Some 50 years ago, physicists, and after them the entire world, started to found their time reference on atomic properties instead of motions of the Earth that have been in use since the origin. Far from being an arrival point, this decision marked the beginning of an adventure characterized by an improvement by 6 orders of magnitude in the uncertainty of realization of atomic frequency and time references. Ever-progressing atomic frequency standards and time references derived from them are key resources for science and for society. We will describe how the unit of time is realized with a fractional accuracy approaching and how it is delivered to users via the elaboration of the international atomic time. We will describe the tremendous progress of optical frequency metrology over the last 20 years that led to a novel generation of optical frequency standards with fractional uncertainties of . We will describe work toward a possible redefinition of the SI second based on such standards. We will describe existing and emerging applications of atomic frequency standards in science.
Il y a une cinquantaine d'années, les physiciens, et après eux le monde entier, ont commencé à fonder leur référence temporelle sur les propriétés atomiques au lieu des mouvements de la Terre, qui étaient utilisés depuis l'origine. Loin d'être un point d'arrivée, cette décision a marqué le début d'une aventure caractérisée par une amélioration par six ordres de grandeur de l'incertitude de la réalisation des références atomiques de fréquence et de temps. Les étalons de fréquence atomique en constante progression et les références de temps qui en découlent sont des ressources essentielles pour la science et pour la société. Nous décrirons comment l'unité de temps est réalisée avec une précision relative approchant et comment elle est mise à la disposition des utilisateurs via l'élaboration du temps atomique international. Nous montrerons les progrès considérables de la métrologie des fréquences optiques au cours des vingt dernières années, qui ont conduit à une nouvelle génération d'étalons de fréquence optique avec des incertitudes relatives de . Nous décrirons les travaux en vue d'une éventuelle redéfinition de la seconde du SI basée sur ces étalons. Nous décrirons les applications scientifiques existantes et émergentes des étalons atomiques de fréquence.
Mots-clés : Fontaine atomique, Échelle de temps, Étalon de fréquence optique, Test de physique fondamentale, Géodésie chronométrique, Redéfinition de la seconde du SI
Sébastien Bize 1
@article{CRPHYS_2019__20_1-2_153_0, author = {S\'ebastien Bize}, title = {The unit of time: {Present} and future directions}, journal = {Comptes Rendus. Physique}, pages = {153--168}, publisher = {Elsevier}, volume = {20}, number = {1-2}, year = {2019}, doi = {10.1016/j.crhy.2019.02.002}, language = {en}, }
Sébastien Bize. The unit of time: Present and future directions. Comptes Rendus. Physique, The new International System of Units / Le nouveau Système international d’unités, Volume 20 (2019) no. 1-2, pp. 153-168. doi : 10.1016/j.crhy.2019.02.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.02.002/
[1] https://www.bipm.org/en/worldwide-metrology/cgpm/resolutions.html Comptes rendus de la CGPM (1967/68) (1969) 103
[2] Spectral lines as frequency standards, Ann. N.Y. Acad. Sci., Volume 55 (1952) no. 5, pp. 831-871 | DOI
[3] An atomic standard of frequency and time interval: a caesium resonator, Nature, Volume 176 (1955) no. 4476, pp. 280-282 | DOI
[4] Frequency of cesium in terms of ephemeris time, Phys. Rev. Lett., Volume 1 (1958), pp. 105-107 | DOI
[5] Fifty years of atomic time-keeping: 1955 to 2005, Metrologia, Volume 42 (2005) no. 3 | DOI
[6] The measurement of time/La mesure du temps: Foreword, C. R. Physique, Volume 16 (2015) no. 5, pp. 459-460 | DOI
[7] Comptes rendus de la CGPM (1983) 10.
[8] Comptes rendus de la CGPM (2018).
