Comptes Rendus
Review article
From lab to landscape-scale experiments for the morphodynamics of sand dunes
Comptes Rendus. Physique, Online first (2024), pp. 1-29.

We review the main processes that drive the morphodynamics of dunes, i.e. their growth in height, migration and elongation, and emphasise the contribution of experiments to the understanding of these mechanisms. The main control parameters are the sediment flux Q and the saturation length L sat associated with the spatial relaxation of the flux towards the transport capacity. The other relevant quantities are essentially dimensionless: fluid response to a bed perturbation, dune geometry (orientation, aspect ratio), transport ratios under multi-directional wind regimes. We argue that laboratory experiments dealing with sedimentary bedforms in water flows are good analogues to study the morphodynamics of aeolian dunes at reduced length and time scales, as L sat and L sat 2 /Q are expected to be smaller for subaqueous bedload. Besides, dune shape and dynamics are mainly governed by flow and boundary conditions, independent of the transport mode. We discuss different experimental set-ups and results, especially concerning dune pattern orientation and dune interaction. Under natural wind regimes in terrestrial deserts, we show the potential of field experiments in which the control of initial and boundary conditions allows for the quantification of all the relevant mechanisms involved in dune growth. We emphasise the general agreement between observations, measurements and theoretical predictions, which indicates a robust comprehension of the underlying processes. This understanding can serve as a foundation for further investigations, including the interpretation of dune landscapes and the resolution of inverse problems.

Nous passons en revue les principaux processus qui déterminent la morphodynamique des dunes, c’est-à-dire leur croissance en hauteur, leur migration et leur élongation, et nous mettons en avant la contribution des expériences pour la compréhension de ces mécanismes. Les principaux paramètres de contrôle sont le flux sédimentaire Q et la longueur de saturation L sat associée à la relaxation spatiale du flux vers sa valeur à saturation homogène et stationnaire. Les autres quantités pertinentes sont essentiellement sans dimension : réponse du fluide à une perturbation du lit, géométrie des dunes (orientation, rapport d’aspect), rapports entre les taux de transport sous des régimes de vent multidirectionnels. Nous expliquons que les expériences de laboratoire portant sur les formes de lit sédimentaires sous l’eau sont de bons analogues pour étudier la morphodynamique des dunes éoliennes à des échelles de longueur et de temps réduites, car L sat et L sat 2 /Q sont typiquement plus petits pour le transport par charriage. En outre, la forme et la dynamique des dunes sont principalement gouvernées par les régimes d’écoulement et les conditions aux limites, indépendamment du mode de transport. Nous discutons différents montages expérimentaux et résultats, en particulier ceux qui concernent l’orientation des dunes et leur interactions. Pour les régimes de vents naturels dans les déserts terrestres, nous montrons le potentiel des expériences de terrain pour lesquelles le contrôle des conditions initiales et aux limites permet de quantifier tous les mécanismes pertinents impliqués dans la croissance des dunes. Nous soulignons le bon accord général entre les observations, les mesures et les prédictions théoriques, ce qui montre une bonne compréhension des processus qui sont à l’œuvre. Cette compréhension peut servir de base à d’autres recherches, comme par exemple l’interprétation des paysages dunaires et à la résolution de problèmes inverses.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crphys.203
Keywords: dune shape and dynamics, growth, orientation
Mots-clés : forme et dynamique des dunes, croissance, orientation

Philippe Claudin 1; Sylvain Courrech du Pont 2; Clément Narteau 3

1 Physique et Mécanique des Milieux Hétérogènes, CNRS – ESPCI – PSL Research Univ. – Sorbonne Univ. – Univ. Paris Cité, Paris, France
2 Laboratoire Matière et Systèmes Complexes, Univ. Paris Cité, CNRS, Paris, France
3 Institut de Physique du Globe de Paris, Univ. Paris Cité, CNRS, Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_S3_A9_0,
     author = {Philippe Claudin and Sylvain Courrech du Pont and Cl\'ement Narteau},
     title = {From lab to landscape-scale experiments for the morphodynamics of sand dunes},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.203},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Philippe Claudin
AU  - Sylvain Courrech du Pont
AU  - Clément Narteau
TI  - From lab to landscape-scale experiments for the morphodynamics of sand dunes
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.203
LA  - en
ID  - CRPHYS_2024__25_S3_A9_0
ER  - 
%0 Journal Article
%A Philippe Claudin
%A Sylvain Courrech du Pont
%A Clément Narteau
%T From lab to landscape-scale experiments for the morphodynamics of sand dunes
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.203
%G en
%F CRPHYS_2024__25_S3_A9_0
Philippe Claudin; Sylvain Courrech du Pont; Clément Narteau. From lab to landscape-scale experiments for the morphodynamics of sand dunes. Comptes Rendus. Physique, Online first (2024), pp. 1-29. doi : 10.5802/crphys.203.

