Comptes Rendus
Characterization and modelling of exoplanetary atmospheres
[Caractérisation et modélisation des atmosphères exoplanétaires]
Comptes Rendus. Physique, Online first (2023), pp. 1-11.

Cet article passe en revue les récentes avancées en physique des atmosphères des exoplanètes, dans le cadre de la préparation de la mission Ariel de l’ESA. La modélisation des atmosphères, bâtie sur les modèles planétologiques développés dans l’étude du Système Solaire, peut aujourd’hui être extrapolée aux exoplanètes par l’utilisation de bases de données moléculaires adaptées aux températures rencontrées. L’une des difficultés des modèles repose sur la forte dégénérescence dans l’inversion des paramètres de structure et composition atmosphérique. Les méthodes bayesiennes d’inversion ont permis des avancées récentes, sur les observations à basse résolution du Hubble Space Telescope, et sont préparées pour les prochaines observations du James Webb Space Telescope. Les avancées attendues dans les prochaines années dans le domaine font de la caractérisation par spectroscopie des exoplanètes une des branches les plus actives du domaine.

The spectral characterization of exoplanetary atmospheres is a relatively new subject. Until recently, space and ground-based observatories allowed only a few planets to be observed with spectroscopic instruments. The arrival of JWST data and the development of new instruments on Earth will drastically modify the situation, giving access to deeper modelling contraints and to a better understanding on planet formation and evolution. This paper is devoted to describe the turning point experienced by the astronomy of exoplanets that will continue in particular with the launch of the ESA/Ariel mission at the end of the decade.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.143
Keywords: Exoplanets, Atmospheres, Models, Retrieval, James Webb space telescope (JWST), Ariel mission
Mot clés : Exoplanètes, Atmosphères, Modèles, Inversion, Téléscope spatial James Webb (JWST), Mission Ariel
Benjamin Charnay 1 ; Pierre Drossart 2

1 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, 5 place Jules Janssen, 92195 Meudon, France
2 Institut d’Astrophysique de Paris, CNRS, UMR 7095, Sorbonne Université, 98 bis bd Arago, 75014 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A7_0,
     author = {Benjamin Charnay and Pierre Drossart},
     title = {Characterization and modelling of exoplanetary atmospheres},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.143},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Benjamin Charnay
AU  - Pierre Drossart
TI  - Characterization and modelling of exoplanetary atmospheres
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.143
LA  - en
ID  - CRPHYS_2023__24_S2_A7_0
ER  - 
%0 Journal Article
%A Benjamin Charnay
%A Pierre Drossart
%T Characterization and modelling of exoplanetary atmospheres
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.143
%G en
%F CRPHYS_2023__24_S2_A7_0
Benjamin Charnay; Pierre Drossart. Characterization and modelling of exoplanetary atmospheres. Comptes Rendus. Physique, Online first (2023), pp. 1-11. doi : 10.5802/crphys.143.

[1] W. M. Sinton Spectroscopic evidence for vegetation on mars, Astrophys. J., Volume 126 (1957), pp. 231-239 | DOI

[2] D. Charbonneau; T. M. Brown; D. W. Latham; M. Mayor Detection of planetary transits across a sun-like star, Astrophys. J. Lett., Volume 529 (2000) no. 1, p. L45-L48 | DOI

[3] D. Charbonneau; T. M. Brown; R. W. Noyes; R. L. Gilliland Detection of an extrasolar planet atmosphere, Astrophys. J., Volume 568 (2002) no. 1, pp. 377-384 | DOI

[4] G. Morello; N. Casasayas-Barris; J. Orell-Miquel et al. The strange case of Na I in the atmosphere of HD 209458 b. Reconciling low- and high-resolution spectroscopic observations, Astron. Astrophys., Volume 657 (2022), A97 | DOI

[5] N. Casasayas-Barris; E. Pallé; F. Yan et al. Is there Na I in the atmosphere of HD 209458b?. Effect of the centre-to-limb variation and Rossiter–McLaughlin effect in transmission spectroscopy studies, Astron. Astrophys., Volume 635 (2020), A206 | DOI

[6] T. Guillot; L. N. Fletcher; R. Helled et al. Giant planets from the inside-out, 2022 (preprint) | arXiv