[9] Varying constants, gravitation and cosmology, Living Rev. Relativ., Volume 14 (2011), p. 2 http://www.livingreviews.org/lrr-2011-2
[10] The confrontation between general relativity and experiment, Living Rev. Relativ., Volume 17 (2014) no. 1, p. 4 | DOI
[11] Search for new physics with atoms and molecules, Rev. Mod. Phys., Volume 90 (2018) no. 2 | DOI
[12] Search for ultralight scalar dark matter with atomic spectroscopy, Phys. Rev. Lett., Volume 115 (2015) | DOI
[13] Searching for an oscillating massive scalar field as a dark matter candidate using atomic hyperfine frequency comparisons, Phys. Rev. Lett., Volume 117 (2016) | DOI
[14] Experiments with separated oscillatory fields and hydrogen masers, Rev. Mod. Phys., Volume 62 (1990), p. 541 | DOI
[15] The Quantum Physics of Atomic Frequency Standards, Adam Hilger, 1989
[16] Nobel lecture: Manipulating atoms with photons, Rev. Mod. Phys., Volume 70 (1998), pp. 707-719 | DOI
[17] Nobel lecture: Laser cooling and trapping of neutral atoms, Rev. Mod. Phys., Volume 70 (1998) no. 3, pp. 721-741 | DOI
[18] Nobel lecture: The manipulation of neutral particles, Rev. Mod. Phys., Volume 70 (1998), pp. 685-706 | DOI
[19] RF spectroscopy in an atomic fountain, Phys. Rev. Lett., Volume 63 (1989), p. 612
[20] Ramsey resonance in a Zacharias fountain, Europhys. Lett., Volume 16 (1991), p. 165
[21] A cesium fountain frequency standard: recent results, IEEE Trans. Instrum. Meas., Volume 44 (1995) no. 2, p. 128
[22] Quantum projection noise in an atomic fountain: a high stability cesium frequency standard, Phys. Rev. Lett., Volume 82 (1999) no. 23, p. 4619
[23] Progress in atomic fountains at LNE–SYRTE, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 391-410 | DOI
[24] Evaluation of Doppler shifts to improve the accuracy of primary atomic fountain clocks, Phys. Rev. Lett., Volume 106 (2011) no. 13 | DOI
[25] Evaluating and minimizing distributed cavity phase errors in atomic clocks, Metrologia, Volume 47 (2010) no. 5, p. 534 http://stacks.iop.org/0026-1394/47/i=5/a=004
[26] Controlling the cold collision shift in high precision atomic interferometry, Phys. Rev. Lett., Volume 89 (2002)
[27] Feshbach resonances in cesium at ultralow static magnetic fields, Phys. Rev. A, Volume 86 (2012) | DOI
[28] Cancellation of the collisional frequency shift in caesium fountain clocks, Phys. Rev. Lett., Volume 98 (2007) no. 15 | DOI
[29] Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions, Phys. Rev. Lett., Volume 110 (2013) | DOI
[30] An evaluation of the frequency shift caused by collisions with background gas in the primary frequency standard NPL-CsF2, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 61 (2014) no. 1, pp. 203-206 | DOI
[31] Difference between a photon's momentum and an atom's recoil, Phys. Rev. Lett., Volume 97 (2006) no. 7 | DOI
[32] Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts, Metrologia, Volume 48 (2011) no. 5, p. 283 http://stacks.iop.org/0026-1394/48/i=5/a=007
[33] Ramsey spectroscopy, matter–wave interferometry, and the microwave-lensing frequency shift, Phys. Rev. A, Volume 90 (2014) | DOI
[34] Shift of hyperfine splittings due to blackbody radiation, Phys. Rev. A, Volume 25 (1982), p. 1233
[35] High-accuracy measurement of the blackbody radiation frequency shift of the ground-state hyperfine transition in 133Cs, Phys. Rev. Lett., Volume 112 (2014) | DOI
[36] First accuracy evaluation of NIST-F2, Metrologia, Volume 51 (2014) no. 3, p. 174 http://stacks.iop.org/0026-1394/51/i=3/a=174