[1] R. D. Lorenz; J. R. Zimbelman Dune Worlds: How Windblown sand shapes planetary landscapes, Springer-Praxis Geophysical Sciences, Springer, 2014 | DOI

[2] S. Diniega; M. Kreslavsky; J. Radebaugh; S. Silvestro; M. W. Telfer; D. Tirsch Our evolving understanding of aeolian bedforms, based on observation of dunes on different worlds, Aeolian Res., Volume 26 (2017), pp. 5-27 | DOI

[3] A. Gunn; D. J. Jerolmack Conditions for aeolian transport in the Solar System, Nat. Astron., Volume 6 (2022), pp. 923-929 | DOI

[4] C. S. Breed; T. Grow Morphology and distribution of dunes in sand seas observed by remote sensing, A study of global sand seas (E. D. McKee, ed.), U.S. Geological Survey (1979) no. P-1052, pp. 252-302

[5] P. A. Hesp; I. J. Walker 11.17 Coastal dunes, Treatise on Geomorphology, Academic Press Inc., 2013, pp. 328-355 | DOI

[6] J. A. Cutts; R. S. U. Smith Eolian deposits and dunes on Mars, J. Geophys. Res., Volume 78 (1973), pp. 4139-4154 | DOI

[7] M. C. Bourke; N. Lancaster; L. K. Fenton; E. J. R. Parteli; J. R. Zimbelman; J. Radebaugh Extraterrestrial dunes: An introduction to the special issue on planetary dune systems, Geomorphology, Volume 121 (2010), pp. 1-14 | DOI

[8] M. G. A. Lapôtre; R. C. Ewing; C. M. Weitz; K. W. Lewis; M. P. Lamb; B. L. Ehlmann; D. M. Rubin Morphologic diversity of Martian ripples: Implications for large-ripple formation, Geophys. Res. Lett., Volume 45 (2018), pp. 10229-10239 | DOI

[9] R. D. Lorenz; S. Wall; J. Radebaugh et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes, Science, Volume 312 (2006), pp. 724-727 | DOI

[10] J. Radebaugh; R. D. Lorenz; J. I. Lunine et al. Dunes on Titan observed by Cassini RADAR, Icarus, Volume 194 (2008), pp. 690-703 | DOI

[11] S. Rodriguez; A. Garcia; A. Lucas et al. Global mapping and characterization of Titan’s dune fields with Cassini: Correlation between RADAR and VIMS observations, Icarus, Volume 230 (2014), pp. 168-179 | DOI

[12] R. Greeley; J. R. Marshall; R. N. Leach Microdunes and other aeolian bedforms on Venus: wind tunnel simulations, Icarus, Volume 60 (1984), pp. 152-160 | DOI

[13] A. T. Basilevsky; R. O. Kuzmin; O. V. Nikolaeva et al. The surface of Venus as revealed by the Venera landings: Part II, GSA Bulletin, Volume 96 (1985), pp. 137-144 | DOI

[14] C. M. Weitz; J. J. Plaut; R. Greeley; R. S. Saunders Dunes and microdunes on Venus: Why were so few found in the Magellan data?, Icarus, Volume 112 (1994), pp. 282-295 | DOI

[15] M. W. Telfer; E. J. R. Parteli; J. Radebaugh et al. Dunes on pluto, Science, Volume 360 (2018), pp. 992-997 | DOI

[16] P. Jia; B. Andreotti; P. Claudin Giant ripples on comet 67P/Churyumov–Gerasimenko sculpted by sunset thermal wind, Proc. Natl. Acad. Sci. USA, Volume 114 (2017), pp. 2509-2514 | DOI

[17] S. Courrech du Pont; D. M. Rubin; C. Narteau et al. Complementary classifications of aeolian dunes based on morphology, dynamics, and fluid mechanics, Earth-Sci. Rev., Volume 255 (2024), 104772 | DOI

[18] J. L. Best The fluid dynamics of river dunes: a review and some future research directions, J. Geophys. Res., Volume 110 (2005), F04S02 | DOI

