The deceptively simple crystallographic structure of early transition metal oxide perovskites belies the complexity and variety of electronic, magnetic and structural phases that they display. Structural defects, rotations, tilts, deformations of the oxygen-transition metal element octahedra help explain many of these phenomena. Another key player is the orbital degree of freedom of the d-ion. It may lead to a quantum entanglement of the materials electronic wavefunctions which promotes topological states in low dimensional geometries. In this report we present a study of select topological properties at surfaces or heterostructure interfaces of a subset of these perovskites when the orientation of the structure is along the (001) or (111) direction. In contrast to the extensively studied classes of topological insulators, topology in these systems is a characteristic property of the conducting regime, thus endowing the compounds with potential spintronic and quantum computing functionalities. We conclude this communication with a personal tribute to Gérard Toulouse (in French).
En dépit de l’apparente simplicité de leur structure cristallographique, les perovskites de métaux de transition présentent une grande richesse et complexité de phases électroniques, magnétiques et structurales. L’existence de différents types de défauts, de rotations et déformations des octaèdres oxygène-ion de transition expliquent en partie ce phénomène. De plus, le caractère d des fonctions d’ondes de l’ion de transition introduit un degré de liberté supplémentaire, susceptible de mener à l’intrication des fonctions d’onde du composé. Ceci confère à ces matériaux des propriétés topologiques en dimension réduite. Nous présentons ici quelques unes des caractéristiques topologiques aux interfaces et surfaces d’hétérostructures de certaines perovskites, lorsque la croissance est effectuée selon les orientations (001) et (111). Contrairement au cas très étudié des isolants topologiques, la topologie se manifeste dans le régime métallique, avec pour conséquence un réel potentiel sur le plan de l’ingénierie spintronique et du calcul quantique. Nous concluons par un hommage personnel à la mémoire de Gérard Toulouse.
Revised:
Accepted:
Published online:
Mots-clés : Science des matériaux, Théorie, Perovskites, Interfaces, Topologie, Spintronique
Marc Gabay 1
@article{CRPHYS_2024__25_G1_303_0, author = {Marc Gabay}, title = {Topological phases driven by orbital entanglement in {Transition} {Metal} {Oxide} {Perovskite} interfaces}, journal = {Comptes Rendus. Physique}, pages = {303--327}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.190}, language = {en}, }
Marc Gabay. Topological phases driven by orbital entanglement in Transition Metal Oxide Perovskite interfaces. Comptes Rendus. Physique, Volume 25 (2024), pp. 303-327. doi : 10.5802/crphys.190. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.190/
[1] A high-mobility electron gas at the LaAlO/SrTiO heterointerface, Nature, Volume 427 (2004) no. 6973, 157203, pp. 423-426 | DOI
[2] et al. Superconducting Interfaces Between Insulating Oxides, Science, Volume 317 (2007) no. 5842, 015001, pp. 1196-1199 | DOI
[3] Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO /SrTiO interface, Nat. Phys., Volume 7 (2011) no. 10, pp. 767-771 | DOI
[4] Coexistence of magnetic order and two-dimensional superconductivity at LaAlO /SrTiO interfaces, Nat. Phys., Volume 7 (2011) no. 10, pp. 762-766 | DOI
[5] Ferromagnetic exchange, spin–orbit coupling and spiral magnetism at the LaAlO/SrTiO interface, Nat. Phys., Volume 9 (2013), pp. 626-630 | DOI
[6] et al. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO, Nature Mater., Volume 13 (2014) no. 12, 144407, pp. 1085-1090 | DOI
[7] et al. Absence of Giant Spin Splitting in the Two-Dimensional Electron Liquid at the Surface of SrTiO (001), Phys. Rev. B, Volume 93 (2016) no. 24, 245143 | DOI
[8] Imaging of room-temperature ferromagnetic nano-domains at the surface of a non-magnetic oxide, Nat. Commun., Volume 7 (2016), 066601, pp. 11781-11786 | DOI
[9] Tunable Rashba Spin-Orbit Interaction at Oxide Interfaces, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126803 | DOI
