The experimental study of CP violation in decays has led to significant progress in our understanding of nature: (i) It demonstrated that the Kobayashi-Maskawa mechanism is the dominant source of CP violation in meson decays. (ii) It improved significantly the precision in the determination of the parameters of the Cabibbo–Kobayashi–Maskawa quark-mixing matrix. (iii) It proved that new physics that has order-one flavour-changing couplings to the quark should be characterised by a mass scale higher than . Further progress is expected from the Belle II and LHC experiments during the next decade and beyond. Present status and perspectives are here discussed.
L’étude expérimentale de la brisure de la symétrie CP dans les désintégrations de mésons beaux () a apporté des contributions majeures à notre compréhension de la nature : (i) Elle a établi que le mécanisme de Kobayashi-Maskawa est la source dominante de brisure de la symétrie CP dans les systèmes des mésons et . (ii) Elle a amélioré significativement la précision des paramètres qui décrivent la matrice de mélange des quarks Cabibbo–Kobayashi–Maskawa. (iii) Elle a prouvé que l’échelle d’énergie d’une nouvelle physique avec des couplages de changement de saveurs d’ordre unité, devait être supérieure à . Des progrès sont attendus, dans cette décennie et la suivante, des expériences du LHC et Belle II. L’état de l’art de cette Physique et les perspectives des expériences futures sont discutés dans cet article.
Mots-clés : Méson, Désintégration, LHC, Grand collisionneur de hadrons, Violation de symétrie CP
Yosef Nir 1; Vincenzo Vagnoni 2
@article{CRPHYS_2020__21_1_61_0, author = {Yosef Nir and Vincenzo Vagnoni}, title = {$C{\hspace{-1.69998pt}}P$ violation in $B$ decays}, journal = {Comptes Rendus. Physique}, pages = {61--74}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {1}, year = {2020}, doi = {10.5802/crphys.11}, language = {en}, }
Yosef Nir; Vincenzo Vagnoni. $C{\hspace{-1.69998pt}}P$ violation in $B$ decays. Comptes Rendus. Physique, A perspective of High Energy Physics from precision measurements, Volume 21 (2020) no. 1, pp. 61-74. doi : 10.5802/crphys.11. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.11/
[1] Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz., Volume 5 (1967), pp. 32-35 | DOI
[2] Unitary symmetry and leptonic decays, Phys. Rev. Lett., Volume 10 (1963) no. 12, pp. 531-533 | DOI
[3] CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys., Volume 49 (1973), pp. 652-657 | DOI
[4] Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci., Volume 43 (1993), pp. 27-70 | DOI
[5] Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci., Volume 49 (1999), pp. 35-75 | DOI
[6] Source of CP violation for the baryon asymmetry of the universe, Chin. J. Phys., Volume 47 (2009), pp. 134-141
[7] Weak interactions with lepton-hadron symmetry, Phys. Rev. D, Volume 2 (1970) no. 7, pp. 1285-1292 | DOI
[8] Evidence for the 2 decay of the meson, Phys. Rev. Lett., Volume 13 (1964) no. 4, pp. 138-140 | DOI
[9] Experimental observation of a heavy particle J, Phys. Rev. Lett., Volume 33 (1974) no. 23, pp. 1404-1406 | DOI
[10] Discovery of a narrow resonance in ee annihilation, Phys. Rev. Lett., Volume 33 (1974) no. 23, pp. 1406-1408 | DOI
[11] Observation of a dimuon resonance at 9.5-GeV in 400-GeV proton–nucleus collisions, Phys. Rev. Lett., Volume 39 (1977) no. 5, pp. 252-255 | DOI
[12] Observation of top quark production in collisions, Phys. Rev. Lett., Volume 74 (1995) no. 14, pp. 2626-2631 | DOI
[13] The CLEO detector, Nucl. Instrum. Meth., Volume 211 (1983) no. 1, pp. 47-71 | DOI
[14] CP violation in B meson decays, Phys. Rev. D, Volume 23 (1981) no. 7, pp. 1567-1579 | DOI
[15] On B– mixing and violations of CP symmetry, Phys. Rev. D, Volume 29 (1984) no. 7, pp. 1393-1398 | DOI
[16] ARGUS: A universal detector at DORIS-II, Nucl. Instrum. Meth. A, Volume 275 (1989) no. 1, pp. 1-48 | DOI
[17] Detector considerations, eConf, Volume C870126 (1987), pp. 423-446
[18] The BaBar detector, Nucl. Instrum. Meth. A, Volume 479 (2002) no. 1, pp. 1-116 | DOI
[19] The Belle detector, Nucl. Instrum. Meth. A, Volume 479 (2002) no. 1, pp. 117-232 | DOI
[20] Measurement of time-dependent CP asymmetry in decays, Phys. Rev. D, Volume 79 (2009), 072009
[21] Precise measurement of the CP violation parameter in decays, Phys. Rev. Lett., Volume 108 (2012), 171802 | DOI
