Metallic glass formers are a relatively new entry in glass physics, which has attracted large interest in both physics and materials science communities due to the unique mechanical and structural properties of these materials. Physical aging is however one of the main obstacle to their widespread use as it affects their properties at all length scales. The knowledge of the microscopic mechanisms inducing aging and relaxation is therefore extremely important for both fundamental and applied sciences. In this article we present a review of the recent advances made with the X-ray photon correlation spectroscopy technique on the study of the collective particle motion and physical aging in metallic glasses at the atomic level. We show that a careful tuning of the sample preparation or the application of specific thermal protocols have the potential to drive the glass into more aged or rejuvenated microscopic configurations with different stabilities.
Les verres métalliques sont des matériaux qui suscitent une grande attention en raison de leurs propriétés exceptionnelles, notamment leur résistance à la corrosion ainsi que leur haute résistance à la fracture combinée à une large déformation élastique. De plus, certaines compositions permettent une vitrification avec des vitesses de refroidissement relativement lente, permettant la synthèse de matériaux massifs, avec des rayons critiques de synthèse supérieurs au centimètre, ouvrant la voie à une utilisation industrielle des verres métalliques.
Néanmoins, tous les verres sont sujet à une relaxation spontanée vers l’état liquide, plus ou moins lente, appelée vieillissement, et qui affecte la structure, la dynamique et les propriétés macroscopiques du verre. Dans le cas des verres métallique, les effets du vieillissement sont particulièrement importants, incluant une fragilité accrue du verre, et bloquent leur potentiel applicatif.
De fait, la connaissance et la compréhension des mécanismes microscopiques associés au vieillissement font l’objet d’une recherche intense, tant du point de vue applicatif que fondamental. Dans cet article, nous présentons les récents développements de la spectroscopie de corrélation des photons des rayons X (X-ray Photon Correlation Spectroscopy, ou XPCS), qui permet de quantifier la mobilité atomique au sein des matériaux désordonnés, et son application pour caractériser le vieillissement des verres à l’échelle microscopique. Nous montrons que des protocoles thermiques ou mécaniques appropriés au niveau de la synthèse et la préparation des verres métalliques permettent de modifier la stabilité du matériau vitreux, et d’aboutir à un verre rajeuni ou vieilli.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Verres métalliques, Vieillissement, Corrélation de photons des rayons X, Dynamique atomique, Rayonnement synchrotron, Relaxation structurelle
Antoine Cornet 1, 2; Beatrice Ruta 1, 2

@article{CRPHYS_2023__24_S1_165_0, author = {Antoine Cornet and Beatrice Ruta}, title = {New pathways to control the evolution of the atomic motion in metallic glasses}, journal = {Comptes Rendus. Physique}, pages = {165--175}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.149}, language = {en}, }
TY - JOUR AU - Antoine Cornet AU - Beatrice Ruta TI - New pathways to control the evolution of the atomic motion in metallic glasses JO - Comptes Rendus. Physique PY - 2023 SP - 165 EP - 175 VL - 24 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crphys.149 LA - en ID - CRPHYS_2023__24_S1_165_0 ER -
Antoine Cornet; Beatrice Ruta. New pathways to control the evolution of the atomic motion in metallic glasses. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 165-175. doi : 10.5802/crphys.149. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.149/
[1] Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 587-645 | DOI
[2] Dynamic relaxations and relaxation-property relationships in metallic glasses, Prog. Mater. Sci., Volume 106 (2019), 100561 | DOI
[3] Metallic glasseson the threshold, Mater. Today, Volume 12 (2009) no. 1, pp. 14-22 | DOI
[4] et al. Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy, Phys. Rev. Lett., Volume 109 (2012) no. 16, 165701 | DOI
[5] Multicomponent bulk metallic glasses with elevated-temperature resistance, MRS Bull., Volume 44 (2019) no. 11, pp. 867-872 | DOI
[6] Critical fictive temperature for plasticity in metallic glasses, Nat. Commun., Volume 4 (2013) no. 1, 1536 | DOI
[7] Relaxation processes and physical aging in metallic glasses, J. Phys.: Condens. Matter., Volume 29 (2017) no. 50, 503002 | DOI
[8] Aging and structural relaxation of hyper-quenched MgCuY metallic glass, J. Alloys Compd., Volume 615 (2014), p. S9-S12 | DOI
[9] Structural dynamics of materials probed by X-ray photon correlation spectroscopy, Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications (E. J. Jaeschke; S. Khan; J. R. Schneider; J. B. Hastings, eds.), Springer International Publishing, Cham, 2016, pp. 1617-1641 | DOI
[10] et al. X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass, Phys. Rev. Lett., Volume 115 (2015) no. 17, 175701 | DOI
[11] Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging, Nat. Commun., Volume 7 (2016) no. 1, 10344 | DOI
