Microcavity polaritons are mixed light–matter quasiparticles with extraordinary nonlinear properties, which can be easily accessed in photoluminescence experiments. Thanks to the possibility of designing the potential landscape of polaritons, this system provides a versatile photonic platform to emulate 1D and 2D Hamiltonians. Polaritons allow transposing to the photonic world some of the properties of electrons in solid-state systems, and to engineer Hamiltonians for photons with novel transport properties. Here we review some experimental implementations of polariton Hamiltonians using lattice geometries.
Les polaritons de cavités sont des quasi-particules hybrides lumière–matière. Ils présentent des propriétés non linéaires extraordinaires, que l'on peut observer aisément dans des expériences de photoluminescence. En sculptant la forme du potentiel ressenti par les polaritons, on obtient une plateforme photonique particulièrement versatile pour émuler des hamiltoniens 1D ou 2D. Ainsi, les polaritons nous permettent-ils de transposer dans le monde photonique certaines des propriétés des électrons dans les solides et de donner à des photons de nouvelles propriétés de transport. Dans cet article, nous présentons quelques-unes des implémentations expérimentales des hamiltoniens pour les polaritons, qui sont basées sur différentes géométries de réseaux.
Alberto Amo 1; Jacqueline Bloch 1, 2
@article{CRPHYS_2016__17_8_934_0, author = {Alberto Amo and Jacqueline Bloch}, title = {Exciton-polaritons in lattices: {A} non-linear photonic simulator}, journal = {Comptes Rendus. Physique}, pages = {934--945}, publisher = {Elsevier}, volume = {17}, number = {8}, year = {2016}, doi = {10.1016/j.crhy.2016.08.007}, language = {en}, }
Alberto Amo; Jacqueline Bloch. Exciton-polaritons in lattices: A non-linear photonic simulator. Comptes Rendus. Physique, Volume 17 (2016) no. 8, pp. 934-945. doi : 10.1016/j.crhy.2016.08.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.007/
[1] Photonic boson sampling in a tunable circuit, Science, Volume 339 (2013), pp. 794-798
[2] Boson sampling on a photonic chip, Science, Volume 339 (2013) no. 80, pp. 798-801
[3] Experimental boson sampling, Nat. Photonics, Volume 7 (2013), pp. 540-544
[4] Observation of topologically protected bound states in photonic quantum walks, Nat. Commun., Volume 3 (2012), p. 882
[5] Transport and Anderson localization in disordered two-dimensional photonic lattices, Nature, Volume 446 (2007), pp. 52-55
[6] Robust optical delay lines with topological protection, Nat. Phys., Volume 7 (2011), pp. 907-912
[7] Imaging topological edge states in silicon photonics, Nat. Photonics, Volume 7 (2013), pp. 1001-1005
[8] Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett., Volume 100 (2008)
[9] Observation of unidirectional backscattering-immune topological electromagnetic states, Nature, Volume 461 (2009), pp. 772-775
[10] Anomalous and quantum hall effects in lossy photonic lattices, Phys. Rev. Lett., Volume 112 (2014)
[11] Photonic Floquet topological insulators, Nature, Volume 496 (2013), pp. 196-200
[12] Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett., Volume 109 (2012)
[13] Observation of topological phase transitions in photonic quasicrystals, Phys. Rev. Lett., Volume 110 (2013)
[14] Topological photonic quasicrystals: fractal topological spectrum and protected transport, Phys. Rev. X, Volume 6 (2016)
[15] Measurement of topological invariants in a 2D photonic system, Nat. Photonics, Volume 10 (2016), pp. 180-183
[16] Nonequilibrium delocalization–localization transition of photons in circuit quantum electrodynamics, Phys. Rev. B, Volume 82 (2010)
[17] Observation of a dissipation-induced classical to quantum transition, Phys. Rev. X, Volume 4 (2014)