[22] The Physics of the B Factories, Eur. Phys. J. X, Volume 74 (2014), 3026
[23] Observation of – oscillations, Phys. Rev. Lett., Volume 97 (2006), 242003
[24] b-physics at LEP (2010), pp. 1-21 | DOI
[25] Highlights of the SLD physics program at the SLAC linear collider, Ann. Rev. Nucl. Part. Sci., Volume 51 (2001), pp. 345-412 | DOI
[26] The LHCb detector at the LHC, JINST, Volume 3 (2008), S08005
[27] The ATLAS experiment at the CERN Large Hadron Collider, JINST, Volume 3 (2008), S08003
[28] The CMS experiment at the CERN LHC, JINST, Volume 3 (2008), S08004
[29]
(“Belle II Collaboration, Belle II Technical Design Report”, KEK Report 2010-1, 2010)[30] Review of particle physics, Phys. Rev. D, Volume 98 (2018), 030001
[31] CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C, Volume 41 (2005), pp. 1-131 (updated results and plots available at http://ckmfitter.in2p3.fr) | DOI
[32] Model-independent constraints on operators and the scale of new physics, J. High Energy Phys., Volume 0803 (2008), 049 (updated results and plots available at http://www.utfit.org)
[33] On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B, Volume 265 (1991) no. 1, pp. 172-176 | DOI
[34] How to determine all the angles of the unitarity triangle from and , Phys. Lett. B, Volume 253 (1991) no. 3-4, pp. 483-488 | DOI
[35] Enhanced CP violation with B KD () modes and extraction of the CKM angle , Phys. Rev. Lett., Volume 78 (1997) no. 17, pp. 3257-3260 | DOI
[36] Improved methods for observing CP violation in B KD and measuring the CKM phase , Phys. Rev. D, Volume 63 (2001), 036005
[37] Determining using B DK with multibody D decays, Phys. Rev. D, Volume 68 (2003), 054018
[38] (ATLAS Collaboration, Measurement of the CP violation phase in B decays in ATLAS at 13 TeV, ATLAS-CONF-2019-009)
[39] Measurement of the CP-violating weak phase and the decay width difference using the decay channel in pp collisions at , Phys. Lett. B, Volume 757 (2016), pp. 97-120
[40] Updated measurement of time-dependent CP-violating observables in decays, Eur. Phys. J. C, Volume 79 (2019), 706 | DOI
[41] Measurement of the CP-violating phase from decays in 13 TeV pp collisions, Phys. Lett. B, Volume 797 (2019), 134789
[42] Averages of b-hadron, c-hadron, and -lepton properties as of 2018, 2019 (preprint, updated results and plots available at https://hflav.web.cern.ch) | arXiv
[43] (LHCb Collaboration, Update of the LHCb combination of the CKM angle , LHCb-CONF-2018-002)
[44] First measurement of time-dependent CP violation in decays, J. High Energy Phys., Volume 2013 (2013), 183 | DOI
[45] Measurement of CP asymmetries in two-body -meson decays to charged pions and kaons, Phys. Rev. D, Volume 98 (2018), 032004
[46] New strategies to extract and from B and B K K, Phys. Lett. B, Volume 459 (1999), pp. 306-320
[47] : Status and Prospects, Eur. Phys. J. C, Volume 52 (2007), pp. 267-281 | DOI
[48] Testing the Standard Model and Searching for New Physics with B and B KK Decays, J. High Energy Phys., Volume 1210 (2012), 29
[49] Determination of and from charmless two-body decays of beauty mesons, Phys. Lett. B, Volume 741 (2015), pp. 1-11 | DOI
[50] Measurements of CP violation in the three-body phase space of charmless B decays, Phys. Rev. D, Volume 90 (2014), 112004
[51] Amplitude analysis of B K K decays, Phys. Rev. Lett., Volume 123 (2019), 231802
[52] Observation of several sources of CP violation in B decays, Phys. Rev. Lett., Volume 124 (2020), 031801
[53] Amplitude analysis of the B decay, Phys. Rev. D, Volume 101 (2020), 012006
[54] Amplitude analysis of decays, J. High Energy Phys., Volume 2019 (2019), 114 | DOI
[55] Study of CP-violating charge asymmetries of single muons and like-sign dimuons in pp collisions, Phys. Rev. D, Volume 89 (2014), 012002
[56] Measurement of the semileptonic CP asymmetry in mixing, Phys. Rev. Lett., Volume 114 (2015), 041601
[57] Measurement of the CP asymmetry in mixing, Phys. Rev. Lett., Volume 117 (2016), 061803
[58] (LHCb Collaboration, Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era, CERN-LHCC-2017-003)
[59]
(“Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era”, CERN-LHCC-2018-027, 2018)[60] Opportunities in Flavour Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr., Volume 7 (2019), pp. 867-1158 | DOI
Cited by Sources:
Comments - Policy