Accepted:
Online First:
Published online:
Jean-Louis Barrat 1; Daniel R. Neuville 2

@article{CRPHYS_2023__24_S1_5_0, author = {Jean-Louis Barrat and Daniel R. Neuville}, title = {From everyday glass to disordered solids: {Foreword}}, journal = {Comptes Rendus. Physique}, pages = {5--8}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S1}, year = {2023}, doi = {10.5802/crphys.165}, language = {en}, }
Jean-Louis Barrat; Daniel R. Neuville. From everyday glass to disordered solids: Foreword. Comptes Rendus. Physique, From everyday glass to disordered solids, Volume 24 (2023) no. S1, pp. 5-8. doi : 10.5802/crphys.165. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.165/
[1] Glass as a biomaterial: strategies for optimising bioactive glasses for clinical applications, C. R. Géosci., Volume 354 (2022) no. S1, pp. 185-197
[2] Nontraditional, safe, high voltage rechargeable cells of long cycle life, J. Am. Chem. Soc., Volume 140 (2018), pp. 6343-6352 | DOI
[3] Glass, an ubiquitous material, C. R. Géosci., Volume 354 (2022), pp. 1-14 | DOI
[4] Glass as a fourth state of matter, Science, Volume 64 (1926), pp. 363-364 | DOI
[5] The Theory of Rate Processes, McGraw-Hill, New-York, 1941
[6] On the hole theory of viscosity, compressibility and expansivity of liquids, Kolloid-Z. Zeitschrift Polymere, Volume 181 (1962), pp. 131-137 | DOI
[7] Free-volume model of the amorphous phase: glass transition, J. Phys. Chem., Volume 34 (1961), pp. 120-125 | DOI
[8] On the free-volume model of the liquid-glass transition: glass transition, J. Phys. Chem., Volume 52 (1970), pp. 3038-3041 | DOI
[9] On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys., Volume 43 (1965), pp. 139-154 | DOI
[10] Nobel Lecture: Multiple equilibria (2022) (preprint, arXiv:2304.00580) | DOI
[11] The RFOT Theory of Glasses: Recent Progress and Open Issues, C. R. Phys., Volume 24 (2023) no. S1, pp. 9-23 | DOI
[12] The glass transition in molecules, colloids and grains: universality and specificity, C. R. Phys., Volume 24 (2023) no. S1, pp. 25-56 | DOI
[13] Computer simulations of the glass transition and glassy materials, C. R. Phys., Volume 24 (2023) no. S1, pp. 57-72 | DOI
[14] Vibrations and heat transfer in glasses: the role played by Disorder, C. R. Phys., Volume 24 (2023) no. S1, pp. 73-97 | DOI
[15] Some strange things about the mechanical properties of glass, C. R. Phys., Volume 24 (2023) no. S1, pp. 99-112 | DOI
[16] Coarse-graining amorphous plasticity: impact of rejuvenation and disorder, C. R. Phys., Volume 24 (2023) no. S1, pp. 113-131 | DOI
[17] Topological ordering during flexible to rigid transitions in disordered networks, C. R. Phys., Volume 24 (2023) no. S1, pp. 133-154 | DOI
[18] Entropy of metallic glasses and the size effect on glass transition, C. R. Phys., Volume 24 (2023) no. S1, pp. 155-164 | DOI
[19] New pathways to control the evolution of the atomic motion in metallic glasses, C. R. Phys., Volume 24 (2023) no. S1, pp. 165-175 | DOI
[20] Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems, J. Non-Cryst. Solids, Volume 131-133 (1991), pp. 13-31 | DOI
[21] Organic glass-forming liquids and the concept of fragility, C. R. Phys., Volume 24 (2023) no. S1, pp. 177-198 | DOI
[22] From nanoscale heterogeneities to nanolites: cation clustering in glasses, C. R. Phys., Volume 24 (2023) no. S1, pp. 199-214 | DOI
[23] Percolation channels: a universal idea to describe the atomic structure of glasses and melts, Sci. Rep., Volume 7 (2017), 16490 | DOI
[24] In situ observation of nanolite growth in volcanic melt: a driving force for explosive eruptions, Sci. Adv., Volume 6 (2020) no. 39, eabb0413 | DOI
Cited by Sources:
Comments - Policy