[19] P. A. Carling; E. Golz; H. G. Orr; A. Radecki-Pawlik The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology, Sedimentology, Volume 47 (2000), pp. 227-252 | DOI

[20] D. R. Parsons; J. L. Best; O. Orfeo; R. J. Hardy; R. Kostaschuk; S. N. Lane Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling, J. Geophys. Res., Volume 110 (2005), F04S03 | DOI

[21] H. Ikeda Experiments on bedload transport, bedforms, and sedimentary structures using fine gravel in the 4-meter-wide flume, Environ. Res. Center pap., Volume 2 (1983), pp. 1-78

[22] S. E. Coleman; B. W. Melville Bed-form development, J. Hydraul. Eng., Volume 120 (1994), pp. 544-560 | DOI

[23] S. E. Coleman; B. W. Melville Initiation of bed forms on a flat sand bed, J. Hydraul. Eng., Volume 122 (1996), pp. 301-310 | DOI

[24] S. E. Coleman; J. J. Fedele; M. H. García Closed-conduit bed-form initiation and development, J. Hydraul. Eng., Volume 129 (2003), pp. 956-965 | DOI

[25] J. H. Baas A flume study on the development and equilibrium morphology of current ripples in very fine sand, Sedimentology, Volume 41 (1994), pp. 185-209 | DOI

[26] J. G. Venditti; M. A. Church; S. J Bennett Bed form initiation from a flat sand bed, J. Geophys. Res., Volume 110 (2005), F01009 | DOI

[27] V. Langlois; A. Valance Formation and evolution of current ripples on a flat sand bed under turbulent water flow, Eur. Phys. J. E, Volume 22 (2007), pp. 201-208 | DOI

[28] M. Ouriemi; P. Aussillous; E. Guazzelli Sediment dynamics. Part 2. Dune formation in pipe flow, J. Fluid Mech., Volume 636 (2009), pp. 321-336 | DOI

[29] H. Y. Chang; D. B. Simons; D. A. Woolhiser Flume experiments on alternate bar formation, J. Waterways Harbors Coast. Eng. Div., Volume 97 (1971), pp. 155-165 | DOI

[30] T. E. Lisle; H. Ikeda; F. Iseya Formation of stationary alternate bars in a steep channel with mixed-size sediment: a flume experiment, Earth Surf. Process. Landf., Volume 16 (1991), pp. 463-469 | DOI

[31] S. Lanzoni Experiments on bar formation in a straight flume. 2. Uniform sediment, Water Resour. Res., Volume 36 (2000), pp. 3351-3363 | DOI

[32] O. Devauchelle; L. Malverti; E. Lajeunesse; C. Josserand; P.-Y. Lagrée; F. Métivier Rhomboid beach pattern: a laboratory investigation, J. Geophys. Res., Volume 115 (2010), F02017 | DOI

[33] S. Rodrigues; E. Mosselman; N. Claude; C. L. Wintenberger; P. Juge Alternate bars in a sandy gravel bed river: generation, migration and interactions with superimposed dunes, Earth Surf. Process. Landf., Volume 40 (2014), pp. 610-628 | DOI

[34] O. Durán; P. Claudin; B. Andreotti On aeolian transport: Grain-scale interactions, dynamical mechanisms and scaling laws, Aeolian Res., Volume 3 (2011), pp. 243-270 | DOI

[35] A. Valance; K. R. Rasmussen; A. Ould El Moctar; P. Dupont The physics of aeolian sand transport, Comptes Rendus. Physique, Volume 16 (2015), pp. 105-117 | DOI

[36] T. Pähtz; A. H. Clark; M. Valyrakis; O. Durán The physics of sediment transport initiation, cessation, and entrainment across aeolian and fluvial environments, Rev. Geophys., Volume 58 (2020), e2019RG000679 | DOI

[37] B. Andreotti; P. Claudin; S. Douady Selection of dune shapes and velocities. Part 2: A two-dimensional modelling, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 28 (2002), pp. 341-352 | DOI

[38] K. Kroy; S. Sauermann; H. J. Herrmann Minimal model for sand dunes, Phys. Rev. Lett., Volume 88 (2002), 054301 | DOI

[39] K. Kroy; S. Sauermann; H. J. Herrmann Minimal model for aeolian sand dunes, Phys. Rev. E, Volume 66 (2002), 031302 | DOI

[40] P. Claudin; B. Andreotti A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth Planet. Sci. Lett., Volume 252 (2006), pp. 30-44 | DOI

