In this paper, the harmonic signals generated by UHF RFID chips, usually considered as spurious effects and unused, are exploited. Indeed, the harmonic signals are harvested to feed a supplementary circuitry associated with a passive RFID tag. Two approaches are presented and compared. In the first one, the third-harmonic signal is combined with an external 2.45-GHz Wi-Fi signal. The integration is done in such a way that the composite signal boosts the conversion efficiency of the energy harvester. In the second approach, the third-harmonic signal is used as the only source of a harvester that energizes a commercial temperature sensor associated with the tag. The design procedures of the two “augmented-tag” approaches are presented. The performance of each system is simulated with ADS software, and using Harmonic Balance tool (HB), the results obtained in simulation and measurements are compared also.
Dans cet article, les signaux harmoniques générés par les puces RFID UHF, généralement considérés comme des effets parasites et non utilisés, sont exploités. En effet, les signaux harmoniques sont collectés pour alimenter un circuit supplémentaire associé à un tag RFID passif. Deux approches sont présentées et comparées. Dans la première approche, le signal harmonique est combiné avec un signal Wi-Fi externe à 2,45 GHz. L'intégration se fait de telle manière que le signal composite augmente le rendement de conversion du circuit de récupération d'énergie. Dans la seconde approche, le signal harmonique est utilisé comme seule source d'énergie alimentant un capteur de température commercial associé au tag. Les procédures de conception des deux « tags augmentés » sont présentées. Les performances de chaque système sont simulées avec le logiciel ADS, en utilisant l'outil Harmonique Balance (HB) ; les résultats obtenus au moyen de simulations et de mesures sont aussi comparés.
Mot clés : Récupération d'énergie, RFID UHF, Non-linearités, Harmoniques, Tags-capteurs
Dahmane Allane 1, 2; Yvan Duroc 3; Gianfranco Andia Vera 2; Rachida Touhami 1; Smail Tedjini 2
@article{CRPHYS_2017__18_2_86_0, author = {Dahmane Allane and Yvan Duroc and Gianfranco Andia Vera and Rachida Touhami and Smail Tedjini}, title = {On energy harvesting for augmented tags}, journal = {Comptes Rendus. Physique}, pages = {86--97}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2017}, doi = {10.1016/j.crhy.2016.11.007}, language = {en}, }
TY - JOUR AU - Dahmane Allane AU - Yvan Duroc AU - Gianfranco Andia Vera AU - Rachida Touhami AU - Smail Tedjini TI - On energy harvesting for augmented tags JO - Comptes Rendus. Physique PY - 2017 SP - 86 EP - 97 VL - 18 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2016.11.007 LA - en ID - CRPHYS_2017__18_2_86_0 ER -
Dahmane Allane; Yvan Duroc; Gianfranco Andia Vera; Rachida Touhami; Smail Tedjini. On energy harvesting for augmented tags. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 86-97. doi : 10.1016/j.crhy.2016.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.007/
[1] The Internet of Things: from RFID to the Next-Generation Pervasive Networked Systems, Wireless Networks and Mobile Communications, CRC Press, Boca Raton, FL, USA, 2008
[2] Pervasive electromagnetics: sensing paradigms by passive RFID technology, IEEE Trans. Wirel. Commun., Volume 17 (2010) no. 6, pp. 10-17
[3] H. Solar, A. Beriain, I. Zalbide, E. D'Entremont, R. Berenguer, A robust to wireless rotor temperature monitoring system based on a fully passive UHF RFID sensor tag, in: Proc. IEEE International Microwave Symposium, Tampa Bay, FL, USA, 1–6 June 2014.
[4] S. Rima, A. Georgiadis, A. Collado, R. Goncalves, N. Carvalho, Passive UHF RFID enabled temperature sensor on cork substrate, in: Proc. IEEE International Conference on RFID Technology and Applications, Tampere, Finland, 8–9 September 2014.
[5] A. Faul, J. Naber, Design and test of a 915 MHz RFID-based pressure sensor for glaucoma, in: Proc. IEEE Latin America Symposium on Circuits and Systems, Santiago, Chile, 25–28 February 2014.
[6] Printed humidity sensor with functionality for passive RFID tags, IEEE Sens. J., Volume 13 (2013) no. 5, pp. 1824-1834
[7] A group-delay-based chipless RFID humidity tag sensor using silicon nanowires, IEEE Antennas Wirel. Propag. Lett., Volume 12 (2013), pp. 729-732
[8] S. Caizzone, E. DiGiampaolo, Passive RFID deformation sensor for concrete structures, in: Proc. IEEE International Conference on RFID Technology and Applications, Tampere, Finland, 8–9 September 2014.
[9] Wireless crack monitoring by stationary phase measurements from coupled RFID tags, IEEE Trans. Antennas Propag., Volume 62 (2014) no. 12, pp. 6412-6419
[10] J. Grosinger, J. Griffin, Backscatter RFID sensor with a bend transducer, US Patent US 2014/0049421A1, 2014.
[11] M. Cremer, U. Dettmar, R. Kronberger, C. Hudasch, V. Wienstroer, Passive UHF RFID transponders for switching and controlling, in: Proc. IEEE International Conference on RFID Technologies and Applications, Johor Bahru, Malaysia, 4–5 September 2013.
