Comptes Rendus
Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping
Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 836-860.

We report a theoretical study of a quantum optical model consisting of an array of strongly nonlinear cavities incoherently pumped by an ensemble of population-inverted two-level atoms. Projective methods are used to eliminate the atomic dynamics and write a generalized master equation for the photonic degrees of freedom only, where the frequency-dependence of gain introduces non-Markovian features. In the simplest single cavity configuration, this pumping scheme gives novel optical bistability effects and allows for the selective generation of Fock states with a well-defined photon number. For many cavities in a weakly non-Markovian limit, the non-equilibrium steady state recovers a Grand-Canonical statistical ensemble at a temperature determined by the effective atomic linewidth. For a two-cavity system in the strongly nonlinear regime, signatures of a Mott state with one photon per cavity are found.

Nous présentons l'étude d'un modèle d'optique quantique consistant en un réseau de cavités fortement non linéaires en présence de pompage incohérent induit par un ensemble d'atomes à deux niveaux, avec inversion de population. Nous appliquons une méthode projective afin d'éliminer les degrés de liberté atomiques, et dérivons une équation maîtresse généralisée contenant uniquement les degrés de liberté photoniques, dans laquelle le pompage dépendant de la fréquence induit des effets non markoviens. Dans le cas simple d'une cavité, cette méthode de pompage induit de nouveaux effets de bistabilité et permet la création d'états de Fock avec un nombre défini de photons. Dans le cas de plusieurs cavités dans un régime faiblement non markovien, l'état stationaire hors équilibre prend la forme d'un ensemble grand-canonique, dont la température effective est définie par la largeur du spectre d'émission des atomes. Dans une configuration à deux cavités, en régime fortement non linéaire, nous observons la signature d'un état de Mott avec un photon par site.

Published online:
DOI: 10.1016/j.crhy.2016.07.001
Keywords: Strongly interacting photons, Driven-dissipative, Non-Markovian
Mot clés : Photons interagissant fortement, Pertes dissipatives, Non markovien

José Lebreuilly 1, 2; Michiel Wouters 3; Iacopo Carusotto 2

1 Département de physique de l'École normale supérieure, 24, rue Lhomond, 75231 Paris, France
2 INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Povo, Italy
3 TQC, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
@article{CRPHYS_2016__17_8_836_0,
     author = {Jos\'e Lebreuilly and Michiel Wouters and Iacopo Carusotto},
     title = {Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping},
     journal = {Comptes Rendus. Physique},
     pages = {836--860},
     publisher = {Elsevier},
     volume = {17},
     number = {8},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.001},
     language = {en},
}
TY  - JOUR
AU  - José Lebreuilly
AU  - Michiel Wouters
AU  - Iacopo Carusotto
TI  - Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 836
EP  - 860
VL  - 17
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.001
LA  - en
ID  - CRPHYS_2016__17_8_836_0
ER  - 
%0 Journal Article
%A José Lebreuilly
%A Michiel Wouters
%A Iacopo Carusotto
%T Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping
%J Comptes Rendus. Physique
%D 2016
%P 836-860
%V 17
%N 8
%I Elsevier
%R 10.1016/j.crhy.2016.07.001
%G en
%F CRPHYS_2016__17_8_836_0
José Lebreuilly; Michiel Wouters; Iacopo Carusotto. Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 836-860. doi : 10.1016/j.crhy.2016.07.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.001/

[1] D. Pines; P. Nozières The Theory of Quantum Liquids, Addison-Wesley, Reading, MA, USA, 1998

[2] A.J. Leggett Rev. Mod. Phys., 76 (2004), p. 999

[3] P. Ring; P. Schuck The Nuclear Many-body Problem, Springer-Verlag, Berlin, 2004

[4] K. Yagi; T. Hatsuda; Y. Miake Quark–Gluon Plasma, Cambridge University Press, Cambridge, England, 2005

[5] The Physics of the Quark–Gluon Plasma (H. Satz; S. Sarkar; B. Sinha, eds.), Springer-Verlag, Berlin, 2010

