 014025 | arXiv
[6] et al. An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D, Volume 78 (2008), p. 036003 | arXiv
[7] et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys., Volume 1407 (2014), p. 079 | arXiv
[8] Scattering amplitudes with open loops, Phys. Rev. Lett., Volume 108 (2012), p. 111601 | arXiv
[9] NLO event samples for the LHC, PoS, Volume EPS-HEP2011 (2011), p. 282 | arXiv
[10] Order QCD corrections to the deep inelastic proton structure functions and , Nucl. Phys. B, Volume 383 (1992), pp. 525-574
[11] Order correction to the structure function in deep inelastic neutrino-hadron scattering, Phys. Lett. B, Volume 297 (1992), pp. 377-384
[12] A complete calculation of the order correction to the Drell–Yan K factor, Nucl. Phys. B, Volume 359 (1991), pp. 343-405 (Erratum)
[13] The corrected Drell–Yan K factor in the DIS and MS scheme, Nucl. Phys. B, Volume 382 (1992), pp. 11-62 (Erratum)
[14] Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett., Volume 88 (2002), p. 201801 | arXiv
[15] Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B, Volume 646 (2002), pp. 220-256 | arXiv
[16] NNLO corrections to the total cross-section for Higgs boson production in hadron–hadron collisions, Nucl. Phys. B, Volume 665 (2003), pp. 325-366 | arXiv
[17] Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B, Volume 724 (2005), pp. 197-246 | arXiv
[18] An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., Volume 98 (2007), p. 222002 | arXiv
[19] Total top-quark pair-production cross section at hadron colliders through , Phys. Rev. Lett., Volume 110 (2013), p. 252004 | arXiv
[20] Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett., Volume 110 (2013) no. 16, p. 162003 | arXiv
[21] Precise QCD predictions for the production of Higgs + jet final states, Phys. Lett. B, Volume 740 (2015), pp. 147-150 | arXiv
[22] Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, J. High Energy Phys., Volume 1306 (2013), p. 072 | arXiv
[23] NNLOPS simulation of Higgs boson production, J. High Energy Phys., Volume 1310 (2013), p. 222 | arXiv
[24] Higgs-boson production through gluon fusion at NNLO QCD with parton showers, Phys. Rev. D, Volume 90 (2014) no. 5, p. 054011 | arXiv
[25] NNLOPS accurate Drell–Yan production, J. High Energy Phys., Volume 1409 (2014), p. 134 | arXiv
[26] Higgs boson gluon-fusion production in N3LO QCD | arXiv
[27] et al. GEANT4: a simulation toolkit, Nucl. Instrum. Methods A, Volume 506 (2003), pp. 250-303
[28] The ATLAS experiment at the CERN large hadron collider, J. Instrum., Volume 3 (2008), p. S08003
[29] The CMS experiment at the CERN large hadron collider, J. Instrum., Volume 3 (2008), p. S08004
[30] The LHCb detector at the LHC, J. Instrum., Volume 3 (2008), p. S08005
[31] ATLAS standard model public results https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults (CERN)
[32] CMS standard model public results https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP (CERN)
[33] Measurement of the inclusive and cross sections in the electron and muon decay channels in pp collisions at with the ATLAS detector, Phys. Rev. D, Volume 85 (2012), p. 072004 | arXiv
[34] Measurement of the inclusive W and Z production cross sections in pp collisions at , J. High Energy Phys., Volume 1110 (2011), p. 132 | arXiv
[35] Measurement of inclusive W and Z boson production cross sections in pp collisions at , Phys. Rev. Lett., Volume 112 (2014), p. 191802 | arXiv
[36] Measurement of the W to τν cross section in pp collisions at with the ATLAS experiment, Phys. Lett. B, Volume 706 (2012), pp. 276-294 | arXiv
[37] Measurement of the inclusive Z cross section via decays to τ pairs in pp collisions at , J. High Energy Phys., Volume 1108 (2011), p. 117 | arXiv
[38] Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at with the ATLAS detector, New J. Phys., Volume 16 (2014), p. 113013 | arXiv
