The Random First Order Transition (RFOT) theory started with the pioneering work of Kirkpatrick, Thirumalai and Wolynes. It leverages methods and advances of the theory of disordered systems. It fares remarkably well at reproducing the salient experimental facts of super-cooled liquids. Yet, direct and indisputable experimental validations are missing. In this short survey, we will review recent investigations that broadly support all static aspects of RFOT, but also those for which the standard dynamical extension of the theory appears to be struggling, in particular in relation with facilitation effects. We discuss possible solutions and open issues.
La théorie RFOT des verres a été initiée par les travaux de Kirkpatrick, Thirumalai & Wolynes. Elle s’appuie sur des méthodes récentes de la théorie des systèmes désordonnés. La théorie RFOT décrit remarquablement bien toute la phénoménologie des liquides surfondus. Cependant, aucun résultat expérimental n’a encore confirmé la théorie de manière directe et indiscutable. Dans ce bref article de revue, nous discutons les travaux récents qui sont en accord avec tous les aspects thermodynamiques de la théorie, mais aussi ceux pour lesquels l’extension dynamique de celle-ci semble en difficulté, en particulier concernant les effets de facilitation. Nous proposons des voies de résolution possibles, ainsi que certains problèmes ouverts.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Théorie des verres, Dynamique coopérative, Transition du premier ordre aléatoire, Susceptibilité non-lineaire, Processus activés, Liquides confondus, transition vitreuse
Giulio Biroli 1; Jean-Philippe Bouchaud 2

@article{CRPHYS_2023__24_S1_9_0, author = {Giulio Biroli and Jean-Philippe Bouchaud}, title = {The {RFOT} {Theory} of {Glasses:} {Recent} {Progress} and {Open} {Issues}}, journal = {Comptes Rendus. Physique}, pages = {9--23}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.136}, language = {en}, }
Giulio Biroli; Jean-Philippe Bouchaud. The RFOT Theory of Glasses: Recent Progress and Open Issues. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 9-23. doi : 10.5802/crphys.136. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.136/
[1] Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI
[2] Replica theory of the rigidity of structural glasses, J. Chem. Phys., Volume 136 (2012) no. 21, 214108 | DOI
[3] -spin-interaction spin-glass models: Connections with the structural glass problem, Phys. Rev. B, Volume 36 (1987) no. 10, pp. 5388-5397 | DOI
[4] Comparison between dynamical theories and metastable states in regular and glassy mean-field spin models with underlying first-order-like phase transitions, Phys. Rev. A, Volume 37 (1988) no. 11, pp. 4439-4448 | DOI
[5] Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A, Volume 40 (1989) no. 2, pp. 1045-1054 | DOI
[6] Glassiness in Uniformly Frustrated Systems, Structural glasses and super-cooled Liquids: theory, experiment, and applications (P. G. Wolynes; V. Lubchenko, eds.), John Wiley & Sons, 2012, pp. 193-222 | DOI
[7] The random first-order transition theory of glasses: A critical assessment, Structural glasses and super-cooled liquids: theory, experiment, and applications (Peter G. Wolynes; Vassiliy Lubchenko, eds.), John Wiley & Sons, 2012, pp. 31-113 | DOI
[8] On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses, J. Chem. Phys., Volume 121 (2004) no. 15, pp. 7347-7354 | DOI
[9] Rigorous inequalities between length and time scales in glassy systems, J. Stat. Phys., Volume 125 (2006) no. 1, pp. 23-54 | DOI | MR | Zbl
[10] Thermodynamic signature of growing amorphous order in glass-forming liquids, Nature Phys., Volume 4 (2008) no. 10, pp. 771-775 | DOI
[11] Structural glasses and super-cooled liquids: Theory, experiment, and applications, John Wiley & Sons, 2012 | DOI