[37] Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain, Metrologia, Volume 51 (2014) no. 3, p. 270 http://stacks.iop.org/0026-1394/51/i=3/a=270
[38] First uncertainty evaluation of the FoCS-2 primary frequency standard, Metrologia, Volume 55 (2018) no. 3, p. 366 | DOI
[39] Atomic fountain clocks, Metrologia, Volume 42 (2005) no. 3 http://stacks.iop.org/0026-1394/42/i=3/a=S08
[40] 8th symposium on frequency standards and metrology 2015, J. Phys. Conf. Ser., Volume 723 (2016) no. 1 http://stacks.iop.org/1742-6596/723/i=1/a=011001
[41] Demonstration of a dual alkali Rb/Cs fountain clock, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 57 (2010) no. 3, p. 647 | DOI
[42] Contributing to TAI with a secondary representation of the SI second, Metrologia, Volume 51 (2014) no. 1, p. 108 http://stacks.iop.org/0026-1394/51/i=1/a=108
[43] See the list of Secondary Representations of the SI second and of other recommended values of standard frequencies on the BIPM website http://www.bipm.org/en/publications/mep.html
[44] Comparison between frequency standards in Europe and the USA at the uncertainty level, Metrologia, Volume 43 (2006) no. 1, pp. 109-120 http://stacks.iop.org/0026-1394/43/109
[45] First international comparison of fountain primary frequency standards via a long distance optical fiber link, Metrologia, Volume 54 (2017) no. 3, p. 348 http://stacks.iop.org/0026-1394/54/i=3/a=348
[46] International atomic time: status and future challenges, C. R. Physique, Volume 16 (2015) no. 5, pp. 480-488 | DOI
[47] https://www.bipm.org/fr/bipm-services/timescales/time-ftp/Circular-T.html (See Circular T and fountain reports on the BIPM website)
[48] Invited review article: The uncertainty in the realization and dissemination of the SI second from a systems point of view, Rev. Sci. Instrum., Volume 83 (2012) no. 2 | DOI
[49] Comparison of frequency standards used for TAI, IEEE Trans. Instrum. Meas., Volume 62 (2013) no. 99, p. 1550 | DOI
[50] The CIPM list of recommended frequency standard values: guidelines and procedures, Metrologia, Volume 55 (2018) no. 2, p. 188 http://stacks.iop.org/0026-1394/55/i=2/a=188
[51] SI-traceable measurement of an optical frequency at the low level without a local primary standard, Opt. Express, Volume 25 (2017) no. 8, pp. 8511-8523 | DOI
[52] Towards adoption of an optical second: verifying optical clocks at the SI limit | arXiv
[53] Testing Local Position Invariance with four cesium-fountain primary frequency standards and four NIST hydrogen masers, Phys. Rev. Lett., Volume 98 (2007) | DOI
[54] A null test of general relativity based on a long-term comparison of atomic transition frequencies, Nat. Phys., Volume 14 (2018), pp. 822-826 | DOI
[55] Generation of UTC(PTB) as a fountain-clock based time scale, Metrologia, Volume 49 (2012) no. 3, p. 180 http://stacks.iop.org/0026-1394/49/i=3/a=180
[56] Evaluation of long term performance of continuously running atomic fountains, Metrologia, Volume 51 (2014) no. 3, p. 263 http://stacks.iop.org/0026-1394/51/i=3/a=263
[57] UTC(OP) based on LNE–SYRTE atomic fountain primary frequency standards, Metrologia, Volume 53 (2016) no. 3, p. S81 http://stacks.iop.org/0026-1394/53/i=3/a=S81
[58] UTCr: a rapid realization of UTC, Metrologia, Volume 51 (2014) no. 1, p. 33 http://stacks.iop.org/0026-1394/51/i=1/a=33
[59] Nobel lecture: Passion for precision, Rev. Mod. Phys., Volume 78 (2006) no. 4, p. 1297 | DOI
[60] Nobel lecture: Defining and measuring optical frequencies, Rev. Mod. Phys., Volume 78 (2006) no. 4, p. 1279 | DOI
