We show that the impurity-induced Friedel oscillations allow one to probe in an unexpected and quite remarkable manner the electronic properties of two-dimensional systems such as graphene or high-temperature superconductors. In particular, we show that by studying these oscillations, one can get access not only to the constant-energy maps, but also to more hidden information such as the chiral properties of Dirac electrons in graphene, which cannot be observed directly by other methods. For graphene, this hidden information is revealed by comparing the theoretical predictions with scanning tunneling microscopy experimental measurements of the local density of states.
Nous montrons comment les oscillations de Friedel induites par la présence d'une impureté permettent de sonder de manière inattendue et tout à fait remarquable les propriétés électroniques des systèmes bidimensionnels tels que le graphène ou les supraconducteurs à haute température. En particulier, nous montrons que par l'étude de ces oscillations, on peut obtenir accès pas seulement à la structure de bande, mais aussi à des informations cachées comme les propriétés chirales des électrons de Dirac dans le graphène, qui ne peuvent pas être observés directement par d'autres méthodes. Pour le graphène, cette information est révélée par la comparaison entre les prédictions théoriques et les mesures expérimentales de la densité locale d'états par la microscopie à effet tunnel.
Mot clés : Oscillations de Friedel, Desordre, Graphene
Cristina Bena 1, 2
@article{CRPHYS_2016__17_3-4_302_0, author = {Cristina Bena}, title = {Friedel oscillations: {Decoding} the hidden physics}, journal = {Comptes Rendus. Physique}, pages = {302--321}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.11.006}, language = {en}, }
Cristina Bena. Friedel oscillations: Decoding the hidden physics. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 302-321. doi : 10.1016/j.crhy.2015.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.11.006/
[1] Nuovo Cimento, 7 (1958), p. 287
[2] Phys. Rev., 96 (1954), p. 99
[3] Phys. Rev., 106 (1957), p. 893
[4] Prog. Theor. Phys., 16 (1956), p. 45
[5] Phys. Rev. B, 65 (2002)
[6] Phys. Rev., 139 (1965)
[7] Phys. Rev. B, 44 (1991), p. 5355
[8] Phys. Rev. Lett., 67 (1991), p. 1602
[9] Phys. Rev. Lett., 71 (1993), p. 1071
[10] Nature, 363 (1993), p. 524
[11] Phys. Rev. B, 59 (1999), p. 15926
[12] Phys. Rev. Lett., 89 (2002)
[13] Phys. Rev. B, 67 (2003)
[14] Science, 275 (1997), p. 1764
[15] J. Electron Spectrosc. Relat. Phenom., 109 (2000), p. 97
[16] Phys. Rev. Lett., 79 (1997), p. 265
[17] Science, 297 (2002), p. 1148
[18] Nature, 422 (2003), p. 592
[19] Science, 303 (2004), p. 1995
[20] Phys. Rev. Lett., 93 (2004)
[21] Phys. Rev. B, 69 (2004)
[22] Phys. Rev. Lett., 95 (2005)
[23] Many-Particle Physics, Kluwer Academics/Plenum Publishers, New York, 2000 (chapt. 4) (ISBN: 0-306-46338-5)
[24] Many-Body Quantum Theory in Condensed Matter Physics – An Introduction, Oxford University Press, Oxford, 2005 (chapt. 5, etc) (ISBN: 0-19-856633-6)