[41] C. Narteau; D. Zhang; O. Rozier; P. Claudin Setting the length and time scales of a cellular automaton dune model from the analysis of superimposed bed forms, J. Geophys. Res., Volume 114 (2009), F03006 | DOI

[42] F. Charru; B. Andreotti; P. Claudin Sand ripples and dunes, Annu. Rev. Fluid Mech., Volume 45 (2013), pp. 469-493 | DOI

[43] S. Courrech du Pont Dune morphodynamics, Comptes Rendus. Physique, Volume 16 (2015), pp. 118-138 | DOI

[44] S. Courrech du Pont; C. Narteau; X. Gao Two modes for dune orientation, Geology, Volume 42 (2014), pp. 743-746 | DOI

[45] X. Gao; C. Narteau; O. Rozier; S. Courrech du Pont Phase diagrams of dune shape and orientation depending on sand availability, Sci. Rep., Volume 5 (2015), 14677 | DOI

[46] A. Lucas; C. Narteau; S. Rodriguez; O. Rozier; Y. Callot; A. Garcia; S. Courrech du Pont Sediment flux from the morphodynamics of elongating linear dunes, Geology, Volume 43 (2015), pp. 1027-1030 | DOI

[47] O. Rozier; C. Narteau; C. Gadal; P. Claudin; S. Courrech du Pont Elongation and Stability of a Linear Dune, Geophys. Res. Lett., Volume 46 (2019), pp. 14521-14530 | DOI

[48] O. Durán; B. Andreotti; P. Claudin Numerical simulation of turbulent sediment transport, from bed load to saltation, Phys. Fluids, Volume 24 (2012), p. 103306 | DOI

[49] P. Claudin; O. Durán; B. Andreotti Dissolution instability and roughening transition, J. Fluid Mech., Volume 832 (2017), R2 | DOI

[50] P. Jia; B. Andreotti; P. Claudin Hydrodynamic roughness induced by a multiscale topography, J. Fluid Mech., Volume 974 (2023), A16 | DOI

[51] S. Sauermann; K. Kroy; H. J. Herrmann Continuum saltation model for sand dunes, Phys. Rev. Lett., Volume 64 (2001), 031305 | DOI

[52] B. Andreotti; P. Claudin; O. Pouliquen Measurements of the aeolian sand transport saturation length, Geomorphology, Volume 123 (2010), pp. 243-248 | DOI

[53] M. Lämmel; K. Kroy Analytical mesoscale modeling of aeolian sand transport, Phys. Rev. E, Volume 96 (2017), 052906 | DOI

[54] H. Selmani; A. Valance; A. Ould El Moctar; P. Dupont; R. Zegadi Aeolian sand transport in out-of-equilibrium regimes, Geophys. Res. Lett., Volume 45 (2018), pp. 1838-1844 | DOI

[55] J. F. Kok; E. J. R. Parteli; T. I. Michaels; D. Bou Karam The physics of wind-blown sand and dust, Rep. Prog. Phys., Volume 75 (2012), 106901 | DOI

[56] D. Berzi; A. Valance; J. T. Jenkins The threshold for continuing saltation on Earth and other solar system bodies, J. Geophys. Res., Volume 122 (2017), pp. 1374-1388 | DOI

[57] B. Andreotti; P. Claudin; J. J. Iversen; J. P. Merrison; K. R. Rasmussen A lower-than-expected saltation threshold at Martian pressure and below, Proc. Natl. Acad. Sci. USA, Volume 118 (2021), e2012386118 | DOI

[58] T. Pähtz; O. Durán Scaling laws for planetary sediment transport from DEM-RANS numerical simulations, J. Fluid Mech., Volume 963 (2023), A20 | DOI

[59] J. E. Ungar; P. K. Haff Steady state saltation in air, Sedimentology, Volume 34 (1987), pp. 289-299 | DOI

[60] K. R. Rasmussen; J. D. Iversen; P. Rautahemio Saltation and wind-flow interaction in a variable slope wind tunnel, Geomorphology, Volume 17 (1996), pp. 19-28 | DOI

[61] B. Andreotti A two-species model of aeolian sand transport, J. Fluid Mech., Volume 510 (2004), pp. 47-70 | DOI

[62] M. Creyssels; P. Dupont; A. Ould El Moctar; A. Valance; I. Cantat; J. T. Jenkins; J. M. Pasini; K. R. Rasmussen Saltating particles in a turbulent boundary layer: experiment and theory, J. Fluid Mech., Volume 625 (2009), pp. 47-74 | DOI