[10] Tuning Spin-Orbit Coupling and Superconductivity at the SrTiO/LaAlO Interface: A Magnetotransport Study, Phys. Rev. Lett., Volume 104 (2010) no. 12, 126802 | DOI
[11] et al. Electric field control of the LaAlO /SrTiO interface ground state, Nature, Volume 456 (2008) no. 7222, pp. 624-627 | DOI
[12] A new spin for oxide interfaces, Nat. Phys., Volume 14 (2018) no. 4, 1800860, pp. 322-325 | DOI
[13] Physics of SrTiO-based heterostructures and nanostructures: a review, Rep. Prog. Phys., Volume 81 (2018) no. 3, 036503 | DOI
[14] Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators, C. R. Phys., Volume 20 (2019) no. 7, pp. 817-831 | DOI
[15] Field-effect devices utilizing LaAlO-SrTiO interfaces, Appl. Phys. Lett., Volume 100 (2012) no. 5, 053506, 126802 | DOI
[16] et al. Monolithically Integrated Circuits from Functional Oxides, Adv. Mater. Interfaces, Volume 1 (2014) no. 1, 1300031, 126803 | DOI
[17] Interface takes charge over Si, Nature Mater., Volume 10 (2011) no. 3, pp. 168-169 | DOI
[18] Quantum-Matter Heterostructures, Ann. Rev. Cond. Matter Phys., Volume 8 (2017) no. 1, pp. 145-164 | DOI
[19] et al. Two-dimensional electron systems in ATiO perovskites (, Ba, Sr): Control of orbital hybridization and energy order, Phys. Rev. B, Volume 96 (2017), 041121, 115143 | DOI
[20] Interface Physics in Complex Oxide Heterostructures, Ann. Rev. Cond. Matter Phys., Volume 2 (2011) no. 1, pp. 141-165 | DOI
[21] et al. Tunable spin polarization and superconductivity in engineered oxide interfaces, Nature Mater., Volume 15 (2016) no. 3, pp. 278-8283 | DOI
[22] et al. Coexistence and coupling of ferroelectricity and magnetism in an oxide two-dimensional electron gas, Nat. Phys., Volume 19 (2023) no. 6, pp. 823-829 | DOI
[23] Oxide Interfaces — An Opportunity for Electronics, Science, Volume 327 (2010) no. 5973, 053506, pp. 1607-1611 | DOI
[24] Electronic Reconstruction at the Interface Between Band Insulating Oxides: The LaAlO/SrTiO System, Oxide Thin Films, Multilayers, and Nanocomposites (P. Mele; T. Endo; S. Arisawa; C. Li; T. Tsuchiya, eds.), Springer, 2015, 012501, pp. 181-211 | DOI
[25] Research Update: Conductivity and beyond at the LaAlO/SrTiO interface, APL Mater., Volume 4 (2016), 060701 | DOI
[26] Electrons and polarons at oxide interfaces explored by soft-X-ray ARPES, Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies (C. Cancellieri; V. N. Strocov, eds.) (Springer Series in Materials Science), Volume 266, Springer, 2018, 195137, pp. 107-151 | DOI
[27] Orbital Symmetry and Electronic Properties of Two-Dimensional Electron Systems in Oxide Heterointerfaces, Oxide Spintronics (T. Banerjee, ed.), Jenny Stanford Publishing, 2019, 060701 | DOI
[28] et al. Electronic phase separation at LaAlO/SrTiO interfaces tunable by oxygen deficiency, Phys. Rev. Mater., Volume 3 (2019) no. 10, 106001, 2307474 | DOI
[29] Electronic phenomena at complex oxide interfaces: insights from first principles, J. Phys. Cond. Matt., Volume 22 (2010) no. 4, 043001 | DOI
[30] Second-principles method for materials simulations including electron and lattice degrees of freedom, Phys. Rev. B, Volume 93 (2016) no. 19, 195137 | DOI
[31] Dynamical Mean Field Theory for Oxide Heterostructures, Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies (Claudia Cancellieri; Vladimir N. Strocov, eds.), Springer, 2018, 266802, pp. 215-243 | DOI
[32] Gate-Tunable Band Structure of the LaAlOSrTiO Interface, Phys. Rev. Lett., Volume 118 (2017) no. 10, 106401 | DOI
[33] Self-Consistent Results for -Type Si Inversion Layers, Phys. Rev. B, Volume 5 (1972) no. 12, 013275, pp. 4891-4899 | DOI
[34] et al. Universal Fabrication of 2D Electron Systems in Functional Oxides, Adv. Mater., Volume 28 (2016) no. 10, 1300031, pp. 1976-1980 | DOI
[35] 2D surprises at the surface of 3D materials: Confined electron systems in transition metal oxides, J. Electron Spectrosc. Relat. Phenom., Volume 219 (2017), pp. 16-28 | DOI
[36] Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators, J. Phys. Cond. Matt., Volume 29 (2017), 433005, 041302 | DOI