[18] Topological transition of Dirac points in a microwave experiment, Phys. Rev. Lett., Volume 110 (2013)
[19] Network of time-multiplexed optical parametric oscillators as a coherent Ising machine, Nat. Photonics, Volume 8 (2014), pp. 937-942
[20] Observing geometric frustration with thousands of coupled lasers, Phys. Rev. Lett., Volume 110 (2013)
[21] Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, Volume 424 (2003), pp. 817-823
[22] Optical Bloch oscillations in temperature tuned waveguide arrays, Phys. Rev. Lett., Volume 83 (1999) no. 4752–4755
[23] Bloch–Zener oscillations in binary superlattices, Phys. Rev. Lett., Volume 102 (2009)
[24] Observation of dynamic localization in periodically curved waveguide arrays, Phys. Rev. Lett., Volume 96 (2006)
[25] Modulation-assisted tunneling in laser-fabricated photonic Wannier–Stark ladders, New J. Phys., Volume 17 (2015)
[26] Disorder-enhanced transport in photonic quasicrystals, Science, Volume 332 (2011), pp. 1541-1544
[27] Observation of unconventional edge states in ‘photonic graphene’, Nat. Mater., Volume 13 (2014), pp. 57-62
[28] Topological creation and destruction of edge states in photonic graphene, Phys. Rev. Lett., Volume 111 (2013)
[29] Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures, Nat. Photonics, Volume 7 (2013), pp. 153-158
[30] Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, Volume 422 (2003), pp. 147-150
[31] Breakdown of Dirac dynamics in honeycomb lattices due to nonlinear interactions, Phys. Rev. A, Volume 82 (2010)
[32] On-chip quantum simulation with superconducting circuits, Nat. Phys., Volume 8 (2012), pp. 292-299
[33] Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366
[34] High-temperature ultrafast polariton parametric amplification in semiconductor microcavities, Nature, Volume 414 (2001), pp. 731-735
[35] Angle-resonant stimulated polariton amplifier, Phys. Rev. Lett., Volume 84 (2000), p. 1547
[36] Squeezing in semiconductor microcavities in the strong-coupling regime, Phys. Rev. A, Volume 69 (2004)
[37] Polariton-generated intensity squeezing in semiconductor micropillars, Nat. Commun., Volume 5 (2014), p. 3260
[38] Optical bistability in semiconductor microcavities, Phys. Rev. A, Volume 69 (2004)
[39] Multistability of a coherent spin ensemble in a semiconductor microcavity, Nat. Mater., Volume 10 (2011), p. 80
[40] Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities, Nat. Commun., Volume 7 (2016), p. 11887
[41] Superfluidity of polaritons in semiconductor microcavities, Nat. Phys., Volume 5 (2009), pp. 805-810
[42] Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid, Nat. Phys., Volume 7 (2011), pp. 635-641
[43] All-optical control of the quantum flow of a polariton condensate, Nat. Photonics, Volume 5 (2011), pp. 610-614
[44] Polariton superfluids reveal quantum hydrodynamic solitons, Science, Volume 332 (2011), pp. 1167-1170
[45] Soliton instabilities and vortex street formation in a polariton quantum fluid, Phys. Rev. Lett., Volume 107 (2011)
[46] Observation of bright polariton solitons in a semiconductor microcavity, Nat. Photonics, Volume 6 (2012), pp. 50-55
[47] Bose–Einstein condensation of exciton polaritons, Nature, Volume 443 (2006), pp. 409-414
[48] Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity, Appl. Phys. Lett., Volume 93 (2008), p. 51102
[49] Room-temperature polariton lasing in an organic single-crystal microcavity, Nat. Photonics, Volume 4 (2010), pp. 371-375
[50] Excitations in a nonequilibrium Bose–Einstein condensate of exciton polaritons, Phys. Rev. Lett., Volume 99 (2007)
[51] Spontaneous formation and optical manipulation of extended polariton condensates, Nat. Phys., Volume 6 (2010), pp. 860-864
