An observer at rest with the expanding universe experiences some extra noise in the quantum vacuum, and so does an accelerated observer in a vacuum at rest (in Minkowski space). The literature mainly focuses on the ideal cases of exponential expansion (de–Sitter space) or uniform acceleration (Rindler trajectories) or both, but the real cosmic expansion is non–exponential and real accelerations are non–uniform. Here we use the frequency–time Wigner function of vacuum correlations to define time–dependent spectra. We found excellent Planck spectra for a class of realistic cosmological models, but also strongly non–Planckian, negative Wigner functions for a standard scenario testable with laboratory analogues.
Un observateur au repos dans l’univers en expansion est confronté à un bruit supplémentaire dans le vide quantique, tout comme un observateur accéléré dans le vide au repos (dans l’espace de Minkowski). La littérature se concentre principalement sur les cas idéaux d’une expansion exponentielle (espace de de Sitter) ou d’une accélération uniforme (trajectoires de Rindler) voire les deux, mais l’expansion cosmique réelle n’est pas exponentielle et les accélérations réelles ne sont pas uniformes. Nous utilisons ici la fonction de Wigner fréquence-temps des corrélations du vide pour définir des spectres dépendant du temps. Nous avons trouvé d’excellents spectres de Planck pour une classe de modèles cosmologiques réalistes, mais aussi des fonctions de Wigner négatives et fortement non planckiennes pour un scénario standard testable avec des analogues de laboratoire.
Revised:
Accepted:
Online First:
Mots-clés : vide quantique, expansion cosmique, observateurs accélérés, analogues de laboratoire, spectres dépendant du temps
Ziv Landau 1; Ulf Leonhardt 1
@article{CRPHYS_2024__25_S2_A6_0, author = {Ziv Landau and Ulf Leonhardt}, title = {Wigner function method for the {Gibbons{\textendash}Hawking} and the {Unruh} effect}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.201}, language = {en}, note = {Online first}, }
Ziv Landau; Ulf Leonhardt. Wigner function method for the Gibbons–Hawking and the Unruh effect. Comptes Rendus. Physique, Online first (2024), pp. 1-13. doi : 10.5802/crphys.201.
[1] A primer for black hole quantum physics, Phys. Rep., Volume 260 (1995) no. 6, pp. 329-446 | DOI
[2] Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D, Volume 15 (1977) no. 10, pp. 2738-2751 | DOI
[3] Cosmology: the science of the universe, Cambridge University Press, 2000 | DOI | Zbl
[4] Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time, Phys. Rev. D, Volume 7 (1973) no. 10, pp. 2850-2862 | DOI
[5] Scalar production in Schwarzschild and Rindler metrics, J. Phys. A. Math. Gen., Volume 8 (1975) no. 4, pp. 609-616 | DOI
[6] Notes on black-hole evaporation, Phys. Rev. D, Volume 14 (1976) no. 4, pp. 870-892 | DOI
[7] Vacuum Noise and Stress Induced by Uniform Acceleration: Hawking–Unruh Effect in Rindler Manifold of Arbitrary Dimension, Prog. Theor. Phys., Suppl., Volume 88 (1986), pp. 1-142 | DOI
[8] Modern Cosmology, Elsevier, 2020
[9] Black/white hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009) no. 12, 124008 | DOI
[10] Black-hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 043601 | DOI
[11] Hawking radiation in dispersive theories, the two regimes, Phys. Rev. D, Volume 85 (2012) no. 12, 124027 | DOI
[12] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019), pp. 688-691 | DOI
[13] Black-hole evaporation and ultrashort distances, Phys. Rev. D, Volume 44 (1991) no. 6, pp. 1731-1739 | DOI