[61] Atomic clock performance enabling geodesy below the centimetre level, Nature, Volume 564 (2018), pp. 87-90 | DOI
[62] Geopotential measurements with synchronously linked optical lattice clocks, Nat. Photonics, Volume 10 (2016), pp. 662-666 | DOI
[63] Single-ion atomic clock with systematic uncertainty, Phys. Rev. Lett., Volume 116 (2016) | DOI
[64] Systematic evaluation of an atomic clock at total uncertainty, Nat. Commun., Volume 6 (2015), p. 6896 | DOI
[65] Cryogenic optical lattice clocks, Nat. Photonics, Volume 9 (2015), p. 185 | DOI
[66] An optical lattice clock with accuracy and stability at the level, Nature, Volume 506 (2014), p. 71 | DOI
[67] Atomic clock with room-temperature blackbody stark uncertainty, Phys. Rev. Lett., Volume 113 (2014) | DOI
[68] High-accuracy measurement of the differential scalar polarizability of a clock using the time-dilation effect, Phys. Rev. Lett., Volume 112 (2014) | DOI
[69] High accuracy correction of blackbody radiation shift in an optical lattice clock, Phys. Rev. Lett., Volume 109 (2012) | DOI
[70] High-accuracy measurement of atomic polarizability in an optical lattice clock, Phys. Rev. Lett., Volume 108 (2012) | DOI
[71] Analysis of thermal radiation in ion traps for optical frequency standards, Metrologia, Volume 52 (2015) no. 6, p. 842 http://stacks.iop.org/0026-1394/52/i=6/a=842
[72] Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 411-415 | DOI
[73] Lattice-induced frequency shifts in Sr optical lattice clocks at the level, Phys. Rev. Lett., Volume 106 (2011) no. 21 | DOI
[74] Hyperpolarizability and operational magic wavelength in an optical lattice clock, Phys. Rev. Lett., Volume 119 (2017) no. 25 | DOI
[75] A Fermi-degenerate three-dimensional optical lattice clock, Science, Volume 358 (2017) no. 6359, pp. 90-94 http://science.sciencemag.org/content/358/6359/90.full.pdf | DOI
[76] Hyper-Ramsey spectroscopy of optical clock transitions, Phys. Rev. A, Volume 82 (2010) no. 1 | DOI
[77] Frequency comparison of two high-accuracy optical clocks, Phys. Rev. Lett., Volume 104 (2010) no. 7 | DOI
[78] Experimental realization of an optical second with strontium lattice clocks, Nat. Commun., Volume 4 (2013), p. 2109 | DOI
[79] A new generation of atomic clocks: accuracy and stability at the level | arXiv
[80] Frequency comparison of two optical clocks with an uncertainty at the level, Phys. Rev. Lett., Volume 116 (2016) | DOI
[81] Optical atomic clocks, Rev. Mod. Phys., Volume 87 (2015), pp. 637-701 | DOI
[82] Recoilless optical absorption and Doppler sidebands of a single trapped ion, Phys. Rev. A, Volume 36 (1987), p. 428
[83] Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys., Volume 62 (1990), p. 531
[84] Quantum dynamics of single trapped ions, Rev. Mod. Phys., Volume 75 (2003) no. 1, pp. 281-324 | DOI
[85] Spectroscopy of strontium atoms in the Lamb–Dicke confinement, Proc. of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323
[86] Ultrastable optical clock with neutral atoms in an engineered light shift trap, Phys. Rev. Lett., Volume 91 (2003) no. 17 | DOI
[87] Quantum state engineering and precision metrology using state-insensitive light traps, Science, Volume 320 (2008) no. 5884, pp. 1734-1738 http://www.sciencemag.org/content/320/5884/1734.full.pdf | DOI
[88] Ultrastable optical clock with two cold-atom ensembles, Nat. Photonics, Volume 11 (2017) no. 1, pp. 48-52 | DOI