[12] Structural and dynamical properties of Mg65Cu25Y10 metallic glasses studied by in situ high energy X-ray diffraction and time resolved X-ray photon correlation spectroscopy, J. Alloys Compd., Volume 615 (2014), p. S45-S50 | DOI
[13] Crossover from localized to cascade relaxations in metallic glasses, Phys. Rev. Lett., Volume 115 (2015) no. 4, 045501 | DOI
[14] Direct evidence of two equilibration mechanisms in glassy polymers, Phys. Rev. Lett., Volume 111 (2013) no. 9, 095701 | DOI
[15] et al. Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former, Acta Mater., Volume 144 (2018), pp. 400-410 | DOI
[16] Relaxation decoupling in metallic glasses at low temperatures, Phys. Rev. Lett., Volume 118 (2017) no. 22, 225901 | DOI
[17] Mode-coupling theory of the glass transition: a primer, Front. Phys., Volume 6 (2018), 97 | DOI
[18] et al. Wave-vector dependence of the dynamics in supercooled metallic liquids, Phys. Rev. Lett., Volume 125 (2020) no. 5, 055701 | DOI
[19] Supercooled liquids for pedestrians, Phys. Rep., Volume 476 (2009) no. 4, pp. 51-124 | DOI
[20] Intrinsic relaxation in a supercooled ZrTiNiCuBe glass forming liquid, Phys. Rev. Mater., Volume 5 (2021) no. 5, 055601 | DOI
[21] Elastically driven intermittent microscopic dynamics in soft solids, Nat. Commun., Volume 8 (2017) no. 1, 15846 | DOI
[22] Relaxation in yield stress systems through elastically interacting activated events, Phys. Rev. Lett., Volume 113 (2014) no. 24, 248301 | DOI
[23] Relaxation dynamics of Pd–Ni–P metallic glass: decoupling of anelastic and viscous processes, J. Phys.: Condens. Matter., Volume 33 (2021) no. 16, 164004 | DOI
[24] Stretched and compressed exponentials in the relaxation dynamics of a metallic glass-forming melt, Nat. Commun., Volume 9 (2018) no. 1, 5334 | DOI
[25] et al. Universal non-diffusive slow dynamics in aging soft matter, Faraday Discuss., Volume 123 (2003) no. 0, pp. 237-251 | DOI
[26] Universal aging features in the restructuring of fractal colloidal gels, Phys. Rev. Lett., Volume 84 (2000) no. 10, pp. 2275-2278 | DOI
[27] Anomalous dynamical light scattering in soft glassy gels, Eur. Phys. J. E, Volume 6 (2001) no. 3, pp. 231-236 | DOI
[28] et al. Local elastic properties of a metallic glass, Nat. Mater., Volume 10 (2011) no. 6, pp. 439-442 | DOI
[29] Compressed correlation functions and fast aging dynamics in metallic glasses, J. Chem. Phys., Volume 138 (2013) no. 5, 054508 | DOI
[30] et al. Nonmonotonous atomic motions in metallic glasses, Phys. Rev. B, Volume 102 (2020) no. 5, 054108 | DOI
[31] et al. Organic glasses with exceptional thermodynamic and kinetic stability, Science, Volume 315 (2007) no. 5810, pp. 353-356 | DOI
[32] Deformation in metallic glasses studied by synchrotron X-ray diffraction, Metals, Volume 6 (2016) no. 1, 22 | DOI
[33] et al. Rejuvenation of metallic glasses by non-affine thermal strain, Nature, Volume 524 (2015) no. 7564, pp. 200-203 | DOI
[34] Ultrastable metallic glass, Adv. Mater., Volume 25 (2013) no. 41, pp. 5904-5908 | DOI
[35] et al. Anti-aging in ultrastable metallic glasses, Phys. Rev. Lett., Volume 120 (2018) no. 13, 135504 | DOI
[36] et al. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass, Nat. Commun., Volume 9 (2018) no. 1, 4414 | DOI
[37] et al. Microscopic structural evolution during ultrastable metallic glass formation, ACS Appl. Mater. Interf., Volume 13 (2021) no. 33, pp. 40098-40105 | DOI
[38] et al. Ultrastable metallic glasses formed on cold substrates, Nat. Commun., Volume 9 (2018), 1389 | DOI
[39] Thermomechanical processing of metallic glasses: extending the range of the glassy state, Nat. Rev. Mater., Volume 1 (2016) no. 9, pp. 1-14 | DOI
[40] Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass, Appl. Phys. Lett., Volume 101 (2012) no. 12, 121914 | DOI
[41] et al. Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation, Acta Mater., Volume 58 (2010) no. 2, pp. 429-438 | DOI
[42] Investigation of relaxation behavior in highly rejuvenated bulk metallic glasses by in-situ synchrotron X-ray scattering, Intermetallics, Volume 121 (2020), 106764 | DOI
[43] Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy, Ultramicroscopy, Volume 142 (2014), pp. 1-9 | DOI
[44] Quantitative measurement of density in a shear band of metallic glass monitored along its propagation direction, Phys. Rev. Lett., Volume 115 (2015) no. 3, 035501 | DOI
[45] Shear-band thickness and shear-band cavities in a Zr-based metallic glass, Acta Mater., Volume 140 (2017), pp. 206-216 | DOI
[46] Deformation-induced nanocrystal formation in shear bands of amorphous alloys, Nature, Volume 367 (1994) no. 6463, pp. 541-543 | DOI
[47] Nanocrystallization in a shear band: An in situ investigation, Appl. Phys. Lett., Volume 98 (2011) no. 25, 251904 | DOI
[48] Thickness of shear bands in metallic glasses, Appl. Phys. Lett., Volume 89 (2006) no. 7, 071907 | DOI
[49] Shear banding leads to accelerated aging dynamics in a metallic glass, Phys. Rev. B, Volume 97 (2018) no. 1, 014204 | DOI
[50] et al. X-ray photon correlation spectroscopy revealing the change of relaxation dynamics of a severely deformed Pd-based bulk metallic glass, Acta Mater., Volume 195 (2020), pp. 446-453 | DOI
[51] et al. Enhanced kinetic stability of a bulk metallic glass by high pressure, Appl. Phys. Lett., Volume 109 (2016) no. 22, 221904 | DOI
Cited by Sources:
Comments - Policy