We review measurements of the Boltzmann constant, k, the value of which is soon to be fixed at exactly J⋅K−1 for the future revised Système international of units. In addition to a description of the theoretical background and of diverse experimental techniques (acoustic thermometry, Johnson noise thermometry, dielectric constant gas thermometry, and Doppler broadened molecular spectroscopy), the article highlights the decisive role of ab initio calculations of the thermophysical properties of gases, especially helium-4. Perspectives for improvements in thermometry are outlined in the wake of the new definition.
Nous passons en revue des mesures récentes de la constante de Boltzmann, k, dont la valeur sera bientôt figée à J⋅K−1 dans le cadre du nouveau Système international d'unités. Au-delà d'une description des éléments théoriques et de diverses techniques expérimentales (thermométrie acoustique, thermométrie à bruit de Johnson, thermométrie à constante diélectrique d'un gaz et élargissement Doppler en spectroscopie moléculaire), cet article met l'accent sur le rôle clé des calculs ab initio des propriétés thermophysiques des gaz, notamment celles de l'hélium 4. Sont également mentionnées des perspectives pour des améliorations en thermométrie dans le sillage de la nouvelle définition.
Mots-clés : Constante de Boltzmann, Thermométrie primaire, Système international d'unités
Laurent Pitre 1; Mark D. Plimmer 1; Fernando Sparasci 1; Marc E. Himbert 1
@article{CRPHYS_2019__20_1-2_129_0, author = {Laurent Pitre and Mark D. Plimmer and Fernando Sparasci and Marc E. Himbert}, title = {Determinations of the {Boltzmann} constant}, journal = {Comptes Rendus. Physique}, pages = {129--139}, publisher = {Elsevier}, volume = {20}, number = {1-2}, year = {2019}, doi = {10.1016/j.crhy.2018.11.007}, language = {en}, }
TY - JOUR AU - Laurent Pitre AU - Mark D. Plimmer AU - Fernando Sparasci AU - Marc E. Himbert TI - Determinations of the Boltzmann constant JO - Comptes Rendus. Physique PY - 2019 SP - 129 EP - 139 VL - 20 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2018.11.007 LA - en ID - CRPHYS_2019__20_1-2_129_0 ER -
Laurent Pitre; Mark D. Plimmer; Fernando Sparasci; Marc E. Himbert. Determinations of the Boltzmann constant. Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 129-139. doi : 10.1016/j.crhy.2018.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2018.11.007/
[1] Measurement of the universal gas constant R using a spherical acoustic resonator, J. Res. Natl. Bur. Stand., Volume 93 (1988) no. 2, pp. 85-144
[2] An improved acoustic method for the determination of the Boltzmann constant at LNE-INM/CNAM, C. R. Physique, Volume 10 (2009) no. 9, pp. 835-848 | DOI
[3] Acoustic resonator experiments at the triple point of water: first results for the Boltzmann constant and remaining challenges, Int. J. Thermophys., Volume 31 (2010), pp. 1310-1346 | DOI
[4] Measurement of the Boltzmann constant kB using a quasi-spherical acoustic resonator, Int. J. Thermophys., Volume 32 (2011), pp. 1825-1886 | DOI
[5] Determination of the Boltzmann constant k from the speed of sound in helium gas at the triple point of water, Metrologia, Volume 52 (2015), p. S263-S273 | DOI
[6] A determination of the molar gas constant R by acoustic thermometry in helium, Metrologia, Volume 52 (2015), p. S274-S304 | DOI
[7] Re-estimation of argon isotope ratios leading to a revised estimate of the Boltzmann constant, Metrologia, Volume 54 (2017), pp. 683-692 | DOI
[8] Final determination of the Boltzmann constant by dielectric-constant gas thermometry, Metrologia, Volume 54 (2017), pp. 280-289 | DOI
[9] Determination of the Boltzmann constant with cylindrical acoustic gas thermometry: new and previous results combined, Metrologia, Volume 54 (2018), pp. 748-762 | DOI
[10] New measurement of the Boltzmann constant k by acoustic thermometry of helium-4 gas, Metrologia, Volume 54 (2017), pp. 856-873 | DOI
[11] An improved electronic determination of the Boltzmann constant by Johnson noise thermometry, Metrologia, Volume 54 (2017), pp. 549-558 | DOI
[12] The CODATA 2017 values of h, e, k, and NA for the revision of the SI, Metrologia, Volume 55 (2018), p. L13-L16 | DOI
[13] et al. The Boltzmann project, Metrologia, Volume 55 (2018), p. R1-R20 | DOI
[14] CODATA recommended values of the fundamental physical constants: 2014, Rev. Mod. Phys., Volume 88 (2016) (73 pages) | DOI
[15] Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., Volume 17 (1905), pp. 549-560
[16] Investigations on the Theory of Brownian Movement, Dover, 1956 Translation (1926) of the 1905 article by Cowper A.D. with annotations by Fürth R.