[63] T. Pähtz; K. Tholen Aeolian sand transport: Scaling of mean saltation length and height and implications for mass flux scaling, Aeolian Res., Volume 52 (2021), 100730 | DOI

[64] D. P. Zilker; G. W. Cook; T. J. Hanratty Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows, J. Fluid Mech., Volume 82 (1977), pp. 29-51 | DOI

[65] K. A. Frederick; T. J. Hanratty Velocity measurements for a turbulent nonseparated flow over solid waves, Exp. Fluids, Volume 6 (1988), pp. 477-486 | DOI

[66] T. B. Benjamin Shearing flow over a wavy boundary, J. Fluid Mech., Volume 6 (1959), pp. 161-205 | DOI

[67] J. C. R. Hunt; S. Leibovich; K. J. Richards Turbulent shear flows over low hills, Q. J. R. Meteorol. Soc., Volume 114 (1988), pp. 1435-1470 | DOI

[68] W. S. Weng; J. C. R. Hunt; D. J. Carruthers; A. Warren; G. F. S. Wiggs; I. Livingstone; I. Castro Air flow and sand transport over sand-dunes, Aeolian Grain Transport (Acta Mechanica Supplementum), Volume 2, Springer, 1991, pp. 1-22 | DOI

[69] F. Charru; E. J. Hinch ‘Phase diagram’ of interfacial instabilities in a two-layer Couette flow and mechanism of the long-wave instability, J. Fluid Mech., Volume 414 (2000), pp. 195-223 | DOI

[70] A. Fourrière; P. Claudin; B. Andreotti Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by non-linear pattern coarsening, J. Fluid Mech., Volume 649 (2010), pp. 287-328 | DOI

[71] C. Gadal; C. Narteau; S. Courrech du Pont; O. Rozier; P. Claudin Incipient bedforms in a bidirectional wind regime, J. Fluid Mech., Volume 862 (2019), pp. 490-516 | DOI

[72] H. Elbelrhiti; P. Claudin; B. Andreotti Field evidence for surface-wave-induced instability of sand dunes, Nature, Volume 437 (2005), pp. 720-723 | DOI

[73] C. Gadal; C. Narteau; R. C. Ewing; A. Gunn; D. J. Jerolmack; B. Andreotti; P. Claudin Spatial and temporal development of incipient dunes, Geophys. Res. Lett., Volume 47 (2020), e2020GL088919 | DOI

[74] P. Delorme; G. F. S. Wiggs; M. C. Baddock; P. Claudin; J. M. Nield; A. Valdez Dune initiation in a bimodal wind regime, J. Geophys. Res., Volume 125 (2020), e2020JF005757 | DOI

[75] P. Lü; C. Narteau; Z. Dong et al. Direct validation of dune instability theory, Proc. Natl. Acad. Sci. USA, Volume 118 (2021), e2024105118 | DOI

[76] R. A. Bagnold The physics of blown sand and desert dunes, Chapman & Hall, London, 1941

[77] H. Elbelrhiti; B. Andreotti; P. Claudin Barchan dune corridors: field characterization and investigation of control parameters, J. Geophys. Res., Volume 113 (2008), F02S15 | DOI

[78] J. Buckles; T. J. Hanratty; R. J. Adrian Turbulent flow over large-amplitude wavy surfaces, J. Fluid Mech., Volume 140 (1984), pp. 27-44 | DOI

[79] M. Day; G. Kocurek Pattern similarity across planetary dune fields, Geology, Volume 46 (2018), pp. 999-1002 | DOI

[80] P. Hersen; S. Douady Collision of barchan dunes as a mechanism of size regulation, Geophys. Res. Lett., Volume 32 (2005), L21403 | DOI

[81] A. Valance Nonlinear sand bedform dynamics in a viscous flow, Phys. Rev. E, Volume 83 (2011), 036304 | DOI

[82] X. Gao; C. Narteau; O. Rozier Development and steady states of transverse dunes: A numerical analysis of dune pattern coarsening and giant dunes, J. Geophys. Res., Volume 120 (2015), pp. 2200-2219 | DOI

[83] P. A. Jarvis; K. A. Bacik; C. Narteau; N. M. Vriend Coarsening dynamics of 2D subaqueous dunes, J. Geophys. Res., Volume 127 (2022), e2021JF006492 | DOI