[52] Nonlinear optical spin hall effect and long-range spin transport in polariton lasers, Phys. Rev. Lett., Volume 109 (2012)
[53] Dissipationless flow and sharp threshold of a polariton condensate with long lifetime, Phys. Rev. X, Volume 3 (2013)
[54] Polariton condensate transistor switch, Phys. Rev. B, Volume 85 (2012)
[55] Sculpting oscillators with light within a nonlinear quantum fluid, Nat. Phys., Volume 8 (2012), pp. 190-194
[56] Polariton condensation in an optically induced two-dimensional potential, Phys. Rev. B, Volume 88 (2013)
[57] Creation of orbital angular momentum states with chiral polaritonic lenses, Phys. Rev. Lett., Volume 113 (2014)
[58] Bose–Einstein condensation of microcavity polaritons in a trap, Science, Volume 316 (2007) no. 80, pp. 1007-1010
[59] Zero-dimensional polariton laser in a subwavelength grating-based vertical microcavity, Light Sci. Appl., Volume 3 (2014)
[60] Strong exciton–photon coupling in open semiconductor microcavities, Appl. Phys. Lett., Volume 104 (2014), p. 192107
[61] Polariton boxes in a tunable fiber cavity, Phys. Rev. Appl., Volume 3 (2015)
[62] Polariton condensation in dynamic acoustic lattices, Phys. Rev. Lett., Volume 105 (2010)
[63] Coherent zero-state and π-state in an exciton-polariton condensate array, Nature, Volume 450 (2007), p. 529
[64] Engineering the spatial confinement of exciton polaritons in semiconductors, Phys. Rev. B, Volume 74 (2006)
[65] A polariton condensate in a photonic crystal potential landscape, New J. Phys., Volume 17 (2015)
[66] Optical modes in photonic molecules, Phys. Rev. Lett., Volume 81 (1998), pp. 2582-2585
[67] Polariton condensation in solitonic gap states in a one-dimensional periodic potential, Nat. Commun., Volume 4 (2013), p. 1749
[68] Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential, Phys. Rev. Lett., Volume 112 (2014)
[69] All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer, Nat. Commun., Volume 5 (2014), p. 3278
[70] Realization of a double-barrier resonant tunneling diode for cavity polaritons, Phys. Rev. Lett., Volume 110 (2013)
[71] Realization of an all optical exciton-polariton router, Appl. Phys. Lett., Volume 107 (2015), p. 201115
[72] Coherent optical control of the wave function of zero-dimensional exciton polaritons, Phys. Rev. B, Volume 80 (2009)
[73] Optical demonstration of a crystal band structure formation, Phys. Rev. Lett., Volume 83 (1999), pp. 5374-5377
[74] Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities, Phys. Rev. Lett., Volume 100 (2008)
[75] Polariton condensation in photonic molecules, Phys. Rev. Lett., Volume 108 (2012)
[76] Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons, Phys. Rev. Lett., Volume 112 (2014)
[77] The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature, Volume 449 (2007), pp. 579-583
[78] Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, Volume 59 (1999), pp. 620-633
[79] Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons, Nat. Phys., Volume 9 (2013), pp. 275-279
[80] Coherent oscillations in an exciton-polariton Josephson junction, Phys. Rev. Lett., Volume 105 (2010)
[81] Coherent dynamics and parametric instabilities of microcavity polaritons in double-well systems, Phys. Rev. B, Volume 77 (2008)
[82] Matter-wave gap vortices in optical lattices, Phys. Rev. Lett., Volume 93 (2004)
[83] Stable radially symmetric and azimuthally modulated vortex solitons supported by localized gain, Opt. Lett., Volume 36 (2011), pp. 85-87
[84] Spin–orbit coupling for photons and polaritons in microstructures, Phys. Rev. X, Volume 5 (2015)
[85] Spin textures of exciton-polaritons in a tunable microcavity with large TE-TM splitting, Phys. Rev. Lett., Volume 115 (2015)
[86] Bosonic condensation and disorder-induced localization in a flat band, Phys. Rev. Lett., Volume 116 (2016)