[17]
, Wiley (2004), p. 304[18] et al. CCT-WG5 on radiation thermometry https://www.bipm.org/cc/CCT/Allowed/22/CCT03-03.pdf
[19] Advances in thermometry, Nat. Phys., Volume 12 (2016), pp. 7-11 | DOI
[20] Gas-filled spherical resonators: theory and experiment, J. Acoust. Soc. Am., Volume 79 (1986) no. 2, pp. 253-272 | DOI
[21] Acoustic gas thermometry, Metrologia, Volume 51 (2014), p. R1-R19 | DOI
[22] Correlations among acoustic measurements of the Boltzmann constant, Metrologia, Volume 52 (2015), p. S376-S384 | DOI
[23] Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium, J. Chem. Phys., Volume 136 (2012) | DOI
[24] Acoustic field in a quasi-spherical resonator: unified perturbation model, J. Acoust. Soc. Am., Volume 125 (2009), pp. 1416-1425 | DOI
[25] Dielectric constant gas thermometry, Metrologia, Volume 52 (2015), p. S217-S226 | DOI
[26] The Theory of Sound, vol. II, MacMillan, 1878
[27] Correction of NPL-2013 estimate of the Boltzmann constant for argon isotopic composition and thermal conductivity, Metrologia, Volume 52 (2015), p. S353-S363 | DOI
[28] Second-order electromagnetic eigenfrequencies of a tri-axial ellipsoid, Metrologia, Volume 46 (2009), pp. 554-559 | DOI
[29] Spherical acoustic resonator: effects of shell motion, J. Acoust. Soc. Am., Volume 78 (1985) no. 2, pp. 782-788 | DOI
[30] Measuring shell resonances of spherical acoustic resonators, Int. J. Thermophys., Volume 32 (2011), pp. 427-440 | DOI
[31] Frequency-dependent polarizability of helium including relativistic effects with nuclear recoil terms, Phys. Rev. Lett., Volume 114 (2015) | DOI
[32] Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry, Metrologia, Volume 52 (2015), p. S305-S313 | DOI
[33] Primary pressure standard based on piston-cylinder assemblies. Calculation of effective cross-sectional area based on rarefied gas dynamics, Metrologia, Volume 53 (2016), pp. 1177-1184 | DOI
[34] Thermal agitation of electricity in conductors, Phys. Rev., Volume 32 (1928), pp. 97-109
[35] Thermal agitation of electric charge in conductors, Phys. Rev., Volume 32 (1928), pp. 110-113
[36] Coaxial Electrical Circuits for Interference-Free Measurements, The Institution of Engineering and Technology, London, 2011
[37] J. Qu, 2018, private communication.