[6] J.R. Schrieffer The Theory of Superconductivity, Benjamin, New York, 1964

[7] G.D. Mahan Many-Particle Physics, Kluwer Academic/Plenum, New York, 1990

[8] M. Tinkham Introduction to Superconductivity, Dover, New York, 2004

[9] D. Yoshioka The Quantum Hall Effect, Springer-Verlag, Berlin, 2002

[10] F. Dalfovo; S. Giorgini; L. Pitaevskii; S. Stringari Rev. Mod. Phys., 71 (1999), p. 463

[11] I. Bloch; J. Dalibard; W. Zwerger Rev. Mod. Phys., 80 (2008), p. 885

[12] S. Giorgini; L.P. Pitaevskii; S. Stringari Rev. Mod. Phys., 80 (2008), p. 1215

[13] I. Carusotto; C. Ciuti Rev. Mod. Phys., 85 (2013), p. 299

[14] J. Kasprzak; M. Richard; S. Kundermann; A. Baas; P. Jeambrun; J.M.J. Keeling; F.M. Marchetti; M.H. Szymańska; R. André; J.L. Staehli; V. Savona; P.B. Littlewood; B. Deveaud; L.S. Dang Nature, 443 (2006), p. 409

[15] I. Carusotto; C. Ciuti; A. Amo; J. Lefrère; S. Pigeon; C. Adrados; C. Ciuti; I. Carusotto; R. Houdré; E. Giacobino; A. Bramati Nat. Phys., 93 (2004), p. 805

[16] A. Imamoǧlu; H. Schmidt; G. Woods; M. Deutsch Phys. Rev. Lett., 79 (1997), p. 1467

[17] K. Birnbaum; A. Boca; R. Miller; A. Boozer; T. Northup; H. Kimble Nature (London), 436 (2005), p. 87

[18] A. Faraon; I. Fushman; D. Englund; N. Stoltz; P. Petroff; J. Vuckovic Nat. Phys., 4 (2008), p. 859

[19] A. Reinhard; T. Volz; M. Winger; A. Badolato; K.J. Hennessy; E.L. Hu; A. Imamoǧlu Nat. Photonics, 6 (2012), p. 93

[20] C. Lang; D. Bozyigit; C. Eichler; L. Steffen; J.M. Fink; A.A. Abdumalikov; M. Baur; S. Filipp; M.P. da Silva; A. Blais; A. Wallraff Phys. Rev. Lett., 106 (2011)

[21] A.A. Houck; H.E. Türeci; J. Koch Nat. Phys., 8 (2012), p. 292

[22] M.J. Hartmann; F.G.S. Brandao; M.B. Plenio; A.D. Greentree; C. Tahan; J.H. Cole; L.C.L. Hollenberg; D.G. Angelakis; M.F. Santos; S. Bose Phys. Rev. A, 2 (2006), p. 849

[23] D.E. Chang; V. Gritsev; G. Morigi; V. Vuletić; M.D. Lukin; E.A. Demler Nat. Phys., 4 (2008), p. 884

[24] D. Gerace; H.E. Türeci; A. Imamoǧlu; V. Giovannetti; R. Fazio Nat. Phys., 5 (2009), p. 281

[25] I. Carusotto; D. Gerace; H.E. Tureci; S. De Liberato; C. Ciuti; A. Imamoǧlu Phys. Rev. Lett., 103 (2009)

[26] R.O. Umucalılar; I. Carusotto Phys. Rev. Lett., 108 (2012)

[27] R.O. Umucalılar; M. Wouters; I. Carusotto Phys. Rev. A, 89 (2014)

[28] R.O. Umucalılar; I. Carusotto Phys. Lett. A, 377 (2013), p. 2074

[29] A.E. Siegman Lasers, University Science Books, 1986

[30] M. Wouters; I. Carusotto Phys. Rev. Lett., 105 (2010)

[31] A. Chiocchetta; I. Carusotto Europhys. Lett., 102 (2013), p. 67007

[32] A. Chiocchetta; I. Carusotto Phys. Rev. A, 90 (2014)