[87] Flat bands and Wigner crystallization in the honeycomb optical lattice, Phys. Rev. Lett., Volume 99 (2007)
[88] Bose condensation in flat bands, Phys. Rev. B, Volume 82 (2010)
[89] Incompressible polaritons in a flat band, Phys. Rev. Lett., Volume 115 (2015)
[90] Experimental evidence for nonequilibrium Bose condensation of exciton polaritons, Phys. Rev. B, Volume 72 (2005)
[91] Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates, Phys. Rev. B, Volume 77 (2008)
[92] Pattern formation and strong nonlinear interactions in exciton-polariton condensates, 2013 | arXiv
[93] Observation of localized states in Lieb photonic lattices, Phys. Rev. Lett., Volume 114 (2015)
[94] Probing photon correlations in the dark sites of geometrically frustrated cavity lattices, Phys. Rev. A, Volume 93 (2015)
[95] Dynamical d-wave condensation of exciton-polaritons in a two-dimensional square-lattice potential, Nat. Phys., Volume 7 (2011), pp. 681-686
[96] Exciton-polariton condensates near the Dirac point in a triangular lattice, New J. Phys., Volume 15 (2013)
[97] Stochastic formation of polariton condensates in two degenerate orbital states, Phys. Rev. B, Volume 87 (2013)
[98] Exciton-polariton condensates with flat bands in a two-dimensional kagome lattice, New J. Phys., Volume 14 (2012)
[99] Dynamic exciton-polariton macroscopic coherent phases in a tunable dot lattice, Phys. Rev. B, Volume 86 (2012)
[100] Exciton-polariton gap solitons in two-dimensional lattices, Phys. Rev. Lett., Volume 111 (2013)
[101] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), pp. 109-162
[102] Unveiling pseudospin and angular momentum in photonic graphene, Nat. Commun., Volume 6 (2015), p. 6272
[103] Klein tunneling in graphene: optics with massless electrons, EPJ B, Volume 83 (2011), pp. 301-317
[104] Strong suppression of weak localization in graphene, Phys. Rev. Lett., Volume 97 (2006)
[105] Zak phase and the existence of edge states in graphene, Phys. Rev. B, Volume 84 (2011)
[106] Edge states in polariton honeycomb lattices, 2D Mater., Volume 2 (2015)
[107] Merging of Dirac points in a two-dimensional crystal, Phys. Rev. B, Volume 80 (2009)
[108] Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature, Volume 483 (2012), pp. 302-305
[109] How to directly observe Landau levels in driven-dissipative strained honeycomb lattices, 2D Mater., Volume 2 (2015)
[110] Polariton quantum blockade in a photonic dot, Phys. Rev. B, Volume 73 (2006)
[111] Fermionized photons in an array of driven dissipative nonlinear cavities, Phys. Rev. Lett., Volume 103 (2009)
[112] Polariton crystallization in driven arrays of lossy nonlinear resonators, Phys. Rev. Lett., Volume 104 (2010)
[113] Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays, Phys. Rev. A, Volume 76 (2007)
[114] Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys., Volume 2 (2006), pp. 849-855
[115] Steady-state phases and tunneling-induced instabilities in the driven dissipative Bose–Hubbard model, Phys. Rev. Lett., Volume 110 (2013)
[116] Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas, Science, Volume 346 (2014), pp. 332-335
[117] Optical spin Hall effect, Phys. Rev. Lett., Volume 95 (2005)
[118] Spin–orbit coupling and the optical spin hall effect in photonic graphene, Phys. Rev. Lett., Volume 114 (2015)
[119] Chiral Bogoliubov excitations in nonlinear bosonic systems, Phys. Rev. B, Volume 93 (2016)
[120] Fractional quantum hall states of photons in an array of dissipative coupled cavities, Phys. Rev. Lett., Volume 108 (2012)
[121] Polariton Z topological insulator, Phys. Rev. Lett., Volume 114 (2015)
[122] Topological polaritons, Phys. Rev. X, Volume 5 (2015)
Cited by Sources:
Comments - Policy