Comptes Rendus
Research article
Wigner function method for the Gibbons–Hawking and the Unruh effect
Comptes Rendus. Physique, Online first (2024), pp. 1-13.

An observer at rest with the expanding universe experiences some extra noise in the quantum vacuum, and so does an accelerated observer in a vacuum at rest (in Minkowski space). The literature mainly focuses on the ideal cases of exponential expansion (de–Sitter space) or uniform acceleration (Rindler trajectories) or both, but the real cosmic expansion is non–exponential and real accelerations are non–uniform. Here we use the frequency–time Wigner function of vacuum correlations to define time–dependent spectra. We found excellent Planck spectra for a class of realistic cosmological models, but also strongly non–Planckian, negative Wigner functions for a standard scenario testable with laboratory analogues.

Un observateur au repos dans l’univers en expansion est confronté à un bruit supplémentaire dans le vide quantique, tout comme un observateur accéléré dans le vide au repos (dans l’espace de Minkowski). La littérature se concentre principalement sur les cas idéaux d’une expansion exponentielle (espace de de Sitter) ou d’une accélération uniforme (trajectoires de Rindler) voire les deux, mais l’expansion cosmique réelle n’est pas exponentielle et les accélérations réelles ne sont pas uniformes. Nous utilisons ici la fonction de Wigner fréquence-temps des corrélations du vide pour définir des spectres dépendant du temps. Nous avons trouvé d’excellents spectres de Planck pour une classe de modèles cosmologiques réalistes, mais aussi des fonctions de Wigner négatives et fortement non planckiennes pour un scénario standard testable avec des analogues de laboratoire.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.201
Keywords: quantum vacuum, cosmic expansion, accelerated observers, laboratory analogues, time-dependent spectra
Mots-clés : vide quantique, expansion cosmique, observateurs accélérés, analogues de laboratoire, spectres dépendant du temps

Ziv Landau 1; Ulf Leonhardt 1

1 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S2_A6_0,
     author = {Ziv Landau and Ulf Leonhardt},
     title = {Wigner function method for the {Gibbons{\textendash}Hawking} and the {Unruh} effect},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.201},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Ziv Landau
AU  - Ulf Leonhardt
TI  - Wigner function method for the Gibbons–Hawking and the Unruh effect
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.201
LA  - en
ID  - CRPHYS_2024__25_S2_A6_0
ER  - 
%0 Journal Article
%A Ziv Landau
%A Ulf Leonhardt
%T Wigner function method for the Gibbons–Hawking and the Unruh effect
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.201
%G en
%F CRPHYS_2024__25_S2_A6_0
Ziv Landau; Ulf Leonhardt. Wigner function method for the Gibbons–Hawking and the Unruh effect. Comptes Rendus. Physique, Online first (2024), pp. 1-13. doi : 10.5802/crphys.201.

[1] R. Brout; S. Massar; R. Parentani; Ph. Spindel A primer for black hole quantum physics, Phys. Rep., Volume 260 (1995) no. 6, pp. 329-446 | DOI

[2] G. W. Gibbons; S. W. Hawking Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D, Volume 15 (1977) no. 10, pp. 2738-2751 | DOI

[3] E. Harrison Cosmology: the science of the universe, Cambridge University Press, 2000 | DOI | Zbl

[4] S. A. Fulling Nonuniqueness of Canonical Field Quantization in Riemannian Space-Time, Phys. Rev. D, Volume 7 (1973) no. 10, pp. 2850-2862 | DOI

[5] P. C. W. Davies Scalar production in Schwarzschild and Rindler metrics, J. Phys. A. Math. Gen., Volume 8 (1975) no. 4, pp. 609-616 | DOI

[6] W. G. Unruh Notes on black-hole evaporation, Phys. Rev. D, Volume 14 (1976) no. 4, pp. 870-892 | DOI

[7] S. Takagi Vacuum Noise and Stress Induced by Uniform Acceleration: Hawking–Unruh Effect in Rindler Manifold of Arbitrary Dimension, Prog. Theor. Phys., Suppl., Volume 88 (1986), pp. 1-142 | DOI

[8] S. Dodelson; F. Schmidt Modern Cosmology, Elsevier, 2020

[9] J. Macher; R. Parentani Black/white hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009) no. 12, 124008 | DOI

[10] J. Macher; R. Parentani Black-hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 043601 | DOI

[11] S. Finazzi; R. Parentani Hawking radiation in dispersive theories, the two regimes, Phys. Rev. D, Volume 85 (2012) no. 12, 124027 | DOI

[12] J. R. Munoz de Nova; K. Golubkov; V. I. Kolobov; J. Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019), pp. 688-691 | DOI

[13] T. Jacobson Black-hole evaporation and ultrashort distances, Phys. Rev. D, Volume 44 (1991) no. 6, pp. 1731-1739 | DOI

[14] L. P. Pitaevskii; S. Stringari Bose–Einstein Condensation, Clarendon Press, Oxford, 2003

[15] C. Viermann; M. Sparn; N. Liebster et al. Quantum field simulator for dynamics in curved spacetime, Quantum, Volume 611 (2022), pp. 260–-264 | DOI

[16] J. Steinhauer; M. Abuzarli; T. Aladjidi et al. Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022), 2890 | DOI