[89] An atomic clock with instability, Science, Volume 341 (2013) no. 6151, pp. 1215-1218 http://www.sciencemag.org/content/341/6151/1215.full.pdf | DOI
[90] Frequency comparison of optical lattice clocks beyond the Dick limit, Nat. Photonics, Volume 5 (2011), pp. 288-292 | DOI
[91] Comparison of two independent Sr optical clocks with stability at , Phys. Rev. Lett., Volume 109 (2012) | DOI
[92] Noise and instability of an optical lattice clock, Phys. Rev. A, Volume 92 (2015) | DOI
[93] Imaging optical frequencies with precision and resolution, Phys. Rev. Lett., Volume 120 (2018) no. 10 | DOI
[94] Quantum coherence between two atoms beyond , Phys. Rev. Lett., Volume 106 (2011) no. 16 | DOI
[95] Thermal-noise limit in the frequency stabilization of lasers with rigid cavities, Phys. Rev. Lett., Volume 93 (2004) no. 25 | DOI
[96] Operating a 87Sr optical lattice clock with high precision and at high density, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 59 (2012) no. 3, pp. 416-425 | DOI
[97] fractional laser frequency instability with a long room-temperature cavity, Opt. Lett., Volume 40 (2015) no. 9, pp. 2112-2115 | DOI
[98] A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity, Nat. Photonics, Volume 6 (2012) no. 10, pp. 687-692 | DOI
[99] lasers with sub 10 mHz linewidth, Phys. Rev. Lett., Volume 118 (2017) | DOI
[100] Tenfold reduction of brownian noise in high-reflectivity optical coatings, Nat. Photonics, Volume 7 (2013) no. 8, pp. 644-650 | DOI
[101] Spectrally narrow, long-term stable optical frequency reference based on a crystal at cryogenic temperature, Phys. Rev. Lett., Volume 107 (2011) | DOI
[102] Frequency stabilization to via spectral-hole burning, Nat. Photonics, Volume 6 (2011), p. 688 | DOI
[103] Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals, Opt. Express, Volume 25 (2017) no. 13, pp. 15539-15548 | DOI
[104] Optical clock with millihertz linewidth based on a phase-matching effect, Phys. Rev. Lett., Volume 98 (2007) no. 5 | DOI
[105] Prospects for a millihertz-linewidth laser, Phys. Rev. Lett., Volume 102 (2009) no. 16 | DOI
[106] Frequency measurements of superradiance from the strontium clock transition, Phys. Rev. X, Volume 8 (2018) no. 2 | DOI
[107] Quantum internet: a vision for the road ahead, Science, Volume 362 (2018) no. 6412 | DOI
[108] Quantum sensing, Rev. Mod. Phys., Volume 89 (2017) | DOI
[109] Spectroscopy using quantum logic, Science, Volume 309 (2005) no. 5735, pp. 749-752 | DOI
[110] Nobel lecture: Superposition, entanglement, and raising Schrödinger's cat, Rev. Mod. Phys., Volume 85 (2013), pp. 1103-1114 | DOI
[111] “Designer atoms” for quantum metrology, Nature, Volume 443 (2006) no. 7109, pp. 316-319 | DOI
[112] Trapped-ion quantum simulator: Experimental application to nonlinear interferometers, Phys. Rev. Lett., Volume 89 (2002) | DOI
[113] Controlling systematic frequency uncertainties at the level in linear Coulomb crystals, Phys. Rev. A, Volume 99 (2019) no. 1 | DOI
[114] Preparation of spin-squeezed atomic states by optical-phase-shift measurement, Phys. Rev. A, Volume 66 (2002) no. 4 | DOI
[115] Spin squeezing and reduced quantum noise in spectroscopy, Phys. Rev. A, Volume 46 (1992), p. R6797-R6800 | DOI
[116] Nondestructive probing of Rabi oscillations on the cesium clock transition near the standard quantum limit, Phys. Rev. Lett., Volume 100 (2008) no. 10 | DOI
[117] Entanglement-assisted atomic clock beyond the projection noise limit, New J. Phys., Volume 12 (2010) no. 6 http://stacks.iop.org/1367-2630/12/i=6/a=065032
