Active systems, or active matter, are self-driven systems that live, or function, far from equilibrium – a paradigmatic example that we focus on here is provided by a suspension of self-motile particles. Active systems are far from equilibrium because their microscopic constituents constantly consume energy from the environment in order to do work, for instance to propel themselves. The non-equilibrium nature of active matter leads to a variety of non-trivial intriguing phenomena. An important one, which has recently been the subject of intense interest among biological and soft matter physicists, is that of the so-called “motility-induced phase separation”, whereby self-propelled particles accumulate into clusters in the absence of any explicit attractive interactions between them. Here we review the physics of motility-induced phase separation, and discuss this phenomenon within the framework of the classic physics of phase separation and coarsening. We also discuss theories for bacterial colonies where coarsening may be arrested. Most of this work will focus on the case of run-and-tumble and active Brownian particles in the absence of solvent-mediated hydrodynamic interactions – we will briefly discuss at the end their role, which is not currently fully understood in this context.
Les systèmes actifs, ou la matière active, sont des systèmes autonomes qui vivent, ou fonctionnent, loin de l'équilibre – un exemple paradigmatique auquel nous nous intéressons ici est fourni par une suspension de particules auto-motiles. Les systèmes actifs sont loin de l'équilibre parce que leurs constituants microscopiques consomment constamment de l'énergie tirée de l'environnement pour pouvoir fonctionner, par exemple pour se propulser eux-mêmes. La nature de « non-équilibre » de la matière active conduit à une variété de phénomènes surprenants non triviaux. Un important d'entre eux, qui a récemment fait l'objet d'un intérêt intense parmi les physiciens de la biologie et de la matière molle, est ce qu'on dénomme « séparation de phases induite par la motilité », dans laquelle des particules autopropulsées s'accumulent en clusters en l'absence de toute interaction attractive explicite entre eux. Nous passons en revue ici la physique de la séparation induite par la motilité, et discutons ce phénomène dans le cadre de la physique classique de la séparation de phases et du coarsening. Nous discutons aussi des théories sur les colonies bactériennes dans lesquelles le coarsening peut être arrêté. La plus grande partie de ce travail se concentre sur le cas des particules run-and-tumble et des particules en mouvement brownien actif en l'absence d'interactions hydrodynamiques influencées par le solvant – nous discuterons brièvement leur rôle à la fin, qui n'est pour l'heure pas complètement compris dans ce contexte.
Mots-clés : Matière active, Séparation de phases, Particules autopropulsées
Giuseppe Gonnella 1; Davide Marenduzzo 2; Antonio Suma 3; Adriano Tiribocchi 4
@article{CRPHYS_2015__16_3_316_0, author = {Giuseppe Gonnella and Davide Marenduzzo and Antonio Suma and Adriano Tiribocchi}, title = {Motility-induced phase separation and coarsening in active matter}, journal = {Comptes Rendus. Physique}, pages = {316--331}, publisher = {Elsevier}, volume = {16}, number = {3}, year = {2015}, doi = {10.1016/j.crhy.2015.05.001}, language = {en}, }
TY - JOUR AU - Giuseppe Gonnella AU - Davide Marenduzzo AU - Antonio Suma AU - Adriano Tiribocchi TI - Motility-induced phase separation and coarsening in active matter JO - Comptes Rendus. Physique PY - 2015 SP - 316 EP - 331 VL - 16 IS - 3 PB - Elsevier DO - 10.1016/j.crhy.2015.05.001 LA - en ID - CRPHYS_2015__16_3_316_0 ER -