[12] Development of an UHF RFID chemical sensor array for battery-less ambient sensing, IEEE Sens. J., Volume 14 (2014) no. 10, pp. 3616-3623
[13] Approach for quality detection of food by RFID-based wireless sensor tag, Electron. Lett., Volume 49 (2013) no. 25, pp. 1588-1589
[14] Smart sensing materials for low-cost chipless RFID sensor, IEEE Sens. J., Volume 14 (2014) no. 7, pp. 2198-2207
[15] Low-cost, ubiquitous RFID-tag-antenna-based sensing, Proc. IEEE, Volume 98 (2010) no. 9, pp. 1593-1600
[16] Constrained-design of passive RFID sensor antennas, IEEE Trans. Antennas Propag., Volume 61 (2013) no. 6, pp. 2972-2980
[17] Enhanced UHF RFID sensor-tag, IEEE Microw. Wirel. Compon. Lett., Volume 23 (2013) no. 1, pp. 49-51
[18] J. Grosinger, W. Bosch, A passive RFID sensor tag antenna transducer, in: Proc. European Conference on Antennas and Propagation, The Hagues, The Netherlands, 6–11 April 2014, pp. 3638–3639.
[19] A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks, IEEE Sens. J., Volume 14 (2014) no. 4, pp. 1048-1055
[20] Y. Su, A. Wickramasinghe, D.C. Ranasinghe, Investigating sensor data retrieval schemes for multi-sensor passive RFID tags, in: Proc. IEEE International Conference on RFID, San Diego, CA, USA, 15–17 April 2015, pp. 158–165.
[21] Multiport UHF RFID tag antenna for enhanced energy harvesting of self-powered wireless sensors, IEEE Trans. Ind. Inform., Volume 12 (2016) no. 2, pp. 801-808
[22] Towards autonomous wireless sensors: RFID and energy harvesting solutions (S.C. Mukhopadhyay, ed.), Internet of Things, Challenges and Opportunities, Springer-Verlag, 2014
[23] Implementation of sensor RFID: carrying sensor information in the modulation frequency, IEEE Trans. Microw. Theory Tech., Volume 63 (2015) no. 8, pp. 2672-2681
[24] V. Talla, J.R. Smith, Hybrid analog-digital backscatter: a new approach for battery-free sensing, in: Proc. IEEE International Conference on RFID, Orlando, FL, USA, 30 April–2 May 2013.
[25] Design of an RFID-based battery-free programmable sensing platform, IEEE Trans. Instrum. Meas., Volume 57 (2008) no. 11, pp. 2608-2615
[26] RFID test platform: non-linear characterization, IEEE Trans. Instrum. Meas., Volume 63 (2014) no. 9, pp. 2299-3005
[27] Analysis of harmonics in UHF RFID signal, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 6, pp. 2481-2490
[28] DINADE – a new interrogation, navigation and detection system, Microw. J., Volume 10 (1967) no. 4, pp. 2-6
[29] Optimization of wireless sensors based on intermodulation communication, IEEE Trans. Microw. Theory Tech., Volume 61 (2013) no. 9, pp. 3446-3452
[30] On design and evaluation of harmonic transponders, IEEE Trans. Antennas Propag., Volume 63 (2015) no. 1, pp. 15-23
[31] Characterization of transponder antennas using intermodulation response, IEEE Trans. Antennas Propag., Volume 63 (2015) no. 6, pp. 2412-2420
[32] H. Kwun, G.L. Burkhardt, J.L. Fisher, Detection of reinforcing steel corrosion in concrete structures using non-linear harmonic and intermodulation wave generation, U.S. Patent 5 180 969, 19 January 1993.
[33] Contactless radiation pattern measurement method for UHF RFID transponders, Electron. Lett., Volume 41 (2005) no. 13, pp. 723-724
[34] C. Mariotti, G. Orecchini, F. Alimenti, P. Cosseddu, P. Mezzanotte, A. Bonfiglio, L. Roselli, M. Virili, G. Casula, 7.5–15 MHz organic frequency doubler made with pentacene-based diode and paper substrate, in: Proc. IEEE International Microwave Symposium, Tampa Bay, FL, USA, 1–6 June 2014.
[35] V. Palazzi, P. Mezzanotte, L. Roselli, Design of a novel antenna system intended for harmonic RFID tags in paper substrate, in: Proc. IEEE Conference on Wireless Power Transfer, Boulder, CO, USA, 13–15 May 2015.
[36] RFID for location proposes based on the intermodulation distortion, Sens. Transducers J., Volume 106 (2009) no. 7, pp. 85-96
[37] P.V. Nikitin, K.V.S. Rao, Harmonic scattering from passive UHF RFID tags, in: Proc. IEEE Antennas and Propagation International Symposium, Charleston, SC, USA, 1–5 June 2009.
[38] Third harmonic exploitation in passive UHF RFID, IEEE Trans. Microw. Theory Tech., Volume 63 (2015) no. 9, pp. 2991-3004
[39] S. Tedjini, Y. Duroc, G. Andia Vera, C. Loussert, M. Recouly, RFID communication system, US Patent 2015/0288424 A1, 8 October 2015.
[40] Cooperative integration of harvesting RF sections for passive RFID communication, IEEE Trans. Microw. Theory Tech., Volume 63 (2015) no. 12, pp. 4556-4566
[41] Recycling ambient microwave energy with broad-band rectenna arrays, IEEE Trans. Microw. Theory Tech., Volume 52 (2004) no. 3, pp. 1014-1024
[42] M.S. Trotter, J.D. Griffin, G.D. Durgin, Power-optimized waveforms for improving the range and reliability of RFID systems, in: Proc. IEEE International Conference on RFID, 27–28 April 2009, pp. 80–87.
[43] Harmonic power harvesting system for passive RFID sensor tags, IEEE Trans. Microw. Theory Tech., Volume 64 (2016) no. 7, pp. 2347-2356
[44] http://www.emmicroelectronic.com/sites/default/files/public/products/datasheets/4325-ds.pdf ([Online]. Available:)
Cited by Sources:
Comments - Policy