[7] P. Giacobbe; M. Brogi; S. Gandhi et al. Five carbon- and nitrogen-bearing species in a hot giant planet’s atmosphere, Nature, Volume 592 (2021) no. 7853, pp. 205-208 | DOI

[8] D. K. Sing; J. J. Fortney; N. Nikolov et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion, Nature, Volume 529 (2016), pp. 59-62 | DOI

[9] H. A. Knutson; D. Charbonneau; L. E. Allen et al. A map of the day-night contrast of the extrasolar planet HD 189733b, Nature, Volume 447 (2007) no. 7141, pp. 183-186 | DOI

[10] A. P. Showman; T. Guillot Atmospheric circulation and tides of “51 Pegasus b-like” planets, Astron. Astrophys., Volume 385 (2002), pp. 166-180 | DOI

[11] K. I. Öberg; R. Murray-Clay; E. A. Bergin The effects of snowlines on C/O in planetary atmospheres, Astrophys. J. Lett., Volume 743 (2011) no. 1, L16 | DOI

[12] R. A. Rossiter On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system, Astrophys. J., Volume 60 (1924), pp. 15-21 | DOI

[13] D. B. McLaughlin Some results of a spectrographic study of the Algol system, Astrophys. J., Volume 60 (1924), pp. 22-31 | DOI

[14] P. Drossart; V. Batista; J.-P. Maillard; J.-P. Beaulieu; E. Panek Transit spectroscopy : on the influence of stellar molecular lines in the retrieval of exoplanets atmospheric absorption, 44th COSPAR Scientific Assembly. Held 16–24 July, Volume 44 (2022), p. 565

[15] A. Chiavassa; M. Brogi Planet and star synergy at high-spectral resolution. A rationale for the characterization of exoplanet atmospheres. I. The infrared, Astron. Astrophys., Volume 631 (2019), A100 | DOI

[16] G. Tinetti; P. Drossart; P. Eccleston et al. A chemical survey of exoplanets with ARIEL, Exp. Astron., Volume 46 (2018) no. 1, pp. 135-209 | DOI

[17] L. Puig; G. Pilbratt; A. Heske et al. The Phase A study of the ESA M4 mission candidate ARIEL, Exp. Astron., Volume 46 (2018) no. 1, pp. 211-239 | DOI

[18] B. Charnay; J. M. Mendonça; L. Kreidberg et al. A survey of exoplanet phase curves with Ariel, Exp. Astron., Volume 53 (2022) no. 2, pp. 417-446 | DOI

[19] A. Kokori; A. Tsiaras; B. Edwards et al. ExoClock project: an open platform for monitoring the ephemerides of Ariel targets with contributions from the public, Exp. Astron., Volume 53 (2022) no. 2, pp. 547-588 | DOI

[20] F. Forget; R. Wordsworth; E. Millour et al. 3D modelling of the early martian climate under a denser CO 2 atmosphere: Temperatures and CO 2 ice clouds, Icarus, Volume 222 (2013) no. 1, pp. 81-99 | DOI

[21] M. Mayor; D. Queloz A Jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995) no. 6555, pp. 355-359 | DOI

[22] J. F. Kasting; D. P. Whitmire; R. T. Reynolds Habitable zones around main sequence stars, Icarus, Volume 101 (1993) no. 1, pp. 108-128 | DOI

[23] J. Leconte Spectral binning of precomputed correlated-k coefficients, Astron. Astrophys., Volume 645 (2021), A20 | DOI

[24] J. Leconte; F. Forget; B. Charnay et al. 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability, Astron. Astrophys., Volume 554 (2013), A69 | DOI

[25] J. Yang; N. B. Cowan; D. S. Abbot Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets, Astrophys. J. Lett., Volume 771 (2013), L45 | DOI

[26] K. J. Zahnle; M. S. Marley Methane, carbon monoxide, and ammonia in Brown Dwarfs and self-luminous giant planets, Astrophys. J., Volume 797 (2014), 41 | DOI

[27] O. Venot; T. Cavalié; R. Bounaceur et al. New chemical scheme for giant planet thermochemistry. Update of the methanol chemistry and new reduced chemical scheme, Astron. Astrophys., Volume 634 (2020), A78 | DOI