%0 Journal Article %A Giuseppe Gonnella %A Davide Marenduzzo %A Antonio Suma %A Adriano Tiribocchi %T Motility-induced phase separation and coarsening in active matter %J Comptes Rendus. Physique %D 2015 %P 316-331 %V 16 %N 3 %I Elsevier %R 10.1016/j.crhy.2015.05.001 %G en %F CRPHYS_2015__16_3_316_0
Giuseppe Gonnella; Davide Marenduzzo; Antonio Suma; Adriano Tiribocchi. Motility-induced phase separation and coarsening in active matter. Comptes Rendus. Physique, Coarsening dynamics / Dynamique de coarsening, Volume 16 (2015) no. 3, pp. 316-331. doi : 10.1016/j.crhy.2015.05.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.05.001/
[1] Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., Volume 75 (1995), pp. 1226-1229
[2] Complex motion of Brownian particles with energy depots, Phys. Rev. Lett., Volume 80 (1998), pp. 5044-5047
[3] The mechanics and statistics of active matter, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), p. 323
[4] Hydrodynamics and phases of flocks, Ann. Phys., Volume 318 (2005), p. 170
[5] Active biological materials, Annu. Rev. Phys. Chem., Volume 60 (2009), p. 469
[6] Active matter, Rheology of Complex Fluids, 2010, pp. 193-218
[7] Diffusive transport without detailed balance in motile bacteria, Rep. Prog. Phys., Volume 75 (2012), p. 042601
[8] Collective motion, Phys. Rep., Volume 517 (2012), p. 71
[9] Hydrodynamics of soft active matter, Rev. Mod. Phys., Volume 85 (2013), p. 1143
[10] An introduction to the physics of active matter, Physica A, Volume 418 (2015), p. 65
[11] Physics of microswimmers – single particle motion and collective behavior | arXiv
[12] Janus particles: synthesis, self-assembly, physical properties, and applications, Chem. Rev., Volume 113 (2013), pp. 5194-5261
[13] Catalytic nanomotors: autonomous movement of striped nanorods, J. Am. Chem. Soc., Volume 126 (2004), p. 13424
[14] Chemical locomotion, Angew. Chem., Int. Ed., Volume 45 (2006), p. 5420
[15] Simple method to produce Janus colloidal particles in large quantity, Langmuir, Volume 22 (2006), p. 9495
[16] Self-motile colloidal particles: from directed propulsion to random walk, Phys. Rev. Lett., Volume 99 (2007), p. 048102
[17] Designing phoretic micro- and nano-swimmers, New J. Phys., Volume 9 (2007), p. 126
[18] Sedimentation and effective temperature of active colloidal suspensions, Phys. Rev. Lett., Volume 105 (2010), p. 088304
[19] Self-propelled rods near surfaces, Europhys. Lett., Volume 85 (2009), p. 38002
[20] Hydrodynamic attraction of swimming microorganisms by surfaces, Phys. Rev. Lett., Volume 101 (2013), p. 038102
[21] Sedimentation, trapping, and rectification of dilute bacteria, Europhys. Lett., Volume 86 (2009), p. 60002
[22] A wall of funnels concentrates swimming bacteria, J. Bacteriol., Volume 189 (2007), p. 8704
[23] Fluctuations and rheology in active bacterial suspensions, Phys. Rev. Lett., Volume 99 (2007), p. 148302
[24] Particle diffusion in a quasi-two-dimensional bacterial bath, Phys. Rev. Lett., Volume 84 (2000), pp. 3017-3020
[25] Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms, Phys. Rev. Lett., Volume 103 (2009), p. 198103
[26] Hydrodynamic tracer diffusion in suspensions of swimming bacteria, Phys. Fluids, Volume 26 (2014), p. 081901
[27] Stirring by swimmers in confined microenvironments, J. Stat. Mech. (2014), p. P04030
[28] Enhanced diffusion of tracer particles in dilute bacterial suspensions, Soft Matter, Volume 10 (2014), p. 2748
[29] Colloids in a bacterial bath: simulations and experiments, Soft Matter, Volume 7 (2011) no. 11, pp. 5228-5238
[30] The effective temperature, J. Phys. A, Volume 44 (2011) no. 48, p. 483001
[31] Effective temperature of active matter, Phys. Rev. E, Volume 77 (2008), p. 051111
[32] Effective temperature of active complex matter, Soft Matter, Volume 7 (2011), pp. 3726-3729
[33] Non-conservative forces and effective temperatures in active polymers, Soft Matter, Volume 7 (2011), pp. 10193-10209