[12] Recipes for metastable states in spin glasses, J. Phys. I, Volume 5 (1995) no. 11, pp. 1401-1415 | DOI
[13] Activated events in glasses: The structure of entropic droplets, Phys. Rev. B, Volume 72 (2005) no. 10, 100201, 4 pages | DOI
[14] First steps of a nucleation theory in disordered systems, J. Stat. Mech. Theory Exp., Volume 2005 (2005) no. 04, P04001 | DOI
[15] et al. Configurational entropy measurements in extremely super-cooled liquids that break the glass ceiling, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 43, pp. 11356-11361 | DOI
[16] Configurational entropy of glass-forming liquids, J. Chem. Phys., Volume 150 (2019) no. 16, 160902 | DOI
[17] Constructing explicit magnetic analogies for the dynamics of glass forming liquids, J. Chem. Phys., Volume 129 (2008) no. 19, 194505 | DOI
[18] Field theory of fluctuations in glasses, Eur. Phys. J. E, Volume 34 (2011) no. 9, 102, p. 17 | DOI
[19] Random-field Ising-like effective theory of the glass transition. I. Mean-field models, Phys. Rev. B, Volume 98 (2018) no. 17, 174205, 25 pages | DOI
[20] Random field Ising-like effective theory of the glass transition. II. Finite-dimensional models, Phys. Rev. B, Volume 98 (2018) no. 17, 174206, 29 pages | DOI
[21] Statistical mechanics of coupled super-cooled liquids in finite dimensions, SciPost Phys., Volume 12 (2022) no. 3, 091 | DOI
[22] Elastic models for the non-Arrhenius viscosity of glass-forming liquids, Journal of non-crystalline solids, Volume 352 (2006) no. 42-49, pp. 4635-4642 | DOI
[23] Does a growing static length scale control the glass transition?, Phys. Rev. Lett., Volume 119 (2017) no. 19, 195501, 5 pages | DOI
[24] Glassy dynamics of kinetically constrained models, Adv. Phys., Volume 52 (2003) no. 4, pp. 219-342 | DOI
[25] Dynamics on the Way to Forming Glass: Bubbles in Space-Time, Annu. Rev. Phys. Chem., Volume 61 (2010) no. 1, pp. 191-217 | DOI
[26] Excitations are localized and relaxation is hierarchical in glass-forming liquids, Phys. Rev. X, Volume 1 (2011) no. 2, 021013, 15 pages | DOI
[27] Amorphous Order and Nonlinear Susceptibilities in Glassy Materials, J. Phys. Chem. B, Volume 125 (2021) no. 28, pp. 7578-7586 | DOI
[28] Theory of simple glasses: exact solutions in infinite dimensions, Cambridge University Press, 2020
[29] Constrained Boltzmann–Gibbs measures and effective potential for glasses in hypernetted chain approximation and numerical simulations, J. Chem. Phys., Volume 110 (1999) no. 3, pp. 1726-1734 | DOI
[30] Phase-separation perspective on dynamic heterogeneities in glass-forming liquids, Phys. Rev. Lett., Volume 105 (2010) no. 5, 055703, 4 pages | DOI
[31] Liquid-glass transition in equilibrium, Phys. Rev. E, Volume 89 (2014) no. 2, 022309, 5 pages | DOI
[32] Ideal glass transitions by random pinning, Proc. Natl. Acad. Sci. USA, Volume 109 (2012) no. 23, pp. 8850-8855 | DOI
[33] Probing a liquid to glass transition in equilibrium, Phys. Rev. Lett., Volume 110 (2013) no. 24, 245702, 5 pages | DOI
[34] Equilibrium phase diagram of a randomly pinned glass-former, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 22, pp. 6914-6919 | DOI
[35] Growing dynamical facilitation on approaching the random pinning colloidal glass transition, Nat. Commun., Volume 5 (2014) no. 1, 4685, 7 pages | DOI
[36] Mosaic multistate scenario versus one-state description of super-cooled liquids, Phys. Rev. Lett., Volume 98 (2007) no. 18, 187801, 4 pages | DOI
[37] Models and algorithms for the next generation of glass transition studies, Phys. Rev. X, Volume 7 (2017) no. 2, 021039, 22 pages | DOI
[38] Configurational entropy measurements in extremely super-cooled liquids that break the glass ceiling, Proc. Natl. Acad. Sci. USA, Volume 114 (2017) no. 43, pp. 11356-11361 | DOI