[17] P. O. Fedichev; U. R. Fischer Gibbons–Hawking Effect in the Sonic de Sitter Space-Time of an Expanding Bose–Einstein-Condensed Gas, Phys. Rev. Lett., Volume 91 (2003) no. 24, 049901 | DOI

[18] P. O. Fedichev; U. R. Fischer Observer dependence for the phonon content of the sound field living on the effective curved space-time background of a Bose–Einstein condensate, Phys. Rev. D, Volume 69 (2004) no. 6, 064021 | DOI

[19] N. Obadia; M. Milgrom Unruh effect for general trajectories, Phys. Rev. D, Volume 75 (2007) no. 6, 065006 | DOI

[20] N. Obadia How hot are expanding universes?, Phys. Rev. D, Volume 78 (2008) no. 8, 083532 | DOI

[21] D. Kothawala; T. Padmanabhan Response of Unruh–DeWitt detector with time-dependent acceleration, Phys. Lett. B, Volume 690 (2010) no. 2, pp. 201-206 | DOI

[22] L. C. Barbado; M. Visser Unruh–DeWitt detector event rate for trajectories with time-dependent acceleration, Phys. Rev. D, Volume 86 (2012) no. 8, 084011 | DOI

[23] J. Doukas; S-Y. Lin; B. L. Hu; R. B. Mann Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh–DeWitt detector, J. High Energy Phys., Volume 2013 (2013), 119 | DOI

[24] B. Roussel; A. Feller Time-frequency approach to relativistic correlations in quantum field theory, Phys. Rev. D, Volume 100 (2019), 045016 | DOI

[25] U. Leonhardt; I. Griniasty; S. Wildeman; E. Fort; M. Fink Classical analog of the Unruh effect, Phys. Rev. A, Volume 98 (2018) no. 2, 022118 | DOI

[26] C. Gooding; S. Biermann; S. Erne; J. Louko; W. G. Unruh; J. Schmiedmayer; S. Weinfurtner Interferometric Unruh Detectors for Bose–Einstein Condensates, Phys. Rev. Lett., Volume 125 (2020), 213603 | DOI

[27] U. Leonhardt Cosmological horizons radiate, Eur. Phys. Lett., Volume 135 (2021), 10002 | DOI

[28] U. Leonhardt Wave correlations and quantum noise in cosmology, J. Phys. A. Math. Theor., Volume 56 (2023), 024001 | DOI

[29] E. P. Wigner On the Quantum Correction For Thermodynamic Equilibrium, Phys. Rev., Volume 40 (1932) no. 5, pp. 749-759 | DOI

[30] K. E. Cahill; R. J. Glauber Density Operators and Quasiprobability Distributions, Phys. Rev., Volume 177 (1969) no. 5, pp. 1882-1902 | DOI

[31] W. P. Schleich Quantum Optics in Phase Space, John Wiley & Sons, 2001

[32] U. Leonhardt Lifshitz theory of the cosmological constant, Ann. Phys., Volume 411 (2019), 167973 | DOI

[33] F. F. Settembrini; F. Lindel; A. M. Herter; S. Y. Buhmann; J. Faist Detection of quantum-vacuum field correlations outside the light cone, Nat. Commun., Volume 13 (2022), 3383 | DOI

[34] J. Ben Achour; E. R. Livine Cosmology as a CFT 1 , J. High Energy Phys., Volume 12 (2019), 31 | DOI

[35] J. Ben Achour; E. R. Livine The cosmological constant from conformal transformations: Möbius invariance and Schwarzian action, Class. Quant. Grav., Volume 37 (2020), 215001 | DOI

[36] G. E. Volovik Particle Decay in de Sitter Spacetime via Quantum Tunneling, JETP Lett., Volume 90 (2009), pp. 1-4 | DOI

[37] J. Paye The Chronocyclic Representation of Ultrashort Light Pulses, IEEE J. Quantum Electron., Volume 28 (1992) no. 10, pp. 2262-2273 | DOI

[38] J. P. Bizarro Weyl–Wigner formalism for rotation-angle and angular-momentum variables in quantum mechanics, Phys. Rev. A, Volume 49 (2005), pp. 3255-3276 Erratum: Phys. Rev. A 71, article no. 069901 (2005) | DOI

[39] U. Leonhardt Quantum–state tomography and discrete Wigner function, Phys. Rev. Lett., Volume 74 (1995) no. 21, pp. 4101-4105 | DOI

[40] U. Leonhardt Discrete Wigner Function and Quantum–State Tomography, Phys. Rev. A, Volume 53 (1996) no. 5, pp. 2998-3013 | DOI

[41] D. T. Smithey; M. Beck; M. G. Raymer; A. Faridani Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Phys. Rev. Lett., Volume 70 (1993) no. 9, pp. 1244-1247 | DOI

[42] A. I. Lvovsky; M. G. Raymer Continuous-variable optical quantum-state tomography, Rev. Mod. Phys., Volume 81 (2009) no. 1, p. 299332 | DOI

[43] U. Leonhardt Measuring the Quantum State of Light, Cambridge Studies in Modern Optics, 22, Cambridge University Press, 1997

[44] L. D. Landau; E. M. Lifshitz The Classical Theory of Fields, Butterworth-Heinemann, Amsterdam, 2003

[45] N. D. Birrell; P. C. W. Davies Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, 7, Cambridge University Press, 1984

Cited by Sources:

Comments - Policy