[33] D. Bajoni; P. Senellart; A. Lemaitre; J. Bloch Phys. Rev. B, 76 (2007)

[34] J. Klaers; J. Schmitt; F. Vewinger; M. Weitz Nature, 468 (2010), p. 545

[35] P. Kirton; J. Keeling Phys. Rev. Lett., 111 (2013)

[36] A. Chiocchetta; A. Gambassi; I. Carusotto | arXiv

[37] M. Hafezi; P. Adhikari; J.M. Taylor Phys. Rev. B, 92 (2015)

[38] E. Kapit; M. Hafezi; S.H. Simon Phys. Rev. X, 4 (2014)

[39] S. Diehl; A. Micheli; A. Kantian; B. Kraus; H.P. Büchler; P. Zoller; F. Verstraete; M.M. Wolf; J.I. Cirac Nat. Phys., 5 (2008), p. 633

[40] M. Hafezi; P. Adhikari; J.M. Taylor Phys. Rev. B, 90 (2014)

[41] D. Nagy; P. Domokos Phys. Rev. Lett., 115 (2015)

[42] A. Canaguier-Durand; C. Genet; A. Lambrecht; T.W. Ebbesen; S. Reynaud Eur. Phys. J. D, 69 (2015), p. 24

[43] J.A. Cwik; P. Kirton; S. De Liberato; J. Keeling Phys. Rev. A, 93 (2016)

[44] C. Aron; M. Kulkarni; H.E. Türeci Phys. Rev. X, 6 (2016)

[45] S. Hacohen-Gourgy; V.V. Ramasesh; C. De Grandi; I. Siddiqi; S.M. Girvin Phys. Rev. Lett., 115 (2015)

[46] M.E. Schwartz; L. Martin; E. Flurin; C. Aron; M. Kulkarni; H.E. Türeci; I. Siddiqi | arXiv

[47] J. Ruiz-Rivas; E. del Valle; C. Gies; P. Gartner; M.J. Hartmann Phys. Rev. A, 90 (2014)

[48] H.-P. Breuer; F. Petruccione The Theory of Open Quantum Systems, Clarendon Press, Oxford, UK, 2006

[49] M.H. Hartmann; F.G.S. Brandão; M.B. Plenio Laser Photonics Rev., 1 (2008), p. 1

[50] C. Ciuti; G. Bastard; I. Carusotto; C. Ciuti; I. Carusotto Phys. Rev. A, 72 (2005)

[51] P. Nataf; C. Ciuti Phys. Rev. Lett., 104 (2010)

[52] C.W. Gardiner; P. Zoller Quantum Noise, Springer, 2004

[53] K. Molmer; Y. Castin; J. Dalibard J. Opt. Soc. Am. B, 10 (1993), p. 524

[54] R.W. Boyd Nonlinear Optics, Academic Press, New York, 2008

[55] P.N. Butcher; D. Cotter The Elements of Nonlinear Optics, Cambridge University Press, Cambridge, England, 1991

[56] A. Majumdar; M. Bajcsy; J. Vučković Phys. Rev. A, 85 (2012)

[57] A. Rundquist; M. Bajcsy; A. Majumdar; T. Sarmiento; K. Fischer; K.G. Lagoudakis; S. Buckley; A.Y. Piggott; J. Vučković Phys. Rev. A, 90 (2014)

[58] C. Sánchez Muñoz; E. del Valle; A. González Tudela; K. Müller; S. Lichtmannecker; M. Kaniber; C. Tejedor; J.J. Finley; F.P. Laussy Nat. Photonics, 8 (2014), p. 550

[59] A. Biella; L. Mazza; I. Carusotto; D. Rossini; R. Fazio Phys. Rev. A, 91 (2015)

[60] S. Finazzi; A. Le Boité; F. Storme; A. Baksic; C. Ciuti Phys. Rev. Lett., 115 (2015)

Cited by Sources:

Comments - Policy