A statistical description of metallic glasses is proposed based on evaluation of an entropy and using the concept of potential energy landscape (PEL). The PEL is probed using nano-indentation, assuming that serrations observed are related to local energy levels. Serrations sizes follow a Poisson distribution consistent with, that their formation is a rare events. An entropy is derived revealing parameters characterizing the glass structure. The relevance of the approach is tested on the size effect on mechanical properties of metallic glass. It is noticed that the relations explain the effect of film thickness on the glass transition temperature observed for glass polymers.
Une description statistique des verres métalliques est proposée, basée sur l’évaluation d’une entropie et utilisant le concept de paysage du potentiel énergétique (PEL). Le PEL est sondé en utilisant la nano-indentation, en supposant que les serrations observées sont liées aux niveaux d’énergie locaux. La taille des serrations suit une distribution de Poisson cohérente avec la dynamique des événements rares. Une entropie est dérivée révélant des paramètres caractérisant la structure du verre. La pertinence de l’approche est testée sur l’effet de taille sur les propriétés mécaniques du verre métallique. On constate que les relations expliquent l’effet de l’épaisseur du film sur la température de transition vitreuse observée pour les polymères vitreux.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Verre métallique, Entropie, Nano-indentation, Comportement mécanique, Transition vitreuse
Yannick Champion 1

@article{CRPHYS_2023__24_S1_155_0, author = {Yannick Champion}, title = {Entropy of metallic glasses and the size effect on glass transition}, journal = {Comptes Rendus. Physique}, pages = {155--164}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.130}, language = {en}, }
Yannick Champion. Entropy of metallic glasses and the size effect on glass transition. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 155-164. doi : 10.5802/crphys.130. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.130/
[1] Packing structures and transitions in liquids and solids, Science, Volume 225 (1984), pp. 983-989 | DOI
[2] Basis glass states: New insights from the potential energy landscape, J. Non-Cryst. Solids X, Volume 3 (2019), 100031
[3] Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses, J. Chem. Phys., Volume 110 (1999), pp. 4593-4601 | DOI
[4] A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 | DOI | MR | Zbl
[5] Characterizing the network topology of the energy landscapes of atomic clusters, J. Chem. Phys., Volume 122 (2005), pp. 1-13
[6] Potential energy landscape activations governing plastic flows in glass rheology, Proc. Natl. Acad. Sci. USA, Volume 116 (2019), pp. 18790-18797 | DOI
[7] Serrated flow of CuZr-based bulk metallic glasses probed by nanoindentation: Role of the activation barrier, size and distribution of shear transformation zones, J. Non-Cryst. Solids, Volume 459 (2017), pp. 130-141 | DOI
[8] A nanoindentation study of serrated flow in bulk metallic glasses, Acta Mater., Volume 51 (2003), pp. 87-99 | DOI
[9] Intrinsic size effects in the mechanical response of taper-free nanopillars of metallic glass, Phys. Rev. B, Volume 83 (2011), pp. 1-4
[10] Activation volume in heterogeneous deformation of MgCuNi(CeLa) metallic glass, J. Appl. Phys., Volume 118 (2015), pp. 1-5 | DOI
[11] Structural rearrangements that govern flow in colloidal glasses, Science, Volume 318 (2007), pp. 1895-1899 | DOI
[12] An atomically quantized hierarchy of shear transformation zones in a metallic glass, J. Appl. Phys., Volume 109 (2011), pp. 1-8
[13] On the temperature dependence of cooperative relaxtion properties in glass-forming liquids, J. Chem. Phys., Volume 43 (1965), pp. 139-146 | DOI
[14] Plastic deformation of optical glass, Nature, Volume 63 (1949), p. 323 | DOI
[15] Perfectly plastic flow in silica glass, Acta Mater., Volume 114 (2016), pp. 146-153 | DOI
[16] Effect of sample size on deformation in amorphous metals, J. Appl. Phys., Volume 103 (2008), pp. 1-6 | DOI
[17] Size-dependent mechanical responses of metallic glasses, Int. Mater. Rev., Volume 64 (2019), pp. 163-180 | DOI
[18] Tensile ductility and necking of metallic glass, Nat. Mater., Volume 6 (2007), pp. 735-739 | DOI
[19] Nature of the glass transition and the glassy state, J. Chem. Phys., Volume 28 (1958), pp. 373-383 | DOI
[20] The sample size effect in metallic glass deformation, Sci. Rep., Volume 10 (2020), pp. 1-7 | DOI
[21] Exponential multiplicity of inherent structures, Phys. Rev. E, Volume 59 (1999), pp. 48-51
[22] Thermodynamics and kinetics of the MgCuY bulk metallic glass forming liquid, J. Appl. Phys., Volume 83 (1998), pp. 4134-4141 | DOI
[23] Sample size effect and microcompression of MgCuGd metallic glass, Appl. Phys. Lett., Volume 91 (2007), pp. 1-3
[24] Size-dependent depression of the glass-transition temperature in polymer-films, Europhys. Lett., Volume 27 (1994), pp. 59-64 | DOI
[25] Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics, Phys. Rev. E, Volume 61 (2000), p. R53-R56
Cited by Sources:
Comments - Policy