[34] Dynamics of a homogeneous active dumbbell system, Phys. Rev. E, Volume 90 (2014), p. 052130
[35] Organized cell swimming motions in bacillus subtilis colonies: patterns of short-lived whirls and jets, J. Bacteriol., Volume 181 (1999), p. 600
[36] Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett., Volume 93 (2004), p. 098103
[37] Transport and collective dynamics in suspensions of confined swimming particles, Phys. Rev. Lett., Volume 95 (2005), p. 204501
[38] A self-organized vortex array of hydrodynamically entrained sperm cells, Science, Volume 309 (2005), p. 300
[39] Concentration dependence of the collective dynamics of swimming bacteria, Phys. Rev. Lett., Volume 98 (2007), p. 158102
[40] Swarming dynamics in bacterial colonies, Europhys. Lett., Volume 87 (2009), p. 48011
[41] Rheology of active filament solutions, Phys. Rev. Lett., Volume 97 (2006), p. 268101
[42] Shearing active gels close to the isotropic-nematic transition, Phys. Rev. Lett., Volume 101 (2008), p. 068102
[43] Complex spontaneous flows and concentration banding in active polar films, Phys. Rev. Lett., Volume 101 (2008), p. 198101
[44] Colloids in active fluids: anomalous microrheology and negative drag, Phys. Rev. Lett., Volume 109 (2012), p. 028103
[45] Nonlinear dynamics and rheology of active fluids: simulations in two dimensions, Phys. Rev. E, Volume 83 (2010), p. 041910
[46] Statistical mechanics of interacting run-and-tumble bacteria, Phys. Rev. Lett., Volume 100 (2008), p. 218103
[47] Athermal phase separation of self-propelled particles with no alignment, Phys. Rev. Lett., Volume 108 (2012), p. 235702
[48] Freezing and phase separation of self-propelled disks, Soft Matter, Volume 10 (2014), p. 2132
[49] Reentrant phase behavior in active colloids with attraction, Phys. Rev. Lett., Volume 110 (2013), p. 055701
[50] Continuum theory of phase separation kinetics for active Brownian particles, Phys. Rev. Lett., Volume 111 (2013), p. 145702
[51] Phase segregation in a system of active dumbbells, Int. J. Mod. Phys. C, Volume 25 (2014), p. 1441004
[52] Motility-induced phase separation in an active dumbbell fluid, Europhys. Lett., Volume 108 (2014), p. 56004
[53] Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks, Phys. Rev. E, Volume 89 (2014), p. 062301
[54] Scalar field theory for active-particle phase separation, Nat. Commun., Volume 5 (2014), p. 4351
[55] Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles, Phys. Rev. Lett., Volume 110 (2013), p. 238301
[56] et al. Colloidal motility and pattern formation under rectified diffusiophoresis, Phys. Rev. Lett., Volume 104 (2010), p. 138302
[57] et al. Living crystals of light-activated colloidal surfers, Science, Volume 339 (2013), p. 936
[58] et al. Light-activated self-propelled colloids, Philos. Trans. R. Soc. Lond. A, Volume 372 (2014), p. 20130372
[59] Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria, Phys. Rev. Lett., Volume 108 (2012), p. 098102
[60] Spontaneous segregation of self-propelled particles with different motilities, Soft Matter, Volume 8 (2012), p. 2527
[61] Meso-scale turbulence in living fluids, Proc. Natl. Acad. Sci. USA, Volume 109 (2012), p. 14308
[62] Arrested phase separation in reproducing bacteria creates a generic route to pattern formation, Proc. Natl. Acad. Sci. USA, Volume 107 (2010), p. 11715
[63] Mathematical Biology, vol. 2, Springer-Verlag, New York, 2003
[64] Orientational order in concentrated suspensions of spherical microswimmers, Phys. Fluids, Volume 23 (2011), p. 111702
[65] Spontaneous aggregation and global polar ordering in squirmer suspensions, J. Mol. Liq., Volume 185 (2013), p. 56
[66] Hydrodynamics suppression of phase separation in active suspensions, Phys. Rev. E, Volume 90 (2014), p. 032304