[39] Measurement of the inclusive jet cross-section in proton–proton collisions at using 4.5 fb−1 of data with the ATLAS detector | arXiv
[40] Measurements of differential jet cross sections in proton–proton collisions at with the CMS detector, Phys. Rev. D, Volume 87 (2013), p. 112002 | arXiv
[41] et al. Review of particle physics, Chin. Phys. C, Volume 38 (2014), p. 090001
[42] Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at | arXiv
[43] Measurements of differential and double-differential Drell–Yan cross sections in proton–proton collisions at 8 TeV | arXiv
[44] Measurement of the high-mass Drell–Yan differential cross-section in pp collisions at with the ATLAS detector, Phys. Lett. B, Volume 725 (2013), pp. 223-242 | arXiv
[45] Measurement of the boson transverse momentum distribution in pp collisions at with the ATLAS detector, J. High Energy Phys., Volume 1409 (2014), p. 145 | arXiv
[46] Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D, Volume 56 (1997), pp. 5558-5583 | arXiv
[47] Measurement of the muon charge asymmetry in inclusive production at and an improved determination of light parton distribution functions, Phys. Rev. D, Volume 90 (2014), p. 032004 | arXiv
[48] Measurement of the forward W boson cross-section in pp collisions at , J. High Energy Phys., Volume 12 (2014), p. 079 | arXiv
[49] Measurements of the W production cross sections in association with jets with the ATLAS detector | arXiv
[50] Measurements of jet multiplicity and differential production cross sections of Z+jets events in proton–proton collisions at | arXiv
[51] Forward–backward asymmetry of Drell–Yan lepton pairs in pp collisions at , Phys. Lett. B, Volume 718 (2013), pp. 752-772 | arXiv
[52] ATLAS Collaboration, Measurement of the forward–backward asymmetry of bosons decaying into electron and muon pairs with the ATLAS detector at , 2013, ATLAS-CONF-2013-043.
[53] Measurement of the weak mixing angle with the Drell–Yan process in proton–proton collisions at the LHC, Phys. Rev. D, Volume 84 (2011), p. 112002 | arXiv
[54] Measurements of Wγ and Zγ production in pp collisions at with the ATLAS detector at the LHC, Phys. Rev. D, Volume 87 (2013) no. 11, p. 112003 | arXiv
[55] Measurement of production in pp collisions at with the ATLAS detector and limits on anomalous WWZ and WWγ couplings, Phys. Rev. D, Volume 87 (2013) no. 11, p. 112001 | arXiv
[56] Measurement of ZZ production in pp collisions at and limits on anomalous ZZZ and ZZγ couplings with the ATLAS detector, J. High Energy Phys., Volume 1303 (2013), p. 128 | arXiv
[57] Measurement of WZ production in proton–proton collisions at with the ATLAS detector, Eur. Phys. J. C, Volume 72 (2012), p. 2173 | arXiv
[58] Measurement of the pp to ZZ production cross section and constraints on anomalous triple gauge couplings in four-lepton final states at , Phys. Lett. B, Volume 740 (2015), p. 250 | arXiv
[59] Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton–proton collisions at using the ATLAS detector, J. High Energy Phys., Volume 1404 (2014), p. 031 | arXiv
[60] Measurement of the hadronic activity in events with a Z and two jets and extraction of the cross section for the electroweak production of a Z with two jets in pp collisions at , J. High Energy Phys., Volume 1310 (2013), p. 062 | arXiv
[61] Evidence for electroweak production of in pp collisions at with the ATLAS detector, Phys. Rev. Lett., Volume 113 (2014) no. 14, p. 141803 | arXiv
[62] Search for WWγ and WZγ production and constraints on anomalous quartic gauge couplings in pp collisions at , Phys. Rev. D, Volume 90 (2014), p. 032008 | arXiv
[63] Study of exclusive two-photon production of in pp collisions at and constraints on anomalous quartic gauge couplings, J. High Energy Phys., Volume 1307 (2013), p. 116 | arXiv
Cited by Sources:
Comments - Policy