[25] Phys. Rev. Lett., 71 (1993), p. 3363
[26] Phys. Rev. Lett., 77 (1996), p. 1841
[27] Phys. Rev. B, 53 (1996), p. 8704
[28] Phys. Rev. B, 37 (1988), p. 83
[29] Phys. Rev. Lett., 86 (2001), p. 296
[30] Phys. Rev. B, 67 (2003)
[31] Phys. Rev. B, 67 (2003)
[32] Phys. Rev. B, 63 (2004)
[33] Phys. Rev. B, 72 (2005)
[34] Phys. Rev. Lett., 100 (2008)
[35] Phys. Rev. B, 75 (2007)
[36] Europhys. Lett., 80 (2007), p. 67007
[37] Phys. Rev. B, 73 (2006)
[38] Phys. Rev. B, 72 (2005)
[39] J. Phys. Soc. Jpn., 75 (2006)
[40] arXiv
|[41] Phys. Rev. B, 73 (2006)
[42] Phys. Rev. B, 75 (2007)
[43] Philos. Trans. R. Soc. A, 366 (2008), p. 195
[44] Phys. Rev. Lett., 97 (2006)
[45] et al. | arXiv
[46] et al. Rev. Mod. Phys., 75 (2003), p. 1201
[47] et al. Science, 76 (2007), p. 219
[48] et al. Europhys. Lett., 72 (2005), p. 430
[49] Phys. Rev. B, 70 (2004)
[50] Phys. Rev. B, 64 (1992), p. 755
[51] et al. Phys. Rev. B, 96 (2006)
[52] et al. C. R. Physique, 17 (2016) no. 3–4, pp. 294-301 (in this issue)
[53] L. Simon, C. Bena, F. Vonau, D. Aubel, H. Nasrallah, M. Habar, J.C. Perruchetti, European Phys. Journal B, . | arXiv | DOI
[54] Rev. Mod. Phys., 81 (2009), p. 109
[55] Phys. Rev. B, 73 (2006)
[56] Phys. Rev. B, 73 (2006)
[57] arXiv
|[58] et al. Phys. Rev. Lett., 100 (2008)
[59] Rep. Prog. Phys., 62 (1999), p. 61
[60] Phys. Rev. B, 63 (2001)
[61] Phys. Rev. B, 64 (1989), p. 3774
[62] Phys. Rev. B, 67 (2003)
[63] Phys. Rev. Lett., 80 (1998), p. 4546
[64] Phys. Rev. B, 68 (2003)
[65] Phys. Rev. B, 67 (2003)
[66] Phys. Rev. B, 68 (2003)
[67] arXiv
|[68] arXiv
|[69] Phys. Rev. B, 68 (2003)
[70] et al. (This paper uses the lowest order Born approximation, as opposed to the full T-matrix calculation. In addition, it ignores the anomalous part of the Green function when applied to the DDW. The results are therefore in disagreement with ours) | arXiv
[71] Phys. Rev. B, 52 (1994), p. 615
[72] Phys. Rev. B, 68 (2003)
[73] Phys. Rev. B, 69 (2004)
[74] Prog. Theor. Phys., 5 (1950), p. 544
[75] J. Math. Phys., 4 (1963), p. 1154
[76] J. Math. Phys., 6 (1965), p. 304
[77] J. Phys. C, 14 (1981), p. 2585
[78] Bosonization and Strongly Correlated Systems, Cambridge University Press, Cambridge, 1998
[79] Phys. Rev. B, 45 (1992), p. 8454
[80] Phys. Rev. B, 46 (1992), p. 15233
[81] Phys. Rev. Lett., 68 (1992), p. 1220
[82] Phys. Rev. B, 47 (1993), p. 4631
[83] Mesoscopic Electron Transport (L. Kouwenhoven; G. Schon; L. Sohn, eds.), NATO ASI, vol. 345, Kluwer, Dordrecht, 1997, p. 331
[84] Phys. Rev. B, 52 (1995)
[85] Phys. Rev. Lett., 78 (1997), p. 4527
[86] Phys. Rev. B, 58 (1998), p. 10761
[87] Phys. Rev. Lett., 91 (2003)
[88] Phys. Rev. B, 71 (2005)
[89] Phys. Rev. Lett., 76 (1996), p. 4230
[90] Phys. Rev. B, 56 (1997), p. 9352
[91] Ann. Phys., 7 (1998), p. 225
[92] Phys. Rev. B, 69 (2004)
[93] Phys. Rev. B, 85 (2012)
[94] J. Shanghai Univ., 7 (2003) no. 4, p. 361
[95] Phys. Rev. Lett., 76 (1996), p. 1505
[96] Phys. Rev. B, 68 (2003)
Cited by Sources:
Comments - Policy