[38] Direct determination of the Boltzmann constant by an optical method, Phys. Rev. Lett., Volume 98 (2007) | DOI
[39] Measurement of the fine-structure constant as a test of the Standard Model, Science, Volume 360 (2018), pp. 190-195 | DOI
[40] New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett., Volume 106 (2011) | DOI
[41] Penning trap measurements of the masses of 133Cs, 87,85Rb, and 23Na with uncertainties <0.2 ppb, Phys. Rev. Lett., Volume 83 (1999), pp. 4510-4513 | DOI
[42] The effect of collisions upon the Doppler width of spectral lines, Phys. Rev., Volume 89 (1953) no. 2, pp. 472-473
[43] On the theory of linear absorption line shapes in gases, C. R. Physique, Volume 10 (2009), pp. 866-882 | DOI
[44] Absorption-line-shape recovery beyond the detection-bandwidth limit: application to the precision spectroscopic measurement of the Boltzmann constant, Phys. Rev. A, Volume 90 (2014) | DOI
[45] Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant, Phys. Rev. Lett., Volume 100 (2008) | DOI
[46] Measurement of the Boltzmann constant by the Doppler broadening technique at a accuracy level, C. R. Physique, Volume 10 (2009), pp. 883-893 | DOI
[47] Influence of the line-shape model on the spectroscopic determination of the Boltzmann constant, Phys. Rev. A, Volume 82 (2010) | DOI
[48] Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy, New J. Phys., Volume 13 (2011) (22 pages) | DOI
[49] A revised uncertainty budget for measuring the Boltzmann constant using the Doppler broadening technique on ammonia, Metrologia, Volume 50 (2013), pp. 623-630 | DOI
[50] Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia, Metrologia, Volume 52 (2015), p. S314-S323 | DOI
[51] The Boltzmann constant from the H218O vibration–rotation spectrum: complementary tests and revised uncertainty budget, Metrologia, Volume 52 (2015), p. S233-S241 | DOI
[52] Hyperfine structure effects in Doppler-broadening thermometry on water vapor at 1.4 μm, Metrologia, Volume 53 (2016), pp. 800-804 | DOI
[53] Relativistic formulation of the Voigt profile, Phys. Rev. A, Volume 91 (2015) | DOI
[54] Precise determination of the Doppler width of a rovibrational absorption line using a comb-locked diode laser, C. R. Physique, Volume 10 (2009), pp. 907-915 | DOI
[55] Doppler broadening thermometry of acetylene and accurate measurement of the Boltzmann constant, J. Chem. Phys., Volume 141 (2014) | DOI
[56] Application of cavity ring-down spectroscopy to the Boltzmann constant determination, Opt. Express, Volume 19 (2014) no. 21, pp. 19993-20002 | DOI
[57] Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm, Opt. Lett., Volume 28 (2003) no. 23, pp. 2324-2326 | DOI
[58] Metrological features of the rubidium two-photon standards of the BNM-LPTF and Kastler Brossel Laboratories, Eur. Phys. J. Appl. Phys., Volume 4 (1998), pp. 219-225 | DOI
[59] Metrology of the hydrogen and deuterium atoms: determination of the Rydberg constant and Lamb shifts, Eur. Phys. J. D, Volume 12 (2000), pp. 61-93 | DOI
[60] Quantitative atomic spectroscopy for primary thermometry, Phys. Rev. A, Volume 83 (2011) | DOI
[61] The earliest temperature observations in the world: the Medici Network (1654–1670), Clim. Change, Volume 111 (2012), pp. 335-363 | DOI
[62] The International Temperature Scale of 1990 (ITS-90), Metrologia, Volume 27 (1990), pp. 3-10 | DOI
[63] et al. Summary of comparison of realizations of the ITS-90 over the range 83.8058 K to 933.473 K: CCT key comparison CCT-K3, Metrologia, Volume 39 (2002), pp. 179-205 | DOI
[64] https://www.bipm.org/utils/common/pdf/CC/CCT/CCT28.pdf (Chapter 8.2). The results have not yet to been published in a review journal
[65] On the thermodynamic accuracy of the ITS-90: platinum resistance thermometry below 273 K, Metrologia, Volume 32 (1995), pp. 71-77 | DOI
[66] https://www.bipm.org/utils/common/pdf/ITS-90/Guide_ITS-90_5_SPRT_2018.pdf (Guide to the realization of the ITS-90, Chapter 5, section 6)
[67] Feasibility of primary thermometry using refractive index measurements at a single pressure, Measurement, Volume 103 (2017), pp. 258-262 | DOI
Cited by Sources:
Comments - Policy