[28] L. Kreidberg; J. L. Bean; J.-M. Désert et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b, Nature, Volume 505 (2014), pp. 69-72 | DOI

[29] B.-O. Demory; J. de Wit; N. Lewis et al. Inference of inhomogeneous clouds in an exoplanet atmosphere, Astrophys. J. Lett., Volume 776 (2013), L25 | DOI

[30] V. Parmentier; J. J. Fortney; A. P. Showman; C. Morley; M. S. Marley Transitions in the cloud composition of hot jupiters, Astrophys. J., Volume 828 (2016), 22 | DOI

[31] M. S. Marley; A. S. Ackerman; J. N. Cuzzi; D. Kitzmann Clouds and hazes in exoplanet atmospheres, Comparative Climatology of Terrestrial Planets (S. J. Mackwell; A. A. Simon-Miller; J. W. Harder; M. A. Bullock, eds.), University of Arizona, 2013, pp. 367-391 | DOI

[32] P. Gao; H. R. Wakeford; S. E. Moran; V. Parmentier Aerosols in exoplanet atmospheres, J. Geophys. Res. (Planets), Volume 126 (2021) no. 4, e06655 | DOI

[33] C. Helling; P. Woitke Dust in brown dwarfs. V. Growth and evaporation of dirty dust grains, Astron. Astrophys., Volume 455 (2006), pp. 325-338 | DOI

[34] P. Gao; D. P. Thorngren; E. K. H. Lee et al. Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes, Nat. Astron., Volume 4 (2020), pp. 951-956 | DOI

[35] B. Charnay; B. Bézard; J.-L. Baudino et al. A self-consistent cloud model for Brown Dwarfs and young giant exoplanets: comparison with photometric and spectroscopic observations, Astrophys. J., Volume 854 (2018) no. 2, 172 | DOI

[36] V. Parmentier; M. R. Line; J. L. Bean et al. From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context, Astron. Astrophys., Volume 617 (2018), A110 | DOI

[37] M. Turbet; E. Bolmont; G. Chaverot et al. Day-night cloud asymmetry prevents early oceans on Venus but not on Earth, Nature, Volume 598 (2021) no. 7880, pp. 276-280 | DOI

[38] B. Benneke; S. Seager How to distinguish between cloudy mini-neptunes and water/volatile-dominated super-earths, Astrophys. J., Volume 778 (2013), 153 | DOI

[39] W. Pluriel; T. Zingales; J. Leconte; V. Parmentier Strong biases in retrieved atmospheric composition caused by day-night chemical heterogeneities, Astron. Astrophys., Volume 636 (2020), A66 | DOI

[40] B. Charnay; D. Blain; B. Bézard et al. Formation and dynamics of water clouds on temperate sub-Neptunes: the example of K2-18b, Astron. Astrophys., Volume 646 (2021), A171 | DOI

[41] J.-L. Baudino; P. Molliere; O. Venot et al. Toward the analysis of JWST exoplanet spectra: Identifying troublesome model parameters, Astrophys. J., Volume 850 (2017), 150 | DOI

[42] M. Turbet; T. J. Fauchez; D. E. Sergeev et al. The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part I: Dry Cases—The fellowship of the GCMs, Planet. Sci. J., Volume 3 (2022), 211 | DOI

[43] D. E. Sergeev; T. J. Fauchez; M. Turbet et al. The TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI). Part II: Moist Cases—The Two Waterworlds, Planet. Sci. J., Volume 3 (2022), 212 | DOI

[44] H. Wang; R. Wordsworth Extremely long convergence times in a 3D GCM simulation of the sub-neptune gliese 1214b, Astrophys. J., Volume 891 (2020) no. 1, 7 | DOI

[45] F. Sainsbury-Martinez; P. Wang; S. Fromang et al. Idealised simulations of the deep atmosphere of hot Jupiters. Deep, hot adiabats as a robust solution to the radius inflation problem, Astron. Astrophys., Volume 632 (2019), A114 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Direct imaging of exoplanets: Legacy and prospects

Gael Chauvin

C. R. Phys (2023)


Exoplanets: Foreword

Anne-Marie Lagrange; Daniel Rouan

C. R. Phys (2023)


Evaporation, from exoplanets to exocomets

Alain Lecavelier des Etangs

C. R. Phys (2023)