[84] D. M. Rubin; R. E. Hunter Bedform alignment in directionally varying flows, Science, Volume 237 (1987), pp. 276-278 | DOI

[85] D. M. Rubin; H. Ikeda Flume experiments on the alignment of transverse, oblique, and longitudinal dunes in directionally varying flows, Sedimentology, Volume 37 (1990), pp. 673-684 | DOI

[86] E. Reffet; S. Courrech du Pont; P. Hersen; S. Douady Formation and stability of transverse and longitudinal sand dunes, Geology, Volume 38 (2010), pp. 491-494 | DOI

[87] P. S. Jackson; J. C. R. Hunt Turbulent wind flow over a low hill, Q. J. R. Meteorol. Soc., Volume 101 (1975), pp. 929-955 | DOI

[88] E. J. R. Parteli; O. Durán; H. Tsoar; V. Schwämmle; H. J. Herrmann Dune formation under bimodal winds, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 22085-22089 | DOI

[89] K. Taniguchi; N. Endo; H. Sekiguchi The effect of periodic changes in wind direction on the deformation and morphology of isolated sand dunes based on flume experiments and field data from the Western Sahara, Geomorphology, Volume 179 (2012), pp. 286-299 | DOI

[90] H. Tsoar; E. J. R. Parteli Bidirectional winds, barchan dune asymmetry and formation of seif dunes from barchans: a discussion, Environ. Earth Sci., Volume 75 (2016), 1237 | DOI

[91] D. Zhang; C. Narteau; O. Rozier; S. Courrech du Pont Morphology and dynamics of star dunes from numerical modelling, Nat. Geosci., Volume 5 (2012), pp. 463-467 | DOI

[92] C. Gadal; C. Narteau; S. Courrech du Pont; O. Rozier; P. Claudin Periodicity in fields of elongating dunes, Geology, Volume 48 (2020), pp. 343-347 | DOI

[93] E. J. R. Parteli; J. S. Andrade; H. J. Herrmann Transverse instability of dunes, Phys. Rev. Lett., Volume 107 (2011), 188001 | DOI

[94] L. Guignier; H. Niiya; H. Nishimori; D. Lague; A. Valance Sand dunes as migrating strings, Phys. Rev. E, Volume 87 (2013), 052206 | DOI

[95] P. Hersen; S. Douady; B. Andreotti Relevant length scale of barchan dunes, Phys. Rev. Lett., Volume 89 (2002), 264301 | DOI

[96] N. Endo; T. Sunamura; H. Takimoto Barchan ripples under unidirectional water flows in the laboratory: formation and planar morphology, Earth Surf. Process. Landf., Volume 30 (2005), pp. 1675-1682 | DOI

[97] E. M. Franklin; F. Charru Morphology and displacement of dunes in a closed-conduit flow, Powder Technol., Volume 190 (2009), pp. 247-251 | DOI

[98] Y. Zhang; Y. Lin; N. He; X. Gao; B. Yang Local similarity between aeolian barchan dunes and their downsized subaqueous counterparts, J. Geophys. Res., Volume 129 (2024), e2023JF007617 | DOI

[99] J. G. Venditti 9.10 Bedforms in Sand-Bedded Rivers, Treatise on Geomorphology (J. F. Shroder, ed.), Academic Press Inc., 2013, pp. 137-162 | DOI

[100] E. M. Franklin; F. Charru Subaqueous barchan dunes in turbulent shear flow. Part 1. Dune motion, J. Fluid Mech., Volume 675 (2011), pp. 199-222 | DOI

[101] S. Al-Lababidi; W. Yan; H. Yeung; P. Sugarman; C. P. Fairhurst Sand transport characteristics in water and two-phase air/water flows in pipelines, Proceedings of the Sixth North American Conference on Multiphase Technology, BHR Group (2008), pp. 159-174

[102] P. A. Mantz Bedforms produced by fine, cohesionless, granular and flakey sediments under subcritical water flows, Sedimentology, Volume 25 (1978), pp. 83-103 | DOI

[103] N. Endo; K. Taniguchi; A. Katsuki Observation of the whole process of interaction between barchans by flume experiments, Geophys. Res. Lett., Volume 31 (2004), L12503 | DOI

[104] C. Groh; A. Wierschem; N. Aksel; I. Rehberg; C. A. Kruelle Barchan dunes in two dimensions: Experimental tests for minimal models, Phys. Rev. E, Volume 78 (2008), 021304 | DOI