[118] Measurement noise 100 times lower than the quantum-projection limit using entangled atoms, Nature, Volume 529 (2016) no. 7587, pp. 505-508 | DOI
[119] Nondestructive measurement of the transition probability in a Sr optical lattice clock, Phys. Rev. A, Volume 79 (2009) no. 6 | DOI
[120] A noise-immune cavity-assisted non-destructive detection for an optical lattice clock in the quantum regime, New J. Phys., Volume 19 (2017) no. 8 http://stacks.iop.org/1367-2630/19/i=8/a=083002
[121] Locking the local oscillator phase to the atomic phase via weak measurement, New J. Phys., Volume 14 (2012) no. 2 http://stacks.iop.org/1367-2630/14/i=2/a=023034
[122] Phase locking a clock oscillator to a coherent atomic ensemble, Phys. Rev. X, Volume 5 (2015) | DOI
[123] Improvement of an atomic clock using squeezed vacuum, Phys. Rev. Lett., Volume 117 (2016) no. 14 | DOI
[124] Orientation-dependent entanglement lifetime in a squeezed atomic clock, Phys. Rev. Lett., Volume 104 (2010) no. 25 | DOI
[125] Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett., Volume 104 (2010) no. 7 | DOI
[126] The evolving optical frequency comb [invited], J. Opt. Soc. Am. B, Volume 27 (2010) no. 11, p. B51-B62 | DOI
[127] Searching for applications with a fine-tooth comb, Nat. Photonics, Volume 5 (2011), pp. 186-188 | DOI
[128] Spectral purity transfer between optical wavelengths at the level, Nat. Photonics, Volume 8 (2014), p. 219 | DOI
[129] Photonic microwave signals with zeptosecond-level absolute timing noise, Nat. Photonics, Volume 11 (2017) no. 1, pp. 44-47 | DOI
[130] Attosecond timing in optical-to-electrical conversion, Optica, Volume 2 (2015) no. 2, pp. 141-146 | DOI
[131] All-polarization-maintaining, single-porter: fiber comb for high-stability comparison of optical lattice clocks, Appl. Phys. Express, Volume 10 (2017) no. 6 http://stacks.iop.org/1882-0786/10/i=6/a=062503
[132] et al. Peignes de fréquences femtosecondes pour la mesure des fréquences optiques, Rev. Fr. Métrol., Volume 32 (2012), p. 35
[133] Ultralow noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock, Appl. Phys. Lett., Volume 94 (2009) no. 14 | DOI
[134] Reaching the quantum limit in a fountain clock using a microwave oscillator phase locked to an ultrastable laser, Phys. Rev. A, Volume 79 (2009) no. 3 | DOI
[135] Optical stabilization of a microwave oscillator for fountain clock interrogation, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 64 (2017) no. 4, pp. 761-766 | DOI
[136] Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock, Metrologia, Volume 53 (2016) no. 4, p. 1123 http://stacks.iop.org/0026-1394/53/i=4/a=1123
[137] A clock network for geodesy and fundamental science, Nat. Commun., Volume 7 (2016) | DOI
[138] Comparing a mercury optical lattice clock with microwave and optical frequency standards, New J. Phys., Volume 18 (2016) no. 11 http://stacks.iop.org/1367-2630/18/i=11/a=113002
[139] Transmission of an optical carrier frequency over a telecommunication fiber link, Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Optical Society of America, 2007, p. CMKK1 http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CMKK1
[140] Long-distance frequency transfer over an urban fiber link using optical phase stabilization, J. Opt. Soc. Am. B, Volume 25 (2008) no. 12, pp. 2029-2035 http://josab.osa.org/abstract.cfm?URI=josab-25-12-2029
[141] Optical frequency transfer via 146 km fiber link with relative accuracy, Opt. Lett., Volume 34 (2009) no. 15, pp. 2270-2272 | DOI