[37] ARPES Studies of Two-Dimensional Electron Gases at Transition Metal Oxide Surfaces, Spectroscopy of Complex Oxide Interfaces: Photoemission and Related Spectroscopies (C. Cancellieri; V. N. Strocov, eds.) (Springer Series in Materials Science), Volume 266, Springer, 2018, 125121, pp. 55-85 | DOI
[38] A spin–orbit playground: surfaces and interfaces of transition metal oxides, Rep. Prog. Phys., Volume 82 (2018) no. 1, 012501, 3414 | DOI
[39] Quantum confinement in perovskite oxide heterostructures: Tight binding instead of a nearly free electron picture, Phys. Rev. B, Volume 88 (2013) no. 12, 125401, 036805 | DOI
[40] Theory of t electron-gas Rashba interactions, Phys. Rev. B, Volume 88 (2013), 041302 | DOI
[41] Topological states at the (001) surface of SrTiO, Phys. Rev. B, Volume 95 (2017), 165117 | DOI
[42] Spin texture driven spintronic enhancement at the LaAlO/SrTiO interface, Phys. Rev. B, Volume 102 (2020), 144407 | DOI
[43] Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C: Solid State Phys., Volume 17 (1984) no. 33, pp. 6039-6045 | DOI
[44] Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Comm., Volume 73 (1990) no. 3, 1, pp. 233-235 | DOI
[45] et al. All-Electrical Detection of the Spin-Charge Conversion in Nanodevices Based on SrTiOD Electron Gases, Adv. Funct. Mater., Volume 34 (2024) no. 3, 2307474, 024515 | DOI
[46] Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1057-1110 | DOI
[47] Topological Insulators and Topological Superconductors, Princeton University Press, 2013 | DOI
[48] A Passage to Topological Matter: Colloquium, J. Korean Phys. Soc., Volume 73 (2018) no. 6, pp. 817-832 | DOI
[49] Time-reversal-invariant topological superconductivity in one and two dimensions, Phys. Rep., Volume 825 (2019), 201102, pp. 1-48 | DOI
[50] Topological Insulators (2023) (preprint, arXiv:2307.14196) | DOI
[51] Topological Materials: Weyl Semimetals, Ann. Rev. Cond. Matter Phys., Volume 8 (2017) no. 1, 177601, pp. 337-354 | DOI
[52] Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys., Volume 90 (2018) no. 1, 015001, 245143 | DOI
[53] Orbitronics: The Intrinsic Orbital Current in -Doped Silicon, Phys. Rev. Lett., Volume 95 (2005) no. 6, 066601 | DOI
[54] Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, Volume 314 (2006) no. 5806, 041006, pp. 1757-1761 | DOI
[55] et al. Quantum Spin Hall Insulator State in HgTe Quantum Wells, Science, Volume 318 (2007) no. 5851, pp. 766-770 | DOI
[56] Emergent functions of quantum materials, Nat. Phys., Volume 13 (2017), 075427, pp. 1056-1068 | DOI
[57] Dirac zeros in an orbital selective Mott phase: Green’s function Berry curvature and flux quantization (2024), 043001 (preprint, arXiv:2401.12156) | DOI
[58] Theory of the SrTiO surface state two-dimensional electron gas, Phys. Rev. B, Volume 86 (2012) no. 12, 125121, 433005 | DOI
[59] et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO, Nature, Volume 469 (2011), 8944, p. 189-93 | DOI
[60] et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO surface, Nature Mater., Volume 10 (2011) no. 2, 036503, pp. 114-118 | DOI
[61] Theory of spin-orbit coupling at LaAlO/SrTiO interfaces and SrTiO surfaces, Phys. Rev. B, Volume 87 (2013) no. 16, 161102 | DOI
[62] et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas, Nature Mater., Volume 18 (2019), 051002, pp. 1187–-1193 | DOI
[63] et al. Quasiparticle dynamics and spin-orbital texture of the SrTiO two-dimensional electron gas, Nat. Commun., Volume 5 (2014) no. 1, 3414, 051002 | DOI
[64] et al. Magnetism, Spin Texture, and In-Gap States: Atomic Specialization at the Surface of Oxygen-Deficient SrTiO, Phys. Rev. Lett., Volume 116 (2016) no. 15, 157203 | DOI
[65] et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces, Nature Mater, Volume 15 (2016), 237002, pp. 1261-1266 | DOI
[66] Oxide spin-orbitronics: spin–charge interconversion and topological spin textures, Nat. Rev. Mater., Volume 7 (2022) no. 4, 100952, pp. 258-274 | DOI
[67] Spin Hall effects, Rev. Mod. Phys., Volume 87 (2015) no. 4, pp. 1213-1260 | DOI
[68] et al. Electric-Field Control of Spin Current Generation and Detection in Ferromagnet-Free SrTiO-Based Nanodevices, Nano Lett., Volume 20 (2020) no. 1, 041121, pp. 395-401 | DOI