[105] K. A. Bacik; S. Lovett; C. P. Caulfield; N. M. Vriend Wake induced long range repulsion of aqueous dunes, Phys. Rev. Lett., Volume 124 (2020), 054501 | DOI

[106] W. R. Assis; D. S. Borges; E. M. Franklin Barchan Dunes Cruising Dune-Size Obstacles, Geophys. Res. Lett., Volume 50 (2023), e2023GL104125 | DOI

[107] Bin Yang; Y. Chong; Y. Lin; N. He; Y. Zhang; X. Gao Experimental study of the stability of crescent barchan shape in subaqueous dune evolution in unsteady water flow, Eur. J. Mech. B Fluids, Volume 103 (2024), pp. 246-258 | DOI

[108] F. Charru; E. M. Franklin Subaqueous barchan dunes in turbulent shear flow. Part 2. Fluid flow, J. Fluid Mech., Volume 694 (2012), pp. 131-154 | DOI

[109] C. A. Alvarez; E. M. Franklin Birth of a subaqueous barchan dune, Phys. Rev. E, Volume 96 (2017), 062906 | DOI

[110] T. Loiseleux; P. Gondret; M. Rabaud; D. Doppler Onset of erosion and avalanche for an inclined granular bed sheared by a continuous laminar flow, Phys. Fluids, Volume 17 (2005), 103304 | DOI

[111] K. Pye; H. Tsoar Aeolian Sand And Sand Dunes, Kluwer Academic Publishers, 1990 | DOI

[112] R. Cooke; A. Warren; A. Goudie Desert Geomorphology, UCL Press, London, 1993 | DOI

[113] I. Livingstone; A. Warren Aeolian geomorphology: an introduction, Addison Wesley Longman, 1996

[114] O. Durán; E. J. R. Parteli; H. J. Herrmann A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields, Earth Surf. Process. Landf., Volume 35 (2010), pp. 1591-1600 | DOI

[115] K. L. Anthonsen; L. B. Clemmensen; J. H. Jensen Evolution of a dune from crescentic to parabolic form in response to short-term climatic changes: Råbjerg Mile, Skagen Odde, Denmark, Geomorphology, Volume 17 (1996), pp. 63-77 | DOI

[116] L. K. Fenton; T. I. Michaels; M. Chojnacki; R. A. Beyer Inverse maximum gross bedform-normal transport 2: application to a dune field in Ganges Chasma, Mars and comparison with HiRISE repeat imagery and MRAMS, Icarus, Volume 230 (2014), pp. 47-63 | DOI

[117] R. C. Ewing; A.-P. B. Peyret; G. Kocurek; M. C. Bourke Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars, J. Geophys. Res., Volume 115 (2010), E08005 | DOI

[118] B. Charnay; E. Barth; S. Rafkin et al. Methane storms as a driver of Titan’s dune orientation, Nat. Geosci., Volume 8 (2015), pp. 362-366 | DOI

[119] P. Hersen; K. H. Andersen; H. Elbelrhiti; B. Andreotti; P. Claudin; S. Douady Corridors of barchan dunes: Stability and size selection, Phys. Rev. E, Volume 69 (2004), 011304 | DOI

[120] W. R. Assis; E. M. Franklin A comprehensive picture for binary interactions of subaqueous barchans, Geophys. Res. Lett., Volume 47 (2020), e2020GL089464 | DOI

[121] O. Durán; V. Schwämmle; P. G. Lind; H. J. Herrmann The dune size distribution and scaling relations of barchan dune fields, Granul. Matter, Volume 11 (2009), pp. 7-11 | DOI

[122] P. A. Jarvis; C. Narteau; O. Rozier; N. M. Vriend The probabilistic nature of dune collisions in 2D, Earth Surf. Dyn., Volume 11 (2022) no. 4, pp. 803-815 | DOI

[123] M. Génois; S. Courrech du Pont; P. Hersen; G. Grégoire An agent-based model of dune interactions produces the emergence of patterns in deserts, Geophys. Res. Lett., Volume 40 (2013), pp. 3909-3914 | DOI

[124] S. Worman; A. B. Murray; R. Littlewood; B. Andreotti; P. Claudin Modeling emergent large-scale structures of barchan dune fields, Geology, Volume 41 (2013), pp. 1059-1062 | DOI

[125] M. Génois; P. Hersen; S. Courrech du Pont; G. Grégoire Spatial structuring and size selection as collective behaviours in an agent-based model for barchan fields, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 86 (2013), 447 | DOI