[142] A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place, Science, Volume 336 (2012) no. 6080, pp. 441-444 http://www.sciencemag.org/content/336/6080/441.full.pdf | DOI
[143] Ultra-stable long distance optical frequency distribution using the internet fiber network, Opt. Express, Volume 20 (2012) no. 21, pp. 23518-23526 | DOI
[144] First industrial-grade coherent fiber link for optical frequency standard dissemination, Appl. Opt., Volume 57 (2018) no. 25, pp. 7203-7210 | DOI
[145] A sub-ps stability time transfer method based on optical modems, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 65 (2018) no. 6, pp. 1001-1006 | DOI
[146] Frequency and time transfer for metrology and beyond using telecommunication network fibres, C. R. Physique, Volume 16 (2015) no. 5, pp. 531-539 | DOI
[147] et al. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km, Metrologia, Volume 50 (2013) no. 2, p. 133 http://stacks.iop.org/0026-1394/50/i=2/a=133
[148] Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network, Appl. Phys. B, Lasers Opt., Volume 110 (2013), p. 3 | DOI
[149] Relativistic corrections for time and frequency transfer in optical fibres, Metrologia, Volume 52 (2015) no. 4, p. 552 http://stacks.iop.org/0026-1394/52/i=4/a=552
[150] Feasibility of giant fiber-optic gyroscopes, Phys. Rev. A, Volume 87 (2013) | DOI
[151] Large-area fiber-optic gyroscope on a multiplexed fiber network, Opt. Lett., Volume 38 (2013) no. 7, pp. 1092-1094 | DOI
[152] Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables, Science, Volume 361 (2018) no. 6401, pp. 486-490 | DOI
[153] Test of special relativity using a fiber network of optical clocks, Phys. Rev. Lett., Volume 118 (2017) | DOI
[154] Testing general relativity with atomic clocks, Space Sci. Rev., Volume 148 (2009) no. 1, pp. 233-247 | DOI
[155] Modern tests of Lorentz invariance, Living Rev. Relativ., Volume 8 (2005) no. 5 http://www.livingreviews.org/lrr-2005-5
[156] Time variation of the fundamental “constants” and Kaluza–Klein theories, Phys. Rev. Lett., Volume 52 (1984), p. 489
[157] The string dilaton and a least coupling principle, Nucl. Phys. B, Volume 423 (1994), p. 532
[158] Theoretical aspects of the equivalence principle, Class. Quantum Gravity, Volume 29 (2012) no. 18 http://stacks.iop.org/0264-9381/29/i=18/a=184001
[159] Improved tests of local position invariance using and fountains, Phys. Rev. Lett., Volume 109 (2012) | DOI
[160] Experimental constraint on dark matter detection with optical atomic clocks, Nat. Astron., Volume 1 (2016) | DOI
[161] Gravitational redshift test using eccentric Galileo satellites, Phys. Rev. Lett., Volume 121 (2018) no. 23 | DOI
[162] Atomic clock ensemble in space (ACES) data analysis, Class. Quantum Gravity, Volume 35 (2018) no. 3 | DOI
[163] The ACES/PHARAO space mission, C. R. Physique, Volume 16 (2015) no. 5, pp. 540-552 | DOI
[164] Space clocks and fundamental tests: the ACES experiment, Eur. Phys. J. Spec. Top., Volume 172 (2009), pp. 57-68 | DOI
[165] Atomic clock ensemble in space: scientific objectives and mission status, Nucl. Phys. B, Proc. Suppl., Volume 166 (2007), pp. 303-306 (Proceedings of the Third International Conference on Particle and Fundamental Physics in Space) | DOI
[166] MICROSCOPE mission: first results of a space test of the equivalence principle, Phys. Rev. Lett., Volume 119 (2017) | DOI
[167] Report of the 15th meeting (June 2001) to the International Committee for Weights and Measures, BIPM, 2001 (Tech. rep.)