[14] Bose–Einstein Condensation, Clarendon Press, Oxford, 2003
[15] et al. Quantum field simulator for dynamics in curved spacetime, Quantum, Volume 611 (2022), pp. 260–-264 | DOI
[16] et al. Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022), 2890 | DOI
[17] Gibbons–Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose–Einstein-Condensed Gas, Phys. Rev. Lett., Volume 91 (2003) no. 24, 049901 | DOI
[18] Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose–Einstein condensate, Phys. Rev. D, Volume 69 (2004) no. 6, 064021 | DOI
[19] Unruh effect for general trajectories, Phys. Rev. D, Volume 75 (2007) no. 6, 065006 | DOI
[20] How hot are expanding universes?, Phys. Rev. D, Volume 78 (2008) no. 8, 083532 | DOI
[21] Response of Unruh–DeWitt detector with time-dependent acceleration, Phys. Lett. B, Volume 690 (2010) no. 2, pp. 201-206 | DOI
[22] Unruh–DeWitt detector event rate for trajectories with time-dependent acceleration, Phys. Rev. D, Volume 86 (2012) no. 8, 084011 | DOI
[23] Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh–DeWitt detector, J. High Energy Phys., Volume 2013 (2013), 119 | DOI
[24] Time-frequency approach to relativistic correlations in quantum field theory, Phys. Rev. D, Volume 100 (2019), 045016 | DOI
[25] Classical analog of the Unruh effect, Phys. Rev. A, Volume 98 (2018) no. 2, 022118 | DOI
[26] Interferometric Unruh Detectors for Bose–Einstein Condensates, Phys. Rev. Lett., Volume 125 (2020), 213603 | DOI
[27] Cosmological horizons radiate, Eur. Phys. Lett., Volume 135 (2021), 10002 | DOI
[28] Wave correlations and quantum noise in cosmology, J. Phys. A. Math. Theor., Volume 56 (2023), 024001 | DOI
[29] On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev., Volume 40 (1932) no. 5, pp. 749-759 | DOI
[30] Density Operators and Quasiprobability Distributions, Phys. Rev., Volume 177 (1969) no. 5, pp. 1882-1902 | DOI
[31] Quantum Optics in Phase Space, John Wiley & Sons, 2001
[32] Lifshitz theory of the cosmological constant, Ann. Phys., Volume 411 (2019), 167973 | DOI
[33] Detection of quantum-vacuum field correlations outside the light cone, Nat. Commun., Volume 13 (2022), 3383 | DOI
[34] Cosmology as a , J. High Energy Phys., Volume 12 (2019), 31 | DOI
[35] The cosmological constant from conformal transformations: Möbius invariance and Schwarzian action, Class. Quant. Grav., Volume 37 (2020), 215001 | DOI
[36] Particle Decay in de Sitter Spacetime via Quantum Tunneling, JETP Lett., Volume 90 (2009), pp. 1-4 | DOI
[37] The Chronocyclic Representation of Ultrashort Light Pulses, IEEE J. Quantum Electron., Volume 28 (1992) no. 10, pp. 2262-2273 | DOI
[38] Weyl–Wigner formalism for rotation-angle and angular-momentum variables in quantum mechanics, Phys. Rev. A, Volume 49 (2005), pp. 3255-3276 Erratum: Phys. Rev. A 71, article no. 069901 (2005) | DOI
[39] Quantum–state tomography and discrete Wigner function, Phys. Rev. Lett., Volume 74 (1995) no. 21, pp. 4101-4105 | DOI
[40] Discrete Wigner Function and Quantum–State Tomography, Phys. Rev. A, Volume 53 (1996) no. 5, pp. 2998-3013 | DOI
[41] Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett., Volume 70 (1993) no. 9, pp. 1244-1247 | DOI
[42] Continuous-variable optical quantum-state tomography, Rev. Mod. Phys., Volume 81 (2009) no. 1, p. 299332 | DOI
[43] Measuring the Quantum State of Light, Cambridge Studies in Modern Optics, 22, Cambridge University Press, 1997
[44] The Classical Theory of Fields, Butterworth-Heinemann, Amsterdam, 2003
[45] Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, 7, Cambridge University Press, 1984
Cited by Sources:
Comments - Policy