[39] Zero-temperature glass transition in two dimensions, Nat. Commun., Volume 10 (2019) no. 1, 1508, 7 pages | DOI
[40] Static self-induced heterogeneity in glass-forming liquids: Overlap as a microscope, J. Chem. Phys., Volume 156 (2022) no. 19, 194503 | DOI
[41] Pinning susceptibility: a novel method to study growth of amorphous order in glass-forming liquids, Soft Matter, Volume 13 (2017) no. 38, pp. 6929-6937 | DOI
[42] Soft-Pinning: Experimental Validation of Static Correlations in super-cooled Molecular Glass-forming Liquids (2021) (https://arxiv.org/abs/2106.06325)
[43] Nonlinear susceptibility in glassy systems: A probe for cooperative dynamical length scales, Phys. Rev. B, Volume 72 (2005) no. 6, 064204, 11 pages | DOI
[44] Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers, Science, Volume 352 (2016) no. 6291, pp. 1308-1311 | DOI
[45] Dynamic facilitation theory: a statistical mechanics approach to dynamic arrest, J. Stat. Mech., Volume 2019 (2019), 084015 | DOI | MR | Zbl
[46] Numerical determination of the exponents controlling the relationship between time, length, and temperature in glass-forming liquids, J. Chem. Phys., Volume 131 (2009), 194901 | DOI
[47] Does the Adam–Gibbs relation hold in simulated super-cooled liquids?, J. Chem. Phys., Volume 151 (2019) no. 8, 084504 | DOI
[48] Self-induced heterogeneity in deeply super-cooled liquids, Phys. Rev. Lett., Volume 127 (2021) no. 8, 088002, 6 pages | DOI
[49] Can the glass transition be explained without a growing static length scale?, J. Chem. Phys., Volume 150 (2019) no. 9, 094501 | DOI
[50] Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid, Phys. Rev. Lett., Volume 105 (2010) no. 13, 135702, 4 pages | DOI
[51] Elastoplasticity Mediates Dynamical Heterogeneity Below the Mode Coupling Temperature, Phys. Rev. Lett., Volume 127 (2021) no. 4, 048002, 6 pages | DOI
[52] Thirty milliseconds in the life of a super-cooled liquid (2022) (https://arxiv.org/abs/2207.00491)
[53] A localization transition underlies the mode-coupling crossover of glasses, SciPost Phys., Volume 7 (2019) no. 6, 077 | DOI | MR
[54] Mean field theory of the swap Monte Carlo algorithm, J. Chem. Phys., Volume 147 (2017) no. 23, 234506 | DOI
[55] Theory for swap acceleration near the glass and jamming transitions for continuously polydisperse particles, Phys. Rev. X, Volume 8 (2018) no. 3, 031050, 13 pages | DOI
[56] Theory for the dynamics of glassy mixtures with particle size swaps, Phys. Rev. E, Volume 98 (2018) no. 5, 050601, 5 pages | DOI
[57] Microscopic theory of heterogeneity and nonexponential relaxations in super-cooled liquids, Phys. Rev. Lett., Volume 86 (2001) no. 24, pp. 5526-5529 | DOI
[58] Dynamical heterogeneity of the glassy state, J. Phys. Chem. B, Volume 118 (2014) no. 28, pp. 7835-7847 | DOI
[59] Microscopic origin of excess wings in relaxation spectra of supercooled liquids, Nat. Phys., Volume 18 (2022) no. 4, pp. 468-472 | DOI
[60] Fluctuations and shape of cooperative rearranging regions in glass-forming liquids, Phys. Rev. X, Volume 7 (2017) no. 1, 011011, 10 pages | DOI
[61] Nonlinear dielectric response at the excess wing of glass-forming liquids, Phys. Rev. Lett., Volume 110 (2013), 107603, 5 pages | DOI
[62] Nonlinear mechanical response of super-cooled melts under applied forces, Eur. Phys. J. Spec. Top., Volume 226 (2017) no. 14, pp. 3039-3060 | DOI
[63] Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition, Soft Matter, Volume 12 (2016) no. 43, pp. 8825-8832 | DOI
[64] Flow and fracture near the sol-gel transition of silica nanoparticle suspensions, Soft Matter, Volume 14 (2018) no. 39, pp. 8036-8043 | DOI
[65] Failure of heterogeneous materials: A dynamic phase transition?, Phys. Rep., Volume 498 (2011) no. 1, pp. 1-44 | DOI
Cited by Sources:
Comments - Policy