[168] Search for variations of fundamental constants using atomic fountain clocks, Phys. Rev. Lett., Volume 90 (2003) | DOI
[169] Advances in 133Cs fountains, C. R. Physique, Volume 5 (2004), p. 829
[170] Least-squares analysis of clock frequency comparison data to deduce optimized frequency and frequency ratio values, Metrologia, Volume 52 (2015) no. 5, p. 628 http://stacks.iop.org/0026-1394/52/i=5/a=628
[171] On the evaluation of ultra-high-precision frequency ratio measurements: examining closed loops in a graph theory framework, Metrologia, Volume 53 (2016) no. 6, pp. 1272-1280 | DOI
[172] Realization of a timescale with an accurate optical lattice clock, Optica, Volume 3 (2016) no. 6, pp. 563-569 | DOI
[173] Frequency ratio of and single-ion optical clocks; metrology at the 17th decimal place, Science, Volume 319 (2008), p. 1808
[174] Frequency ratio of Yb and Sr clocks with uncertainty at 150 seconds averaging time, Nat. Photonics, Volume 10 (2016) no. 4, pp. 258-261 | DOI
[175] Frequency ratio of and optical lattice clocks beyond the SI limit, Phys. Rev. Lett., Volume 114 (2015) | DOI
[176] Months-long real-time generation of a time scale based on an optical clock, Sci. Rep., Volume 8 (2018) no. 1, p. 4243 | DOI
[177] Direct comparison of optical lattice clocks with an intercontinental baseline of 9000 km, Opt. Lett., Volume 39 (2014) no. 14, pp. 4072-4075 | DOI
[178] Optical clock networks, Nat. Photonics, Volume 11 (2017) no. 1, pp. 25-31 | DOI
[179] Femtosecond timekeeping: slip-free clockwork for optical timescales, Phys. Rev. Appl., Volume 9 (2018) no. 4 | DOI
[180] Chronometric geodesy: methods and applications, Relativistic Geodesy. Foundations and Applications, Springer, Berlin, 2019, pp. 25-85 https://www.springer.com/us/book/9783030114992
[181] Geodetic methods to determine the relativistic redshift at the level of in the context of international timescales: a review and practical results, J. Geod., Volume 92 (2018) no. 5, pp. 487-516 | DOI
[182] Regional gravity field modeling: theory and practical results (G. Xu, ed.), Sciences of Geodesy, vol. II, Springer, Berlin, Heidelberg, 2013, pp. 185-291 (Chapter 5) | DOI
[183] A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA, Metrologia, Volume 54 (2017), p. 535 | DOI
[184] Gravitational redshift at INRIM, Metrologia, Volume 44 (2007) no. 5, p. L44 http://stacks.iop.org/0026-1394/44/i=5/a=N03
[185] The relativistic redshift with uncertainty at NIST, Boulder, Colorado, USA, Metrologia, Volume 40 (2003) no. 2, p. 66 http://stacks.iop.org/0026-1394/40/i=2/a=311
[186] Time-variable gravity potential components for optical clock comparisons and the definition of international time scales, Metrologia, Volume 53 (2016) no. 6, p. 1365 | DOI
[187] Determination of a high spatial resolution geopotential model using atomic clock comparisons, J. Geod., Volume 91 (2017) no. 6, pp. 597-611 | DOI
[188] Atomic clocks for geodesy, Rep. Prog. Phys., Volume 81 (2018) no. 6 | DOI
[189] High performance clocks and gravity field determination, Space Sci. Rev., Volume 214 (2018) no. 1, p. 5 | DOI
[190] Ground-based optical atomic clocks as a tool to monitor vertical surface motion, Geophys. J. Int., Volume 202 (2015) no. 3, pp. 1770-1774 | DOI
[191] Geophysical applicability of atomic clocks: direct continental geoid mapping, Geophys. J. Int., Volume 191 (2012) no. 1, pp. 78-82 | DOI
[192] Development of a strontium optical lattice clock for the SOC mission on the ISS, C. R. Physique, Volume 16 (2015) no. 5, pp. 553-564 | DOI
[193] Transportable optical lattice clock with uncertainty, Phys. Rev. Lett., Volume 118 (2017) | DOI
[194] Towards an optical clock for space: compact, high-performance optical lattice clock based on bosonic atoms, Phys. Rev. A, Volume 98 (2018) no. 5 | DOI
[195] Geodesy and metrology with a transportable optical clock, Nat. Phys., Volume 14 (2018), pp. 437-441 | DOI
[196] Open-path dual-comb spectroscopy to an airborne retroreflector, Optica, Volume 4 (2017) no. 7, pp. 724-728 | DOI
[197] Synchronization of distant optical clocks at the femtosecond level, Phys. Rev. X, Volume 6 (2016) | DOI
[198] Optical two-way time and frequency transfer over free space, Nat. Photonics, Volume 7 (2013) no. 6, pp. 434-438 | DOI
[199] Coherent optical link through the turbulent atmosphere, Opt. Lett., Volume 35 (2010) no. 9, pp. 1479-1481 http://ol.osa.org/abstract.cfm?URI=ol-35-9-1479
Cited by Sources:
Comments - Policy