[69] Spin and orbital Edelstein effects in a two-dimensional electron gas: Theory and application to SrTiO interfaces, Phys. Rev. Res., Volume 3 (2021) no. 1, 013275 | DOI
[70] et al. Orientational Tuning of the Fermi Sea of Confined Electrons at the SrTiO (110) and (111) Surfaces, Phys. Rev. Applied, Volume 1 (2014) no. 5, 051002, 106001 | DOI
[71] et al. Control of a Two-Dimensional Electron Gas on SrTiO(111) by Atomic Oxygen, Phys. Rev. Lett., Volume 113 (2014), 177601 | DOI
[72] et al. Direct imaging of the electron liquid at oxide interfaces, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 198-203 | DOI
[73] Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun., Volume 2 (2011), 596, 106401 | DOI
[74] et al. Orientational Tuning of the Fermi Sea of Confined Electrons at the SrTiO (110) and (111) Surfaces, Phys. Rev. Appl., Volume 1 (2014), 051002, 216806 | DOI
[75] Transition-Metal Oxide (111) Bilayers, J. Phys. Soc. Jpn., Volume 87 (2018) no. 4, 041006 | DOI
[76] Normal state quantum geometry and superconducting domes in (111) oxide interfaces (2023), 214512 (preprint, arXiv:2307.13993) | DOI
[77] et al. Symmetry breaking at the (111) interfaces of SrTiO hosting a two-dimensional electron system, Phys. Rev. B, Volume 98 (2018) no. 11, 115143 | DOI
[78] Strong Correlations from Hund’s Coupling, Ann. Rev. Cond. Matter Phys., Volume 4 (2013) no. 1, pp. 137-178 | DOI
[79] Hétérostructures supraconductrices et isolants topologiques, Ph. D. Thesis, Université Paris Saclay, Paris, France (2015) (https://theses.hal.science/tel-01288200/)
[80] et al. Band inversion driven by electronic correlations at the (111) LaAlO/SrTiO interface, Phys. Rev. B, Volume 99 (2019) no. 20, 201102 | DOI
[81] et al. Symmetry and Correlation Effects on Band Structure Explain the Anomalous Transport Properties of (111) LaAlO/SrTiO, Phys. Rev. Lett., Volume 123 (2019) no. 3, 036805 | DOI
[82] Electronic and spintronic properties of the interfaces between transition metal oxides. Chapter 2, Ph. D. Thesis, Université Paris-Saclay, Paris, France (2020) (https://theses.hal.science/tel-03015119/)
[83] Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials, Phys. Rev. Lett., Volume 115 (2015) no. 21, 216806, 146301 | DOI
[84] et al. Designing spin and orbital sources of Berry curvature at oxide interfaces, Nature Mater., Volume 22 (2023) no. 5, pp. 576-582 | DOI
[85] Orbital design of Berry curvature: pinch points and giant dipoles induced by crystal fields, npj Quantum Mater., Volume 8 (2023) no. 1, p. 12 | DOI
[86] Microwave spectroscopy of two-dimensional superconductivity at LaAlO/SrTiO(111) interfaces, APS March Meeting 2021, Volume 66 (2021), 1
[87] Orbital Hall physics in two-dimensional Dirac materials, Phys. Rev. B, Volume 108 (2023) no. 7, 075427 | DOI
[88] Enhanced Nonlinear Response by Manipulating the Dirac Point at the (111) LaTiO/SrTiO Interface, Phys. Rev. Lett., Volume 132 (2024) no. 14, 146301 | DOI
[89] et al. Observation of Out-of-Plane Spin Texture in a SrTiO(111) Two-Dimensional Electron Gas, Phys. Rev. Lett., Volume 120 (2018) no. 26, 266802 | DOI
[90] et al. Band Structure and Spin-Orbital Texture of the (111)-KTaO Two-Dimensional Electron Gas, Adv. Electron. Mater. (2019), 1800860, 165117 | DOI
[91] Role of the Berry curvature on BCS-type superconductivity in two-dimensional materials, Phys. Rev. B, Volume 106 (2022) no. 21, 214512 | DOI
[92] Superfluidity in topologically nontrivial flat bands, Nat. Commun., Volume 6 (2015) no. 1, 8944 | DOI
[93] Quantum metric and correlated states in two-dimensional systems, Curr. Opin. Solid State Mater. Sci., Volume 25 (2021) no. 5, 100952, 596 | DOI
[94] Superconductivity, superfluidity and quantum geometry in twisted multilayer systems, Nat. Rev. Phys., Volume 4 (2022) no. 8, pp. 528-542 | DOI
[95] Band geometry, Berry curvature, and superfluid weight, Phys. Rev. B, Volume 95 (2017) no. 2, 024515 | DOI
[96] et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry, Nature, Volume 614 (2023) no. 7948, 161102, pp. 440-444 | DOI
[97] Link between the Superconducting Dome and Spin-Orbit Interaction in the (111) LaAlO/SrTiO Interface, Phys. Rev. Lett., Volume 119 (2017) no. 23, 237002, 125401 | DOI
Cited by Sources:
Comments - Policy