[126] M. Génois; P. Hersen; E. Bertin; S. Courrech du Pont; G. Grégoire Out-of-equilibrium stationary states, percolation, and subcritical instabilities in a fully nonconservative system, Phys. Rev. E, Volume 94 (2016), 042101 | DOI

[127] P. A. Hesp Foredunes and blowouts: initiation, geomorphology and dynamics, Geomorphology, Volume 48 (2002), pp. 245-268 | DOI

[128] O. Durán; H. J. Herrmann Vegetation against dune mobility, Phys. Rev. Lett., Volume 97 (2006), 188001 | DOI

[129] P. A. Hesp Conceptual models of the evolution of transgressive dune field systems, Geomorphology, Volume 199 (2013), pp. 138-149 | DOI

[130] X. Gao; C. Gadal; O. Rozier; C. Narteau Morphodynamics of barchan and dome dunes under variable wind regimes, Geology, Volume 46 (2018), pp. 743-746 | DOI

[131] P. Claudin; G. F. S. Wiggs; B. Andreotti Field evidence for the upwind velocity shift at the crest of low dunes, Boundary-Layer Meteorol., Volume 148 (2013), pp. 195-206 | DOI

[132] L. Ping; C. Narteau; Z. Dong; Z. Zhang; S. Courrech du Pont Emergence of oblique dunes in a landscape-scale experiment, Nat. Geosci., Volume 7 (2014), pp. 99-103 | DOI

[133] R. E. Hunter; B. M. Richmond; TAU Rho Alpha Storm-controlled oblique dunes of the Oregon coast, Geol. Soc. Am. Bull., Volume 94 (1983), pp. 1450-1465 | DOI

[134] A. Lucas; S. Rodriguez; C. Narteau et al. Growth mechanisms and dune orientation on Titan, Geophys. Res. Lett., Volume 41 (2014), pp. 6093-6100 | DOI

[135] O. Durán Vinent; B. Andreotti; P. Claudin; C. Winter A unified model of ripples and dunes in water and planetary environments, Nat. Geosci., Volume 12 (2019), pp. 345-350 | DOI

[136] B. Andreotti; A. Fourrière; F. Ould-Kaddour; A. B. Murray; P. Claudin Giant aeolian dune size determined by the averaged depth of the atmospheric boundary layer, Nature, Volume 457 (2009), pp. 1120-1123 | DOI

[137] P. Lü; C. Narteau; Z. Dong; O. Rozier; S. Courrech du Pont Unravelling raked linear dunes to explain the coexistence of bedforms in complex dunefields, Nat. Commun., Volume 8 (2017), 14239 | DOI

[138] P. Lü; C. Narteau; Z. Dong et al. Coexistence of Two Dune Growth Mechanisms in a Landscape-Scale Experiment, Geophys. Res. Lett., Volume 49 (2022), e2021GL097636 | DOI

[139] M. C. Marvin; M. G. A. Lapôtre; A. Gunn; M. Day; A. Soto Dune interactions record changes in boundary conditions, Geology, Volume 51 (2023), pp. 947-951 | DOI

[140] C. Gadal; P. Delorme; C. Narteau; G. F. S. Wiggs; M. C. Baddock; J. M. Nield; P. Claudin Local wind regime induced by giant linear dunes: Comparison of ERA5-land reanalysis with surface measurements, Boundary-Layer Meteorol., Volume 185 (2022), pp. 309-332 | DOI

[141] L. Fernandez-Cascales; A. Lucas; S. Rodriguez; X. Gao; A. Spiga; C. Narteau First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars, Earth Planet. Sci. Lett., Volume 489 (2018), pp. 241-250 | DOI

[142] B. Castelle; Q. Laporte-Fauret; V. Marieu et al. Nature-based solution along high-energy eroding sandy coasts: preliminary tests on the reinstatement of natural dynamics in reprofiled coastal dunes, Water (Switz.), Volume 11 (2019), 2518 | DOI

[143] Q. Laporte-Fauret; B. Castelle; R. Michalet; V. Marieu; S. Bujan; D. Rosebery Morphological and ecological responses of a managed coastal sand dune to experimental notches, Sci. Total Environ., Volume 782 (2021), 146813 | DOI

[144] V. Ralaiarisoa; P. Dupont; A. Ould El Moctar; F. Naaim-Bouvet; L. Oger; A. Valance Particle impact on a cohesive granular media, Phys. Rev. E, Volume 105 (2022), 054902 | DOI

Cited by Sources:

Comments - Policy