[67] Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement, Phys. Rev. Lett., Volume 112 (2014), p. 118101
[68] Theory of continuum random walks and application to chemotaxis, Phys. Rev. E, Volume 48 (1993), p. 2553
[69] When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation, Europhys. Lett., Volume 101 (2013), p. 20010
[70] The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, Cambridge Mathematical Library, Cambridge University Press, 1970
[71] Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, UK, 1995
[72] Phase behaviour of active Brownian particles: the role of dimensionality, Soft Matter, Volume 10 (2014), p. 1489
[73] Rotational and translational diffusion in an interacting active dumbbell system | arXiv
[74] Lattice models of nonequilibrium bacterial dynamics, J. Stat. Mech. (2011), p. P02029
[75] Swarm behavior of self-propelled rods and swimming flagella, Phys. Rev. E, Volume 82 (2010), p. 031904
[76] Chaos Solitons Fractals (2015) (in press) | DOI
[77] Nonequilibrium clustering of self-propelled rods, Phys. Rev. E, Volume 74 (2006), p. 030904(R)
[78] Swarm behavior of self-propelled rods and swimming flagella, Phys. Rev. E, Volume 82 (2010) no. 3, p. 031904
[79] Phase separation and rotor self-assembly in active particle suspensions, Proc. Natl. Acad. Sci., Volume 109 (2012), p. 4052
[80] Onset of collective and cohesive motion, Phys. Rev. Lett., Volume 92 (2004), p. 025702
[81] Finite-size scaling analysis and dynamic study of the critical behavior of a model for the collective displacement of self-driven individuals, Phys. Rev. E, Volume 78 (2008), p. 021125
[82] Collective motion of self-propelled particles interacting without cohesion, Phys. Rev. E, Volume 77 (2008) no. 4, p. 046113
[83] Phys. Rev. Lett., 104 (2010), p. 184502
[84] From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations, Phys. Rev. Lett., Volume 114 (2015), p. 068101 | DOI
[85] Modeling collective motion: variations on the Vicsek model, Eur. Phys. J. B, Volume 64 (2008), p. 451
[86] Pattern formation in self-propelled particles with density-dependent motility, Phys. Rev. Lett., Volume 108 (2012), p. 248101
[87] Shearing self-propelled suspensions: arrest of coarsening and suppression of giant density fluctuations, Phys. Rev. E, Volume 84 (2011) no. 3, p. 031930
[88] et al. Equilibrium and dynamical behavior in the Vicsek model for self-propelled particles under shear, Cent. Eur. J. Phys., Volume 10 ( Oct. 2012 ) no. 5, pp. 1109-1115
[89] Self-focusing and jet instability of a microswimmer suspension, Phys. Rev. E, Volume 90 (2014) no. 6, p. 063019
[90] On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers, Commun. Pure Appl. Math., Volume 5 (1952), p. 109
[91] A spherical envelope approach to ciliary propulsion, J. Fluid Mech., Volume 46 (1971), p. 199
[92] Various driving mechanisms for generating motion of colloidal particles, J. Phys. Condens. Matter, Volume 20 (2008), p. 404215
[93] The hydrodynamics of swimming microorganisms, Rep. Prog. Phys., Volume 72 (2009), p. 096601
[94] Mesoscale simulations of hydrodynamic squirmer interactions, Phys. Rev. E, Volume 82 (2010), p. 041921
[95] Hydrodynamic interaction of two swimming model micro-organisms, J. Fluid Mech., Volume 568 (2006), p. 119
[96] Development of coherent structures in concentrated suspensions of swimming model micro-organisms, J. Fluid Mech., Volume 615 (2008), p. 401
[97] Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids, Volume 20 (2008), p. 123304
[98] Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions, Phys. Rev. E, Volume 90 (2014), p. 022303
[99] Motility-induced phase separation, Annu. Rev. Condens. Matter Phys., Volume 6 (2015), p. 219
[100] Dynamic clustering in active colloidal suspensions with chemical signaling | arXiv
Cited by Sources:
Comments - Policy